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Abstract— It is impractical to verify multiplier or di-
vider circuits entirely at the bit-level using ordered Binary
Decision Diagrams (BDDs), because the BDD representa-
tions for these functions grow exponentially with the word
size. It is possible, however, to analyze individual stages
of these circuits using BDDs. Such analysis can be helpful
when implementing complex arithmetic algorithms. As a
demonstration, we show that Intel could have used BDDs to
detect erroneous lookup table entries in the Pentium(TM)
floating point divider. Going beyond verification, we show
that bit-level analysis can be used to generate a correct
version of the table.

1. Introduction

Arithmetic circuits have received relatively little attention
from the verification community, except by those using meth-
ods based on theorem proving, e.g., [14]. This inattention is
due to two main reasons. First, many perceive that arithmetic
circuit design is fairly straightforward—the same implemen-
tation techniques have been used for years, and designers are
confident of their ability to detect errors using conventional
simulation. Intel’s recent experience with its Pentium float-
ing point divider [13] has exposed the error in this thinking.
There are many places one can make mistakes in designing
these circuits, some of which may be very hard to detect with
the limited number of cases that can be tested by simulation.
Second, these circuits are especially challenging for methods
based on ordered Binary Decision Diagrams (BDDs), the most
popular alternative to theorem proving [5]. The BDDs repre-
senting the outputs of a multiplier grow exponentially with the
word size [4], making them impractical for word sizes much
beyond 16 bits. A similar result has been shown for represent-
ing the outputs of a divider [16]. On the other hand, the outputs
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of simpler units such as adders, subtractors, and comparators
are represented very efficiently with BDDs.

In this paper, we demonstrate that BDD-based verification
can be usefully applied to complex arithmetic circuits. Even
though it is not feasible to verify the overall circuit function-
ality, just verifying one iteration can uncover many possible
design errors. We demonstrate this by showing the desired be-
havior for one iteration of radix-4 SRT division [1], as used in
the Pentium divider, can be specified and verified using BDDs.
This verification will detect incorrect entries in the “PD” table,
used to generate a quotient digit on each division step, such
as occurred in the Pentium, as well as other potentially subtle
design errors. Going on beyond verification, we show that a
correct PD table can be generated automatically. Our method
extends the correction method described by Madre and Coud-
ert [12] to handle logic blocks with larger numbers of inputs
and outputs.

The intention of this paper is not to advance the state-of-
the-art in formal verification, but rather to illustrate how exist-
ing technology could be applied to real life designs. Current
tools fall well short of the ultimate goal of verifying complete
floating point hardware designs against a high level, mathe-
matical specification, e.g., the IEEE Floating Point Standard.
Nonetheless, they can be applied to key components of a sys-
tem, enhancing overall design quality. The decision of which
components to verify requires a weighing of three factors: 1)
how cleanly the functionality of the component can be speci-
fied, 2) whether the subsystem is tractable for existing formal
verification tools, and 3) the chances that the subsystem may
contain subtle design errors that cannot be detected by less
formal measures, such as simulation. Although this “oppor-
tunistic verification” does not guarantee complete system cor-
rectness, any measures that can reduce the chances of design
errors are worthy of consideration. The decision of whether
and where to apply such verification should be based largely
on economic grounds. That is, the cost of formally specifying
and verifying a component should be compared to the cost of
other verification methods, such as simulation, as well as to
the cost of any design errors that could be missed by these less
comprehensive approaches.

The Pentium FDIV problem provides a clear illustration for
the potential value of opportunistic verification. Compared
to the $475 million charge that Intel took against its 1994
revenues to replace defective Pentium chips, one can easily
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justify applying verification tools to a number of subsystems,
including many parts of the floating point unit.

2. Bit-Level Analysis

A bit-level analysis of a logic circuit involves generating
Boolean function representations of the signal values in terms
of variables representing the primary inputs and possibly the
state. BDDs have proved the most successful data structure
for representing such functions due to their compact size and
the ease with which they can be compared and manipulated.
These functions can be generated directly from a low-level
representation of the circuit, for example from a logic gate
description.

For the purpose of this presentation, the details of the BDD
data structure and algorithms are not important. Instead, we
will simply present some of the important characteristics. The
survey article in [5] provides more information for the in-
terested reader. A BDD represents a Boolean function as
a directed, acyclic graph with vertices corresponding to the
function variables. In an Ordered BDD, these variables are
assigned an ordering, and all vertices must follow this ordering
in the graph. By a simple set of transformation rules, such
a BDD may be reduced to a canonical form, i.e., such that
the representation of a given function is unique. Thus, if two
circuits compute the same logic function, their BDD repre-
sentations will be identical, even if they differ greatly in their
structure. For example, BDD-based analysis can readily deter-
mine that a carry-lookahead adder is functionally equivalent to
a carry-ripple one.

The BDD representation of a combinational logic circuit
can be generated by evaluating its gate-level representation.
Starting with single vertex BDDs representing variables for the
primary inputs, each gate is evaluated to generate the BDD rep-
resentation of its output based on the BDD representations of its
inputs. For modeling sequential circuits, a form of “symbolic
simulation” can be used, augmenting conventional 3-valued
event-driven simulation with a BDD-based symbolic manipu-
lator to generate representations of the node states as functions
of Boolean variables assigned to the circuit inputs and state
[7]. Although there are no commercial products providing this
capability, prototype tools developed in universities have been
available for over 5 years[2]. In this study, we used such a tool
in addition to program consisting of a command line interface
to a BDD package.

To perform functional verification at the bit level, we must
also generate Boolean function representations of the desired
behavior. One method is to construct a “known good” imple-
mentation of the desired behavior for comparison against the
actual design. The utility of the verification then depends on
how reliably such an implementation can be generated. For
common functions such as addition or multiplication, this is
not a difficult task, but for functions such as radix conversion,
floating point arithmetic, or division, generating the specifica-
tion becomes more problematic. An alternative is to generate
“checker circuits” that will determine whether the actual cir-
cuit’s inputs and outputs satisfy the desired arithmetic proper-
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Figure 1: Block level representation of SRT divider stage

ties. Generating checker circuits is also somewhat tedious and
prone to error, but we claim that the effort can still be worth-
while. It allows us to test the circuit operation over all possible
input and state combinations, rather than the limited cases that
can be tested with conventional simulation. Furthermore, it
would be quite reasonable to create a library of standard arith-
metic functions (addition, multiplication, relational operations,
etc.), and automatically generate checker circuits from a more
abstract specification.

3. Verification of SRT Division

As an illustration of bit-level verification, consider the task
of verifying a divider similar to that used in the Intel Pentium
floating point unit. We focus only on the part of the circuit
computing the quotient of the two mantissas, as this is where
the FDIV error occurrred. The exponent and rounding calcu-
lations are not considered. Although Intel has only divulged
limited information about this circuit [13], Tim Coe has cre-
ated a software model that matches Intel’s description and that
reproduces its erroneous behavior [9]. Our circuit design is
a gate-level implementation derived from Coe’s model. Al-
though the actual Pentium divider undoubtably differs from
ours in its details, the same verification methods should apply.

The Pentium divider uses the iterative “SRT” algorithm,
named after the initials of the 3 people credited with its dis-
covery. Each iteration of the algorithm generates one digit of
the quotient. A key feature of this algorithm is that by using
a redundant number representation, each quotient digit can be
computed using only estimates of the partial remainder and
divisor. This allows fast iteration even for large word sizes.
The particular version of the SRT algorithm implemented by
the Pentium operates with radix 4 quotient digits, so that two
bits of the quotient are computed in each iteration.

The divider has as state a partial remainder, initialized to the
dividend, and a partial quotient, initialized to 0. Each iteration
extracts two bits worth of quotient, subtracts the correspond-
ingly weighted value of the divisor from the partial remainder,
and shifts the partial remainder left by 2 bit positions. The logic
implementing one iteration is shown in Fig. 1. This “stage”
has as inputs the divisorD, and the partial remainder, encoded



as a pair of words PSi and PCi . The actual partial remainder
is given by the sum of these two words. It has as outputs the
extracted quotient digit Qi+1 (ranging from �2 to +2), and
the updated partial remainder words PSi+1 and PCi+1. The
subtraction of the weighted divisor is performed with a carry-
save adder (CSA), avoiding the need for propagation through
a carry chain. Our implementation of the stage uses a 70-bit
word size, enough for extended precision floating point arith-
metic, and contains around 1100 logic gates. A 7-bit adder is
used to add the high order bits of the partial remainder words as
an estimate of the true partial remainder. The high 5 bits (one
of which is always 1) of the divisor are used as an estimate of
the true divisor value. These estimates are used to index into a
lookup table, known as the “PD” table to generate the quotient
digit. In our implementation, the table was created from a PLA
description generated by the ESPRESSO logic optimizer and
then translated automatically into a gate-level equivalent.

A specification for one iteration of the divider can be ex-
pressed readily, using the formulation by Atkins [1], modified
for the particular numeric format. In our circuit, divisor D is
always positive, with a leading 1 to the left of the binary point,
while partial remainder words PSi andPCi are in two’s com-
plement form, with 3 bits, plus the sign bit to the left of the
binary point. D can therefore be a number in the range 1:0 to
nearly 2:0, whilePCi andPSi can range from�8:0 to (nearly)
8:0. For valid operation, we impose a “range” constraint on
the relative values of the divisor and partial remainder at each
step, expressed as a predicate Range :

Range(D;PS;PC) �

�8D � 3(PS + PC) � 8D (1)

We also require the updated partial remainder to be the result of
subtracting the weighted divisor and shifting by two, expressed
as a predicate Value:

Value(D;Q;PS; PC;PS0

; PC
0

) �

PS
0

+ PC
0

= 4(PS + PC �Q �D) (2)

Using these predicates, the specification for one iteration can
be written as a predicate Stage :

Stage(D;Q;PS; PC;PS0

; PC
0

) �

Range(D;PSi; PCi))

[Range(D;PSi+1; PCi+1) ^

Value(D;Qi+1 ; PSi; PCi; PSi+1; PCi+1)] (3)

This specification states that for all legal stage inputs (i.e.,
satisfying the range constraint) the stage outputs also satisfy
the range constraint, and the inputs and outputs are properly
related. This specification is reasonablyhigh level and captures
the essence of the algorithm.

To check this specification at the bit-level, we must translate
the arithmetic expressions, inequalities, and logical connec-
tives into Boolean operations. We did this, by constructing a
gate-level “checker”circuit consisting of adders, shifters, com-
parators, and complementers. The checker circuit is actually
much larger than the circuit it is checking, requiring a total of
around 4300 logic gates. On the other hand, it uses a more
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Figure 2: Divider stage modified for generation of PD table

routine design style and it allows a comparison between two
independent, and very different, logic designs. Furthermore,
the checker circuit can be designed in a simpler and more con-
servative style. The verification succeeds for a correct PD table
(using entries matching those used by Coe’s program) but fails
when the five entries described by Intel [13] are changed from
2 to 0. Running on a SUN Microsystems Sparcstation 10, the
verification (good or bad) requires around 10 minutes of CPU
time and 112 Megabytes of storage, generating BDDs totalling
4.2 million nodes. This performance could most likely be
improved with a better variable ordering.

4. Automatic Generation of PD Table

Bit-level circuit analysis can go beyond verifying a design
to actually suggest corrections or even be used in the initial
synthesis. We illustrate this for the divider circuit by showing
how to generate the PD table from the specification given in
(3). Our analysis technique generalizes on the method im-
plemented by Madre and Coudert[12]. In their program they
replaced a small, k-input, single output portion of the circuit
by a “universal logic block” having 2k auxiliary Boolean vari-
ables to encode all possible Boolean functions that could be
realized by the block. This technique would not be practical
for the PD-table, since the block has 11 inputs and 2 outputs.1

With our method, we express the allowed behavior of ak-input,
n-output block as a Boolean function over k+n Boolean vari-
ables. This function yields 1 for the allowed combinations of
input and output, and 0 otherwise. In effect, we are describing
the table as a Boolean relation [15].

To generate the relation for the PD table, we create a modi-
fied stage circuit, shown in Fig. 2. This circuit has the lookup
table portion removed. The table inputs are turned into stage
outputs PT (the result of adding the high order 7 bits of PSi

and PCi, and the quotient digit is made into a stage input Q.
The original table also has the high order bits of the divisor
as inputs, and therefore we partition D into its high order bits
DT (4 bits, omitting the bit guaranteed to be 1), and its low

1We need only generate the magnitude of the quotient digit. The
sign can be determined from that of the truncated partial remainder.



'0101.011 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0
'0101.010 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2
'0101.001 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2
'0101.000 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2
'0100.111 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2
'0100.110 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2
'0100.101 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2
'0100.100 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2
'0100.011 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2
'0100.010 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2
'0100.001 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2
'0100.000 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2
'0011.111 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2
'0011.110 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2
'0011.101 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2
'0011.100 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2
'0011.011 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2
'0011.010 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2
'0011.001 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
'0011.000 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
'0010.111 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1
'0010.110 2 2 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1 2,1
'0010.101 2 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1 2,1 1
'0010.100 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1 2,1 1 1
'0010.011 2 2 2 2 2 2 2 2 2 2 2,1 2,1 1 1 1 1
'0010.010 2 2 2 2 2 2 2 2 2,1 2,1 2,1 1 1 1 1 1
'0010.001 2 2 2 2 2 2 2 2,1 2,1 1 1 1 1 1 1 1
'0010.000 2 2 2 2 2 2 2,1 2,1 1 1 1 1 1 1 1 1
'0001.111 2 2 2 2 2 2,1 1 1 1 1 1 1 1 1 1 1
'0001.110 2 2 2 2 2,1 1 1 1 1 1 1 1 1 1 1 1
'0001.101 2 2 2,1 1 1 1 1 1 1 1 1 1 1 1 1 1
'0001.100 2 2,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'0001.011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'0001.010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'0001.001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'0001.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,0 1,0
'0000.111 1 1 1 1 1 1 1 1 1 1 1 1,0 1,0 1,0 1,0 1,0
'0000.110 1 1 1 1 1 1 1 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
'0000.101 1 1 1 1 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0 0
'0000.100 1 1 1,0 1,0 1,0 1,0 1,0 1,0 0 0 0 0 0 0 0 0
'0000.011 1,0 1,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'0000.010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'0000.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'0000.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P 1.0000 1.0001 1.0010 1.0011 1.0100 1.0101 1.0110 1.0111 1.1000 1.1001 1.1010 1.1011 1.1100 1.1101 1.1110 1.1111 D
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Figure 3: Positive PD table for radix-4 SRT divider generated
by bit-level analysis

order bits DL. The set of variables encodingD is then written
hDT;DLi. The modified stage has outputs PT , PS0 , and
PC 0, which depend on inputs DT , DL, Q, PS, and PC .

Our goal is to generate a specification of the table, indicat-
ing for each input, the allowable values of the quotient digit.
This is expressedas a “characteristic function” �(DT;PT; Q),
where DT and PT are sets of Boolean variables (4 and 7, re-
spectively) encoding the table inputs, andQ is a set of Boolean
variables encoding the table outputs. Function � yields 1 for
every allowable combination of table input and output. For a
given value of DT and PT , � may yield 1 for no values of Q,
indicating the problem is overconstrained, and the table cannot
be constructed. Alternatively, it may yield 1 for either a single
value of Q, indicating a unique choice of quotient digit, or for
multiple values ofQ, indicating more than one allowable digit.
The � function can be expressed as:

�(DT;PT; Q) �

8DL; PS;PC[(P , PT ))

Stage(hDT;DLi;Q;PS;PC;PS
0

; PC
0

)] (4)

The universal quantification in (4) states that the table correctly
handle all combinations of partial remainder and divisor, based
only on the information encoded in the table inputs PT and
DT . Such quantification is implemented by our BDD package.

Computation of the function � required around 12.5 minutes
of CPU time, generating a maximum of 4.5 million BDD nodes
occupying 132 Megabytes of storage. The results are shown
in Fig. 3 for positive values of PT . For each value of the
truncated divisor (labeled D) and each nonnegative value of the
truncated partial remainder (labeled P), the allowable quotient
digit values are shown. To save space, rows for values of PT
beyond 0101:0112 are omitted, since all of their entries are
“don’t cares,” i.e., they are labeled “2,1,0.” A similar, although
not fully symmetric version of the table was generated for
negative values of PT , as is shown in Figure 4. For this table,
the actual quotient digit values should be the negative of those

P 1.0000 1.0001 1.0010 1.0011 1.0100 1.0101 1.0110 1.0111 1.1000 1.1001 1.1010 1.1011 1.1100 1.1101 1.1110 1.1111 D
'1111.111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'1111.110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'1111.101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'1111.100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'1111.011 1,0 1,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'1111.010 1 1 1,0 1,0 1,0 1,0 1,0 1,0 0 0 0 0 0 0 0 0
'1111.001 1 1 1 1 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0 0
'1111.000 1 1 1 1 1 1 1 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
'1110.111 1 1 1 1 1 1 1 1 1 1 1 1,0 1,0 1,0 1,0 1,0
'1110.110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,0 1,0
'1110.101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'1110.100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'1110.011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'1110.010 2 2,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'1110.001 2 2 2,1 1 1 1 1 1 1 1 1 1 1 1 1 1
'1110.000 2 2 2 2 2,1 1 1 1 1 1 1 1 1 1 1 1
'1101.111 2 2 2 2 2 2,1 1 1 1 1 1 1 1 1 1 1
'1101.110 2 2 2 2 2 2 2,1 2,1 1 1 1 1 1 1 1 1
'1101.101 2 2 2 2 2 2 2 2,1 2,1 1 1 1 1 1 1 1
'1101.100 2 2 2 2 2 2 2 2 2,1 2,1 2,1 1 1 1 1 1
'1101.011 2 2 2 2 2 2 2 2 2 2 2,1 2,1 1 1 1 1
'1101.010 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1 2,1 1 1
'1101.001 2 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1 2,1 1
'1101.000 2 2 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1 2,1
'1100.111 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2 2,1 2,1
'1100.110 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
'1100.101 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
'1100.100 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2 2
'1100.011 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2 2
'1100.010 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2
'1100.001 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2 2
'1100.000 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2 2
'1011.111 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2 2
'1011.110 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2
'1011.101 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2 2
'1011.100 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2 2
'1011.011 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2 2
'1011.010 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2
'1011.001 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2 2
'1011.000 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2 2
'1010.111 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2 2
'1010.110 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2
'1010.101 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2 2
'1010.100 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2
'1010.011 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0 2,1,0

–8/3

–5/3

–4/3

–2/3

–1/3

Figure 4: Negative PD table for radix-4 SRT divider generated
by bit-level analysis

shown.

Although there are really no surprises in these tables, several
features are worth highlighting. First, we have annotated the
tables with lines of different slope, as is traditionally shown
with PD plots [1]. The only slope value that appears in the
specification are the values �8=3, arising from the inequality
of (1). The other values were, in effect, determined automati-
cally through the generation of � . Second, the shaded regions
indicate the cases where Intel had erroneous values of 0. As
our plot shows, the only allowable value for these entries is
2. Finally, note that every table entry has at least one value.
If there were any entries indicating no allowable values, this
would indicate that the table could not be generated. In par-
ticular, it would mean that the limited information given the
table about the divisor and partial remainder did not suffice to
guarantee selection of a valid quotient digit.

The information computed by this analysis could be used
to directly synthesize a PLA implementation of the PD table.
Watanabe and Brayton [15] have shown that two-level opti-
mization can be performed using are relational specification of
the desired functions. This form allows more a more general
specification of the Don’t Care conditions.

5. Conclusions

This analysis demonstrates the utility of BDD-based tech-
niques even for circuits that cannot be verified in their entirety.
For complex algorithms such as SRT, verifying a complete
iteration of the algorithm is a significant step in ensuring the
correctness of the complete computation. Even though the SRT
algorithm has been studied and implemented many times, it is
easy to make mistakes. Although Intel’s incorrect implemen-
tation has received the most publicity, it is worth noting that in
his derivation of a PD table for this algorithm, Goldberg makes
the same basic mistake as Intel, failing to recognize that some
table entries are reachable even when the estimated valuesPT



and DT appear out of range.[10, Table A.30]2

One advantage of BDD-based analysis over other ap-
proaches to verification is the ability to work with low-level
circuit models. Thus, we could work directly from a PLA for-
mat file in constructing our model of the PD table. Although
it is unclear at exactly what design stage Intel’s design error
occurred, working from a low-level representation ensures that
we are verifying the circuit as it will actually be implemented.
It would even be possible to work from a mask-level circuit
description, using a combination of transistor circuit extrac-
tion and symbolic switch-level analysis to generate the circuit
model [3].

Generating the checker circuits for this analysis involved
a significant effort, and we have no reliable means of veri-
fying these checker circuits. Viewed in economic terms, the
need to generate checker circuits both increases the cost and
reduces the potential benefit of performing formal verification.
Nonetheless, as the cost of making mistakes grows, it becomes
easier to justify an increased investment in formal verification.
An investment of around 1 person-month of effort, costing no
more than $20,000, would be more than sufficient for the anal-
ysis described here. Such an expense is trifling compared to the
$475 million charge Intel has taken on account of the Pentium
error. Of course, it is easy to identify an error once its location
is known, but we claim that our analysis would cover many
possible sources of design error in the divider circuit. Getting
one iteration right is a key step in implementing this algorithm.

Over the long term, it would be preferable to have a sys-
tem whereby users could express their specifications using a
combination of arithmetic expressions, predicates such as in-
equalities, and Boolean connectives, in the manner of (1–4).
This would indeed be possible using word-level expressions as
part of the specification, as formulated by Lai and Vrudhula
[11]. These expressions can be generated and manipulated
as “pseudo-Boolean” functions mapping Boolean variables to
numeric values. Such functions can be represented as edge-
valued BDDs [11], or as Binary Moment Diagrams [6]. Recent
work has shown that word-level specifications can be added to
symbolic model checking [8]. Having such a capability would
both decrease the cost and increase the benefit of formal veri-
fication for arithmetic circuits.
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