
Analysis of Operation Delay and Execution Rate Constraints

for Embedded Systems

Rajesh K. Gupta

Department of Computer Science

University of Illinois, Urbana-Champaign

1304 W. Spring�eld Avenue, Urbana, Illinois 61801.

Abstract

Constraints on the delay and execution rate of operations in
an embedded application are needed to ensure its timely inter-
action with a reactive environment. In this paper, we present
a static analysis of the timing constraints satis�ability by a
given system design consisting of interacting hardware and
software components. We use this analysis to evaluate the ef-
fect of individual timing constraints on system design issues,
such as the choice of the software runtime system, bounds on
loop invocations, and the hardware-software synchronization
operations. We show, by example, the use of static analysis
techniques in the design of embedded systems.

1 Introduction

Estimation and analysis of timing performance of individual
hardware and software components is crucial to e�cient de-
sign of embedded systems [1, 2]. Constraints on system per-
formance are often used to determine the division of system
functionality into hardware and software components [3, 4].
In particular, we consider timing constraints on language-
level operations, such as read/write operations. These con-
straints may be on the relative timing of two operations, or
on the rate of execution of an operation. We present a case
analysis of timing constraint satis�ability, and identify cases
where deterministic answers to constraint satis�ability are
possible even in the presence of uncertainty in the system
model.
We begin with a description of the desired application in

a hardware description language (HDL). Since most HDLs
use static data types and only un-aliased data references,
it is possible to do a static determination of operation de-
pendencies and memory references. Both of these features
are essential for analysis of constraints on timing and size of
implementation, and hence our choice of HDL for input spec-
i�cation. In this speci�cation, an application is described as
a collection of processes that execute concurrently. All com-
munication between operations in a process body is based
on shared storage, declared as a part of the process body.

0

Inter-process communication is speci�ed by message-passing
operations that use a blocking protocol for synchronization
purposes.
The input description is compiled into a graph-based

model consisting of ow graphs. A ow graph is a polar
acyclic graph where the vertex set represent language-level
operations and the edge set represents dependencies between
operation vertices. A vertex in the ow graph represents one
of the following operations: nop, conditional, logic, arith-
metic, io, wait and link. The wait operation represents syn-
chronization events at system inputs and outputs.
The link operation captures hierarchy of models by rep-

resenting a call or a loop operation. The called ow graph
corresponding to a link vertex may be invoked one or many
times. A loop link operation consists of a loop condition op-
eration that performs testing of the loop exit condition and
a loop body. The number of invocations of a loop body are
controlled by a loop index variable associated with each loop
operation.
The successors to a conditional operations are enabled de-

pending upon the outcome of the condition evaluation. Thus
the ow graph is a bilogic control graph [5], where a fork
represents either a concurrent or disjoint set of operations.
An implementation of a graph G refers to assignment of

delay and size properties to operations in G, and a choice of
runtime scheduler that repeatedly enables execution of the
source operation in G. This assignment of values is related
to the hardware or software implementation of operations in
G. We assume that the expressed concurrency in ow graph
models can be supported by available hardware resources.
That is, any serialization required to meet hardware resource
constraints has already been performed. This assumption
is made in view of the primarily control-dominated target
applications for which our hardware synthesis methodology
completes resource binding before any operation scheduling
is done.
The delay, �, of an operation refers to the execution delay

of the operation. We assume that for a graph model, the
delay of all operations is expressed in cycles for a given cycle
time associated with the graph model. The latency, �(G),
refers to the execution delay of the graph model G. The la-
tency of a ow graph may be variable due to the presence
of conditional paths and synchronization operations. An ex-
ecution delay is associated with link vertices as the latency
of the corresponding graph model times the number of times
the called graph is invoked. Since the latency can be variable,
therefore, the delay of a link vertex can be variable. In (bi-

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

logic) ow graphs, link and wait operation vertices introduce
uncertainty over the precise delay and order of operations in
the system model. Due to this uncertainty, these operations
are called non-deterministic delay or ND operations.
We de�ne a lower bound on latency as the length of the

longest path between the source and sink vertices assuming
the loop index to be one for the loop operations. In presence
of conditional paths, the length is a vector, ` = (`[i]) where
each element `[i] indicates the execution delay of a path in G.
The elements of ` are the lengths of the longest paths that
are mutually-exclusive. Notationally, `m and `M refer to the
minimum and maximum element in ` respectively. Note that
static characterization of conditional paths by ` may also
include some infeasible execution paths. This estimation can
be improved by additional user input as in [6, 1]. We de�ne
the rate of execution, �i(k), at invocation k of an operation
vi as the inverse of the time interval between its current and
previous execution. By convention, the instantaneous rate of
execution is 0 at the �rst execution of an operation.

2 Timing Constraints

Maximum and minimum operation delay constraints bound
the time interval between initiation of two given operations.
A minimum or maximum execution rate constraint bounds
the rate of execution of an operation similarly. A rate con-
straint on an operation, vi, may also be relative to execution
of a graph model, G. This bounds the rate of execution of
vi over time periods when G is continuously enabled. The
relative rate of execution expresses rate constraints that are
applicable to a speci�c context of execution as captured by
the control ow in G.
We specify timing constraints by tagging statements in the

HDL description. Relative rate constraints on an operation
are applied only relative to the ow graphs in the hierarchy
in which the operation resides. The operation hierarchy is
indexed with the ow-graph in the inner-most hierarchy as
index 0. In Example 2.1 below, there are two relative rate
constraints on the read operation relative to the two while
statements.

Example 2.1. Speci�cation of rate constraints.

process example (frameEN, bitEN, bit, word)
in port frameEN, bitEN, bit;
out port word[8];

f
boolean store[8], temp;
tag A;

while (frameEN)
f

while (bitEN)
f

A: temp = read(bit);
store[7:0] = store[6:0] @ temp;

g
write word = store;

g
attribute "constraint minrate of A = 100 cps";
attribute "constraint minrate 0 of A = 1 cps";
attribute "constraint minrate 1 of A = 10 cps";

g

In this example, a minimum rate constraint of 100 cycles
per sample execution, or 0.01 executions per cycle, is spec-
i�ed on the read operation. In addition, two relative min-
imum rate constraints of 1 and 0.1 per cycle are speci�ed
for the read operation relative to the loops while(bitEN) and
while(frameEN) respectively.

Operation delay constraints are speci�ed similarly using
tags using the syntax below:

.constraint mintime from <tag1> to <tag2> =

<num> cycles;
.constraint maxtime from <tag1> to <tag2> =

<num> cycles;
.constraint finish|before|during <tag1> <tag2>;

2

2.1 Constraint Satis�ability

Given a schedule of operation execution times, a timing con-
straint is considered satis�ed if the operation initiation times
(determined by the scheduling function) satisfy the corre-
sponding bounds on the time intervals. Clearly, the satis-
faction of timing constraints is related to the choice of the
scheduling function. In general, the choice of a particular
operation scheduler depends upon the types of operations
supported and the resulting control hardware or software re-
quired to implement the scheduler. For constraint analysis
purposes, it is not necessary to determine a speci�c schedule
of operations, but only to verify the existence of a schedule.
We present constraint satis�ability tests in the context of
a multi-threaded software implementation [7] and a bilogic
relative schedule for hardware portions [8].
The satis�ability tests are based on a timing constraint

graph, GT = (V;E;�) where the set of edges consists of
forward and backward edges, E = Ef [Eb and �ij 2 � de�nes
the weights on edges such that tk(vi) + �ij � tk(vj) for all
k > 0. The following results form the basis of operation-level
timing constraint analysis.

� A constraint graph is considered feasible if it contains no
positive cycle when the delay of ND operations is assigned to
zero. Minimum and maximum operation delay constraints
are satis�able if and only if the constraint graph is feasible
and there exist no cycles with ND operations [9].

� A maximum rate constraints is always satis�able since it
leads to a lower bound on the static path lengths. This is
checked by comparing the bound against `m.
`m also de�nes the fastest rate at which an operation in the

graph model can be executed by a non-pipelined implemen-
tation. This points to the necessary condition for meeting a
minimum execution rate constraint. A su�cient condition for
meeting the minimum rate constraints is obtained by placing
a bound on the interval from the completion of operations
in G to the start of the source operation in G. We call this
interval, (G), as the overhead on the repeated executions of
G. A minimum rate constraint, ri, on operation, vi 2 V (G)
is satis�able if (G) + `M (G) � �

ri
.

A bound on the overhead delay (G) implies a bound on
the invocation interval of G+, the calling graph (also called
the parent graph) of G. Therefore, this bound on the over-
head term can be expressed recursively over the ow graph
hierarchy as follows:

(G) = [`M(G+) + (G+)]� `m(G) (1)

In particular, this bounds the invocation interval of the par-
ent process graph G0. The invocation interval of a process
graph refers to the delay due to the runtime scheduler. Thus
a overhead bound restricts the choice of the runtime sched-
uler. Note that a bound on (G) does not imply a bound on
the latency � of G which may, in fact, be unbounded.

However, in the presence of ND operations in G, determin-
istic satis�ability of (an absolute) minimum rate constraint
can only be guaranteed by transforming the ND operations
into bounded-delay operations. Justi�cation of a bound on
the ND operation comes from the observation that constraint
satis�ability is a property of an implementation (and not of
a speci�cation), so while it is always possible for a reactive
environment to overrun any speci�ed time bound between
its actions, however, it does not a�ect the satis�ability of an
implementation.
In practical terms, this means constraint satis�ability is

answered assuming conditionals paths as taken, and by con-
sidering bounds on the loop indices. The delay of wait op-
eration depends upon its implementation. For instance, in a
busy-wait implementation (i.e., while(!signal);), the wait op-
eration is implemented as a loop operation that iterates until
the concerned input (signal) is received. This implementa-
tion is commonly used for hardware synthesis [9]. In an-
other implementation, the execution of wait operation causes
a context-switch. This implementation is particularly appli-
cable for software implementations [7]. For this implemen-
tation, the delay of the wait operation is characterized by a
�xed overhead as the delay due to the runtime system, and
hence treated as a non-ND operation.

3 Implementation

Operation-level constraint analysis is implemented as a part
of the co-synthesis framework, Vulcan [10], to allow the
system designer to explore hardware versus software imple-
mentations of a given system model. The operation delays
corresponding to hardware implementation are obtained us-
ing the high-level synthesis tools [9], whereas software imple-
mentation is considered in the context of a speci�c processor
cost model speci�ed by the designer. To evaluate the e�ect
of the runtime system, we have explored the following three
ways to implement the software routines: (a) subroutine-
based, (b) coroutine-based and (c) description-by-cases. Very
briey, a subroutine implementation refers to translation of
program threads into program subroutines that operate un-
der a global task scheduler. In contrast, a coroutine im-
plementation reduces the overhead by placing routines in a
co-operative, rather than hierarchical, relationship to each
other. The coroutines maintain a local state and willingly
relinquish control of the processor at exception conditions
which may be caused by unavailability of data (for example, a
data dependency on another thread) or an interrupt. In case
of such exceptions the coroutine switch picks up the processes
according to a prede�ned priority list. Upon resumption a
coroutine execution starts execution from the position where
its was detached last. A restricted coroutine implementa-
tion reduces the overhead further by suitably partitioning the
on-chip register storage between program routines such that
program counter is the only register that is saved/restored
during an inter-routine transfer. Finally, in the description-
by-cases, we merge di�erent routines and describe all oper-
ations in a single routine. This scheme is simpler than the
coroutine scheme. Here we construct a single program which
has a unique state assignment for each synchronization op-
eration. A global state register stores the state of execution
of a thread. Transitions between states are determined by
the runtime scheduling of di�erent ND operations based on
the data received. This method is restrictive since it pre-
cludes use of nested routines and requires description as a

Implementation Processor Overhead cycles

Subroutine '86 728
Coroutine '86 364
Restricted Coroutine '86 103
Description by cases '86 85
Restricted Coroutine DLX 19
Description by cases DLX 35

Table 1: Runtime overhead in cycles.

single switch statement, which in cases of particularly large
software descriptions, may be too cumbersome.
Table 1 summarizes program overhead for di�erent im-

plementation schemes. Results are reported for two proces-
sors, DLX [11] and the Intel 8086. Overhead cycles refers to
the overhead (in cycles) incurred due each transfer operation
from one program thread to another. It is clear that a re-
stricted coroutine implementation gives the best result, or the
least runtime overhead. In case of the x86 processor, the case
description scheme reduces the overhead by reducing amount
of ALU operations in favor of a slight increase in memory
input-output operations. This scheme entails smaller over-
heads when compared to the general coroutine scheme.
The results of constraint satis�ability tests are put to-

gether in the procedure check satis�ability shown below. The
input to the procedure is a set of graph models with delay and
rate constraints along with a choice of the runtime system.
Its output is null if the constraints are satis�able, else either
G is unsatis�able or it returns bounds on the delay of ND
operations that would make constraints satis�able. These
bounds can then be veri�ed by the system designer as being
applicable, or requiring system redesign.

check satis�ability(G)
for v 2 V (G)

if v = loop
check satis�ability(Gv);

construct GT

for each backward edge u in GT

if (cycle-set = �nd-cycles(GT))
for � 2 cycle-set

if (`M (�) > 0)
return (G is unsatis�able);

for v 2 � and v 2 ND
print �v = u� `M (�);
bound delay of v = �v;
mark v as non-ND;

s = d`m(G)� � �maxi R
�1
i e

if s � 0
return (G is satis�ed);

else
add NOP with � = s;
update `(Go);
check satis�ability(G);

if G+ exists
add constraint [�ri � `M(G) + `m(G)]

�1

on link operation in G+;

The following illustrates an example where the satis�abil-
ity tests successfully returns with bounds on ND operation

delays.

Example 3.1. Consider the hierarchy of ow graphs

below with the following constraints: rA = 1=100; r
G1

A
=

1=6; r
G2

A
= 1=40; rB = 1=50; r

G2

B
= 1=30; rC = 1=200; uCD =

12 and a bound on the runtime overhead 0 = 20. Here rG1

A

refers to a minimum rate constraint on operation A relative
to G1.

0

0 0

0

0

0

+

+

+

+

v3

5 7

0

0

0

v2

1 6

0

0

0

+

+

+

+
0 1

1

y

x

G3 G2 G1

A

BC

D

2

2

2

3

2

The procedure �rst considers G1. The corresponding con-
straint graph GT1 has three backward edges with following
weights:

rG1

A = 1=6) �6

r
G2

A = 1=40) �[40� (G1)](G2)=0

= �[40� f(G2) + `M (G2)� `m(G1)g](G2)=0

= �[40� 0� 15 + 3] = �28

rA = 1=100) �[100� (G1)] = �(100� [(G2)]� 15 + 3)

= �(88� [`M(G3) + 0 � `m(G2)])

= �(88� [26 + 20� 9]) = �51

The maximum forward path length is 4 (< 6), GT1 contains
no ND-cycles.

These constraints are propagated to G2 as follows: rG1

A is

relative to G1 and, therefore, it is not propagated to G2. r
G2

A

is propagated as a constraint rG2

v2 = 1=(28�1) = 1=27 on link
operation v2. Finally, rA is propagated as rv2 = 1=(51�1) =
1=50.
In the next iteration the analysis is done on G2. GT2

has four backward edges with weights (�50 � (G2)) =

�13; �27; �50 and �30. Constraint r
G2

B bounds the de-
lay due to the ND operation to 16 cycles.
Finally for G3, there are three backward edges in the con-

straint graph with weights �12; �(200�(G3)) = �180 and
�44. Constraint rC bounds the delay of v3 to 165 cycles. 2

4 Conclusions

We have presented delay and rate constraints on operations
in a system model. A notion of constraint satis�ability is de-
veloped based on the ability to determine the existence of a

schedule of operations that meets the constraints. A run-time
scheduler models the uncertainty caused by ND operations
in the invocation of graph models. The satisfaction of the
bounds on delay of ND operations requires additional infor-
mation from their implementations (such as context switch
delay, possible loop index values) against which the questions
about satis�ability of minimum rate constraint are answered.
An important implication of having bounds derived from tim-
ing constraints is that it makes it possible to seek transforma-
tions to the system model which tradeo� these measures of
constraint satis�ability against implementation costs. Under
certain conditions, these bounds can be extended by modify-
ing the structure of the ow graphs with ND cycles [10].
The operation-level analysis forms a part of the system

performance analysis. Our future plans are to develop a com-
prehensive framework for system analysis by incorporating
both runtime schedulability and process-level rate analysis
for pipelined implementations.

5 Acknowledgments

This research was supported by NSF CAREER Award MIP
95-01615, and a grant from NSF Engineering Research Center
89-43166.

References

[1] Y.-T. S. Li and S. Malik, \Performance analysis of em-
bedded software using implicit path enumeration," in
Proceedings of the Design Automation Conference, June
1995.

[2] W. Ye, R. Ernst, T. Benner, and J. Henkel, \Fast timing
analysis for hardware-software co-synthesis," in Proceed-
ings of the International Conference on Computer De-
sign, 1993.

[3] R. K. Gupta and G. D. Micheli, \Hardware-Software
Cosynthesis for Digital Systems," IEEE Design & Test
of Computers, pp. 29{41, Sept. 1993.

[4] R. Ernst, J. Henkel, and T. Benner, \Hardware-Software
Cosynthesis for Microcontrollers," IEEE Design & Test
of Computers, pp. 64{75, Dec. 1993.

[5] V. Cerf, Multiprocessors, Semaphores and a Graph
Model of Computation. PhD thesis, UCLA, Apr. 1972.

[6] C. Y. Park, \Predicting program execution times by an-
alyzing static and dynamic program paths," Real-Time
Systems, vol. 5, no. 1, pp. 31{62, Mar. 1993.

[7] R. K. Gupta, C. Coelho, and G. D. Micheli, \Pro-
gram Implementation Schemes for Hardware-Software
Systems," IEEE Computer, Jan. 1994.

[8] R. K. Gupta and G. D. Micheli, \Speci�cation and
Analysis of Timing Constraints for Embedded Systems,"
Tech. Report DCS-UIUC-1995, University of Illinois,
1995.

[9] D. Ku and G. D. Micheli, High-level Synthesis of ASICs
under Timing and and Synchronization Constraints.
Kluwer Academic Publishers, 1992.

[10] R. K. Gupta and G. D. Micheli, \A Co-Synthesis Ap-
proach to Embedded System Design Automation," De-
sign Automation for Embedded Systems, vol. 1, no. 1-2,
Jan. 1996.

[11] J. L. Hennessy and D. A. Patterson, Computer Archi-
tecture: A Quantitative Approach. Morgan-Kaufman,
1990.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

