
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

FADIC: Architectural Synthesis applied in IC Design.

J. Huisken, F. Welten
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract

This paper discusses the design of a chip using archi-
tectural synthesis. The chip, FADIC, is applied in Di-
gital Audio Broadcasting (DAB) receivers. It shows
that architectural synthesis tools are used for the design
of new complex applications and that it supports the
evolutionary development of challenging applications
like DAB. It was found that the success of such tools
in the design community depends on the way user in-
teraction is supported and stimulated. Fast and accur-
ate feedback from the synthesis tools in combination
with a rich set of hints for the compiler to guide the ar-
chitecture exploration are the key issues. It is shown
that short time to market is possible for implementa-
tions which are an order of magnitude more efficient
than alternative implementations on commercially avail-
able DSP processors.

1 Introduction

The increasing emphasis on short time-to-market in combination with
an increased complexity necessitates a high degree of design auto-
mation. One of the main challenges in IC-design automation is to
simultaneously obtain a short design time and an area and power
efficient product. Architectural synthesis [12], [3], [1], [2], [13],
is a potential solution but has not yet found widespread use in in-
dustry today. Scepticism is particularly encountered in case of high
volume design which is typically the case in consumer applications.
The successful application of high level synthesis tools for the design
of a commercial product for the consumer IC market can therefore
be regarded as a milestone.

In section 2 we will introduce shortly the application at hand.
Section 3 describes shortly a prototype built with general purpose
DSPs. This is followed by the design strategy used in the specifica-
tion and implementation of the FADIC chips in section 4. It shows
the effective use of high level synthesis during the design.

2 The DAB system

The DAB system is designed to provide reliable, multi service di-
gital sound broadcasting for reception by mobile and stationary re-
ceivers, using a simple non-directional antenna. It is meant to re-
place the existing AM/FM networks, and to provide easy program
selection and additional data services. The introduction to the pub-
lic has occurred at the “Internationale Funk Ausstellung” in Ber-
lin September 1995. The same month the BBC started a regular
service containing all five radio programs in Great London using a
single frequency network. The single frequency mode is the first
of the three operating modes in DAB, which is typically used for
nation-wide coverage. The other two modes are meant for local and
satellite broadcasting. DAB can be used from about 50 MHz until
2 GHz.

192 Kb/s
CD quality sound
 16 * 44.1 Kb/s

384 Kb/s

other programs
and applications

2.45 Mb/s

ISO
MPEG

DECOD

DE-

VITERBI

INTERLEAVING DE-
MUX DEMOD TUNER

ISO
MPEG
CODING

CODING

INTERLEAVING
MUX OFDM TRANSMIT

+

+

Transmission
channel

FADIC

Figure 1: DAB system overview, the shaded area is the channel de-
coder

The system is designed in Eureka project 147 which has lead
to an European Telecommunication Standard [6], to which FADIC
fully complies. Development of FADIC was part of a JESSI applic-
ation project. The DAB system is based on the technique of Coded
Orthogonal Frequency Division Multiplex [10], in which demodu-
lation is done using a Fast Fourier Transform. FADIC performs the
demodulation function in which the FFT plays an important rôle.
Another function which is also part of FADIC is the differential de-
modulation caused by the fact that QPSK is applied. The demodu-
lator architecture is depicted in figure 2. The shaded part is subject
of our high level synthesis approach.

A more elaborate description of the DAB system can be found
in [9] and [15] where experimental DAB receivers and integration
issues are shown. It is important to note that DAB is a new applic-
ation which requires new architectures. This paper shows that high

Metric
Generation

Controller DSP Interface

8

16 16
4/8

16

I/Q Input Output

Sync

Processor

FFT +
Differential

Demodulation

Frequency
Transposition

+
Buffer

DSP
Output

Figure 2: Birds eye view of the FADIC architecture: Besides the
presence of a controller and a DSP-interface frequency transposi-
tion and metric quantization is performed.

level synthesis can play an important rôle in bringing these types of
systems to the customer. The FADIC is used in the first consumer
DAB receivers.

3 Prototype channel-decoder with DSPs

A major part of the demodulator is the calculation of a 2K complex
point FFT. In figure 3 an early implementation [8] is shown using 4
Motorola 56156 DSPs.

eprom
8K * 8

ram
32K*16

eprom
8K * 8

ram
64K*16

eprom
8K * 8

ram
64K*16

eprom
8K * 8

ram
32K*16

Viterbi
decoder

8-bit
Parallel

I/O

synchro
signals

VCXO
12.288MHz

AFC

Clocks:
-DSPs
-DAB3
-Viterbi

DAB3DSP1

DSP2

DSP4

DSP3

serial connection

data and address busses

I/Q

AF

Figure 3: Prototype DSP board for DAB channel decoding

DSP1 Synchronization, clock control and program selection.
For these purposes a parallel baseband I/O and a serial AFC
output interface was added.
DSP2/3 FFT, differential demodulation and metric generation.
The processors are switched on a frame basis.
DSP4 De-interleaving, interfacing to the sound decoder and
Viterbi decoding.
One of the serial interfaces is used for data transfer to the sound
decoder.

Two DSPs are needed to obtain enough performance for receiv-
ing an audio and a data service, i.e. about one third of the required
performance. The performance is mainly determined by the num-
ber of FFT calculations. In assembly language the in-place FFT
code amounts to ca. 200 lines of assembly code comprising 3 nested
loops. In the inner loop the radix-2 butterfly calculations are done.

In assembly language the macro butterfly() contains 10
instructions, so the calculation of a complex butterfly takes about
20 clock cycles assuming a mean instruction duration of 2 cycles.
For a 2K FFT 11�1024 = 11264 butterflies need to be computed.
The board runs at 48 MHz leading to a measured 6 ms to perform
a 2K complex point FFT including overhead in loop control. See

n_blocks = 1024;
n_butts = 1;
for (stage=0; stage<11; stage++)

for (block=1; block<=n_blocks; block++)
for (butt=1; butts<=n_butts; butt++)
butterfly();

endfor;
endfor;
n_blocks = n_blocks / 2;
n_butts = 2 * n_butts;

endfor;

Figure 4: Pseudo in-place FFT code

table 1 and realize that a radix-4 butterfly equals 4 radix-2 butter-
flies. The total assembly language code of such a DSP computing

FFT DSP FADIC
clock 48 MHz 12 MHz
radix-2 butterfly 20 cc –
radix-4 butterfly – 4 cc
2K complex FFT 6 ms 1 ms
power dissipation >1 W 750 mW

Table 1: 2K complex FFT on DSP and FADIC

the FFT with differential demodulation and other required functions
is about 1K instructions. Power dissipation is in the order of 1 Watt
per DSP and the size of the board is 22�23 cm.

For DAB demodulation it is required that a FFT is performed
in about 1 ms, with a preferred clock frequency of 12.288 MHz,
and substantial less power consumption. It is obvious that, given
the physical size, further integration is essential.

4 FADIC Design Strategy

From the above it is clear that there is a need for an application spe-
cific implementation because it can become much more efficient.
The problem with application specific design is the long design time.
Therefore high-level synthesis was investigated as a possibility to
reduce design time and to manage design complexity. First the ini-
tial design strategy is described. After an evaluation it was found
that a major change in the strategy was needed.

4.1 Initial design strategy

When we started this project High Level Synthesis was seen as a
method for design where designers would specify the behavior (i.e.
WHAT must be designed) at a high level of abstraction and where
the tools were responsible for an efficient implementation (i.e. HOW
the design is done). This would have the following advantages.

1. High level specifications are easy to understand, to manipu-
late, and to verify. This opens up the possibility for fast and
reliable design and short time to market. Furthermore they
are well suited as a starting point for derivative designs which
always occur in practice.

2. This way it must be possible to relieve the designer from time-
consuming implementation details while the efficiency of the
implementation comes from the target architecture, the op-
timized module library and intelligent synthesis.

The first design exercises indicated that this initial strategy was
insufficient. The following conclusions were drawn.

1. It was possible to design first time right silicon.

2. It was possible to start from specifications at a high abstract
level. The Silage language from UC Berkeley was used [7].

3. But is was found that the strategy with respect to the imple-
mentation was insufficient. The generated layouts were too
large (a factor of 2) to be acceptable.

The conclusion was that the strategy with respect to the specifica-
tions (the WHAT) was sufficient but that the strategy with respect to
the implementation (the HOW) needed reconsideration. A more de-
tailed analysis showed that the problems were related to data storage
and transport and not to the computation units which were used in an
efficient way. [4] Furthermore it became evident that the approach
taken did not encourage user interaction in the design process. The
major problem was that the effect of user interaction was not always
predictable in terms of efficiency of the result.

4.2 New design strategy

Based on these results the design strategy was adopted as follows.
The designer is still responsible for the specification but also for the
global aspects of the implementation. An extensive set of pragmas
(hints for the compiler) was defined such that the user is always in
control. Examples of pragmas will be given later. The synthesis
tools became transparent for the designer. The implementation of
all the details remained a task for the tools. The new strategy was
called: What you write is what you get. The design method became
fast and interactive. Typically a designer uses the compiler as fol-
lows. Starting from a first version of the algorithm a mapping is
performed using the tools. Feedback is provided on cost for stor-
age, transport of data and computations. Based on this information
the designer can optimize the algorithm and add information to im-
prove the implementation. The design flow is shown in figure 5.
This new strategy will now be discussed for the design of FADIC.
The Mistral 2 tools of DSP Station are used.

Simulation

Specification
(DFL)

Datapath Allocation
Instruction Generation
Instruction Scheduling
Controller Generation

Netlist Generation
(VHDL)

User
Interaction

rewriting

hints

Feedback:
Cycle count
Occupation degree
Life times
Control flow

High Level design decisions

Figure 5: Mistral 2 design flow

4.3 FADIC design exploration

The major steps in the design method shown in figure 5 are now dis-
cussed in more detail.

2K complex FFT radix-2 radix-4,2
butterflies 11 � 1024 5 � 512 + 1024

= 11264 = 3584
complex +=� 22528 22528
complex � 10240 7680
ram accesses 45056 24576

Table 2: Number of operations in a radix-2 and radix-4 2K FFT

Specification The first action the user takes is the writing of a
specification. The specification language DFLTM from DSP StationTM

allows compact descriptions1. DFL is based on the Silage language
from UC-Berkeley [7] but contains important procedural extensions
which were needed, for example, to describe the different DAB op-
eration modes of the chip. For the final FADIC description merely
450 lines of code were needed.

High level design decisions In the following step the de-
signer can take a number of high level decisions which are related
to the global architectural issues. This is typically the level at which
the user is reasoning about his design. Each time such a decision has
been taken the synthesis tools are used afterwards to evaluate the
cost of the corresponding implementation. In this section a number
of such high level decisions are discussed as examples.

First a clock frequency is selected. For reasons of power dis-
sipation and EMC the clock frequency is not chosen too high. For
FADIC 12.288 MHz is selected, also because it is an exact multiple
of 48 kHz, a sampling frequency of ISO/MPEG digital audio [11].
Next the design space exploration can start. The computation bot-
tleneck lies clearly in the calculation of a complex 2K point FFT
with an overall time budget of 1.246 ms (or 15312 clock cycles). A
first attempt was made using radix-2 FFT schemes. The number of
butterflies to calculate is 1024�11= 11264 which leads to the con-
straint of performing about one butterfly per clock cycle. It turned
out that there was a bottleneck in the memory accesses.

Therefore we looked into schemes for radix-4 FFTs. A radix-4
butterfly needs to be executed in 4 cycles and 8 memory accesses
to read and write are necessary. Figure 6 shows such a butterfly in
more detail.

i1

i2

i3

i4

o1

o2

o3

o4

+

+

-

-j - *

+

-

+

*

*

w2

w1

w3

h1

h2

h3

h4

m2

m3

m4

Figure 6: A complex radix-4 butterfly.

It shows that one complex radix-4 butterfly corresponds to 16+
6= 22 real additions, 3�4 = 12 real multiplications and 16 RAM
accesses. Since all these operations must be executed every 4 clock
cycles this corresponds to a large parallelism. This parallelism is
responsible for the complexity of this design. Even the scheduling
of a single butterfly operation turned out to be extremely difficult
when tried manually.

1DFL, Mistral 2, and DSP Station are registered trademarks of Mentor Graphics
Corp.

time slot ACU1 RAM1 RAM2 ACU2
54 decr write(o1) i4=read() add
55 decr write(o2) i1=read() incr
56 decr write(o3) i2=read() add
57 add write(o4) i3=read() add

time slot ALU1 ALU2
54 sub(h4,h3) add(i3,i1)
55 add(i4,i2) sub(i3,i1)
56 subj(i4,i2) sub(h2,h1)
57 add(h4,h3) add(h2,h1)

time slot ACU3 ROM MPY
54 mul(m3,w1)
55 k1=ag() w3=read() mul(m4,w3)
56 k3=ag() w2=read()
57 k2=ag() w1=read() mul(m2,w2)

Table 3: Four cycle schedule of a radix-4 complex butterfly –
folded– loop, the MPY only contains a pipeline.

If we choose a radix-4 in-place scheme for the FFT we could use
read-modify-write on our memory. That this is not trivial is given by
the fact that a butterfly calculation needs several cycles, and thus the
calculation of 2 butterflies need to be performed concurrently. An
option is to store the results of a previous butterfly on the locations
of the inputs of the current butterfly. In combination with a varying
addressing scheme per stage this option became less interesting with
respect to area.

Another way to obtain an in-place solution is to split the memory
in 4 parts, i.e. the number of operands for a butterfly. This option is
not very interesting as well because addressing becomes more com-
plex. By splitting the memory area efficiency is reduced as well due
to extra routing and address generation hardware.

The option we have chosen is a scheme found by Singleton [14].
This scheme uses a linear addressing, which is also identical over all
stages. A disadvantage is however that more memory is required.
Surprisingly this option delivered the most area efficient solution,
therefore this scheme was chosen. The final schedule of the inner,
folded, loop is shown in table 3. This schedule is already strongly
simplified due to the use of a complex data path and the omission
of control and addressing initialization details. The architecture is
shown in figure 7.

Feedback from the synthesis tools Feedback from the
compiler to the user includes measures such as cycle count, occupa-
tion degrees, and life times of variables. From the tools it is shown
graphically but too detailed to be shown here. The occupation de-
gree of the units shown in table 3 is generally above 75% for the
complete algorithm.

User interaction Based on this feedback the user can take the
appropriate action if he wants to steer the design space exploration.
Two ways of interaction are possible.

First the user can add pragmas to the specification. This are im-
plementation hints for the compiler. A rich pragma set is available
in Mistral 2. It is not possible to discuss all pragmas within the scope
of this paper. Most of the pragmas are related to data storage, data
transport, data computation and to the controller. A first group is
related to storage of variables in foreground register files or back-
ground RAMs. In both cases variables can be forced to share the
same memory location. If desired, the user can control the memory
organization by defining memory sectors and circular buffer struc-
tures. A second group is related to data transport. The user can
decide which busses should be merged to minimize area. A third
group is related to the computation units. Arbitrary computation
units can be defined, including any arbitrary number of pipelines.
In the case of FADIC this is used to define complex ALU and com-

plex multiplier operations. Examples of controller pragmas are re-
lated to loop folding and loop unrolling.

A second possibility is to rewrite the DFL specification. For ex-
ample, the decision to use a radix 4 butterfly, as discussed above, re-
quires a rewriting of the specification. In general, different specific-
ations that have the same behavior can have different implement-
ations. Currently a lot of research effort is spent to become inde-
pendent from such syntactical differences in the specification. This
is interesting from an academic point of view but it is not realistic to
expect results on a short term for complex designs such as FADIC.
Therefore we accept that the way the specification is written influ-
ences the mapping result. Once accepted, it becomes a mechanism
used to control the implementation. This is specially the case for
the new procedural constructs in DFL. Typical examples are the as-
signment of variables to registers or the control of data routing.

5 Results

The synthesis finally led to the architecture shown in figure 7. The
architecture makes use of complex additions and complex multi-
plications as basic processing units. These units are described in
VHDL for register transfer level synthesis and imported in Mistral 2
as Application Specific Units (ASUs). The architecture consists of
2 instances of the complex adder, one complex multiplier, 3 data
RAMs and 1 ROM with the twiddle factors. Most RAMs and ROMs
have their own address calculation unit. A complete micro-coded
control unit with program contents is produced as well by Mistral 2.
Analysis of the micro-program gives a peak performance of 16 re-
gister transfers per clock-cycle, leading to a 196 MOPS machine.

ACU3 ACU1 ACU2

RAM1 RAM2RAM3ROM

C_ALU1 C_ALU2

C_MULT

OUT

IN

MUX

REG

OPERATION
UNIT

MUX

REG C

O

N

T
R

O

L

BUF

FILE FILE

Figure 7: FADIC architecture generated with Mistral 2 (data path
only).

After a number of iterations an acceptable solution was reached.
At this point a complete VHDL description is generated. This res-
ult is simulated and verified against the simulation at the DFL level.
When it is correct the register transfer level VHDL description is
synthesized and mapped into standard cells except for the ROM,
RAM, and register file modules for which parameterized module
generators are available. The resulting layout is shown in figure 8.
Table 4 summarizes the main results.

The first version of FADIC only supported part of the DAB sys-
tem. Only a single operating mode was implemented, due to pres-
sure on silicon delivery for field tests. While FADIC was applied
in field tests, a second version [5] was made supporting all 3 DAB

Figure 8: FADIC chip foto

FADIC1 FADIC123
Functions 2K FFT + 256, 512, 2K FFT +

Diff.Demod. DD, IFFT, AFC
Technology 1 µm 0.8 µm
transistors 466700 519500
Area 111 mm2 75 mm2

ROM 2 2
RAM 3 3
complex ALU 2 2
complex MUL 1 1
ACUs 5 4
program rom 85 by 183 330 by 160
program cycles 14899 1647, 3133, 14397

Table 4: FADIC high level synthesis results.

operating modes2. It was crucial to have HL-synthesis tools avail-
able since we were able to optimize our architecture even further
and add more functions as well. The second design was finished
within 4 months elapsed time, including layout optimizations and
verification. The microprogram more than tripled in size and the IC
technology changed to 0:8µm. Also built-in self test is applied for
memories and full boundary-scan test is implemented. A shift from
dedicated building blocks in a 1µm process (ACUs) toward stand-
ard cell implementations in 0:8µm was observed.

6 Conclusions

The use of high level synthesis tools for the design of a complex
chip has been shown. Future versions of this design will follow.
For example new architectures are currently explored which aim at
a significant reduction of the power dissipation. Therefore a new
exploration of the design space is necessary and this starts from the

2Philips device OQ8873

same DFL description. Also integration of extra signal processing
functions is considered.

The following conclusions can be drawn. The design of a com-
plex DSP chip such as FADIC is possible using the Mistral 2 high-
level synthesis system. Short time to market is possible: typically
1 year (including specification time) for a first design and 4 months
for a derivative IC. This can be done in combination with efficient
implementations; typically 1 order of magnitude smaller than an im-
plementation on commercial DSP processors. It was found that the
success of such tools in the design community depends on the way
user interaction is supported and stimulated. Fast and accurate feed-
back from the synthesis tools in combination with a rich set of hints
for the compiler to guide the architecture exploration are the key is-
sues.

Finally it is important to mention that the synthesis tool must
be embedded in an environment including verification and test plan
generation.

REFERENCES

[1] BRAYTON, R., CAMPOSANO, R., DEMICHELI, G., OT-
TEN, R., AND VAN EIJNDHOVEN, J. Silicon Compilation.
Addison-Wesley, Reading, MA, 1988, ch. The Yorktown sil-
icon compiler, pp. 204–311.

[2] DE MAN, H., CATTHOOR, F., GOOSSENS, G., VANHOOF,
J., VAN MEERBERGEN, J., AND HUISKEN, J. Architecture-
driven synthesis techniques for VLSI implementation of DSP
algorithms. Proceedings of the IEEE (Feb. 1990), 319–335.

[3] DE MAN ET.AL., H. Cathedral II: a silicon compiler for di-
gital signal processing. IEEE Design and Test of Computers
3, 6 (Dec. 1986), 13–25.

[4] DELARUELLE, A. The design of a syndrome generator chip
using the piramid design system. In Proc. European Solid-
State Circuits Conf. (Sept. 1988), pp. 256–259.

[5] DELARUELLE, A., HUISKEN, J., VAN LOON, J., AND WEL-
TEN, F. A chip-set for a digital audio broadcasting channel
decoder. In Proceedings of the IEEE 1995 Custom Integrated
Circuits Conference (345 E. 47 St. New York, NY 10017, May
1995), IEEE Electron Devices Society, IEEE Publishing Ser-
vices, pp. 293 – 296. ISBN 0-7803-2584-2.

[6] EUROPEAN BROADCAST UNION. Radio Broadcast Systems;
Digital Audio Broadcasting to Mobile Portable and Fixed Re-
ceivers, vol. Final Draft. European Transmission Standards
Institute, 06921 Sophia Antipolis Cedex, France, Nov. 1994.
prETS 300 401.

[7] HILFINGER, P. A high-level language and silicon compiler
for digital signal processing. In Proc. IEEE CICC (May 1985),
pp. 213–216.

[8] HUISKEN, J., VAN DE LAAR, F., DELARUELLE, A., AND
PHILIPS, N. Specification, partitioning and design of a DAB
channel decoder. In VLSI Signal Processing (October 1993),
L. Eggermont, P. Dewilde, E. Deprettere, and J. van Meerber-
gen, Eds., vol. VI, IEEE Signal Processing Society, IEEE Spe-
cial Publications, pp. 21 – 29. IEEE Workshop on VLSI Signal
Processing, Veldhoven, The Netherlands.

[9] LANGEN, E. The Philips DAB 452 test receiver. In DAB
Newsletter, F. Kozamernik, Ed., no. 6. European Broadcast-
ing Union, autumn 1994, pp. 6–10.

[10] LE FLOCH, B., HALBERT-LASSALLE, R.,
AND CASTELAIN, D. Digital sound broadcasting to mobile
receivers. IEEE Transactions on Consumer Electronics 35, 3
(August 1989).

[11] LOKHOFF, G. Precision adaptive subband coding for the Di-
gital Compact Cassette. IEEE Transaction on Consumer Elec-
tronics 38, 4 (November 1991), 784 – 789.

[12] MCFARLAND, M., PARKER, A., AND CAMPOSANO, R. The
high-level synthesis of digital systems. Proceedings of the
IEEE 78, 2 (Feb. 1990), 301–318.

[13] SHUNG, C. An integrated CAD system for algorithm-specific
IC design. IEEE Trans. on CAD 10, 4 (Apr. 1991), 447–482.

[14] SINGLETON, R. A method for computing the fast fourier
transform with auxiliary memory and limited high-speed stor-
age. IEEE Transactions on Audio Electroacoustics AU-15
(June 1967).

[15] VAN DE LAAR, F., PHILIPS, N., AND OLDE DUBBELINK,
R. General-purpose and application-specific design of a DAB
channel decoder. EBU Technical Review, 258 (Winter 1993),
25 – 35. ISSN 1019-6587.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

