
Abstract
We describe a novel, formal verification technique for proving the
correctness of a pipelined microprocessor that focuses specifically
on pipeline control logic. We iteratively deconstruct a pipeline by
merging adjacent pipeline stages, allowing for the verification to
be done in several easier steps. We present an inductive proof
methodology that verifies that pipeline behaviour is preserved as
the pipeline depth is reduced via deconstruction; this inductive
approach is less sensitive to pipeline depth and complexity than
previous approaches. Invariants are used to simplify the proof, and
datapath components are abstracted using validity checking with
uninterpreted functions. We present experimental results from the
formal verification of a DLX five-stage pipeline using our tech-
nique.

1 Introduction
As the complexity of modern microprocessors increases they
become more and more difficult to design correctly. Yet, design
errors can be very expensive to fix. The cost of design errors
increases as the design progresses; errors found after a processor
has been fabricated can cost millions of dollars to fix. Thus, tech-
niques that can detect bugs in the early stages of design are critical.

Extensive simulation has long been used to detect errors during the
design process. However, due to the exponential increase in the
complexity of modern microprocessors, simulation has become a
design bottleneck. A substantial portion of the design cycle is now
devoted to simulation, and yet simulation provides only partial
coverage; design errors can and do occasionally slip through.
Designs are increasingly limited by the time required to simulate
them with any degree of confidence.

Formal methods [9] offer the promise of being able to verify that a
design is correct (or detect where bugs exist) and doing it in a frac-
tion of the time it would take to exhaustively simulate the same
design [10]. Current formal techniques fall into two classes: auto-
matic methods and theorem proving techniques. Automatic meth-
ods which explore a state graph include CTL model checking [3]
and state exploration systems such as Murphi [5]. Theorem prov-
ing methods are based on general theorem proving systems such as
the HOL system [6].

While the desired behavior of a microprocessor may be concisely
expressed by its instruction set architecture (ISA), the implementa-
tion is often greatly complicated by efforts to maximize perfor-
mance. Features introduced purely to increase performance, such
as pipelining, register renaming and superscalar execution, expo-
nentially increase the complexity of the final design. Pipelining in
particular is a major source of complexity. A significant amount of
extra state is added to the model in order to execute different
instructions simultaneously. And complex control logic is required

to cope with pipeline hazards and maintain the programmer’s illu-
sion of sequential execution [7].

Previous attempts to apply formal methods to the verification of
pipelined microprocessors have not scaled well with pipeline com-
plexity. Theorem proving methods have been successfully applied
in [4][11]. However, these examples all required large amounts of
expert user time and verified only simple pipelines. Automatic
methods have also been used to verify pipelined processors. In [2]
a method is presented for verifying the control logic of a pipelined
microprocessor using a validity checker for a logic of uninter-
preted functions with equality. In [1] a method is presented for ver-
ifying pipelined processors that checks that a specific kind of
relation holds between the implementation and the specification.
While both of these methods are a significant improvement over
previous techniques, they do not promise to scale well to longer,
more complex pipelines.

In this paper we present an automatic formal verification technique
specifically developed to tackle the complexity due to pipelining.
Our technique, which we callunpipelining, removes pipeline
stages from an implementation while preserving the implementa-
tion’s behavior, collapsing it into a single stage through a series of
transformations. The complexity due to pipelining is completely
eliminated and the deconstructed pipeline can be compared
directly to the ISA specification. Unpipelining builds on previous
work [8] by using equality checking with uninterpreted functions
to abstract the datapath.

A pipeline deconstruction transformation merges the two deepest
pipeline stages. After merging the stages we prove using an induc-
tive argument on the number of execution cycles that the behav-
iour of the implementation is preserved. The inductive argument
allows the direct comparison of the two very similarbefore and
after pipelines and breaks the verification task into smaller compo-
nents which are easier to verify. By proving that the behaviour is
preserved after every transformation, we can guarantee that the
final unpipelined implementation has the same behavior as the
original pipelined implementation. If the proof fails, we can pro-
duce a test vector that exposes the bug in the pipeline.

The rest of this paper is organized as follows. In Section 2 we
define correctness and introduce pipeline implementation tech-
niques covered by unpipelining. In Section 3 we describe the
unpipelining transformation and in Section 4 we introduce the
proof methodology and present an example. Section 6 and
Section 7 present experimental results and conclusions.

2 Preliminaries

2.1  Correctness
Formal verification consists of comparing a processorimplementa-
tion against aspecification and proving that behaviour of the
implementation meets that prescribed by the specification. The
specification is an ISA-level model that specifies some processor
state (SPEC) and how the state is modified by the sequential exe-
cution of instructions. Processor state may consist of a program
counter (PC), a register file (RF), an instruction cache (I-cache)
and a data cache (D-cache). Since instructions execute sequen-
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tially, data and control dependencies between instructions exe-
cuted by a specification are communicated through the processor
state. For example, an instruction which uses the result of a previ-
ous instruction would fetch it from the RF.

A pipelined processorimplementation is much more complex. It
contains extra logic to maintain the programmer’s illusion of
sequential instruction execution, while in fact executing several
instructions in parallel. It also has additional state in order to repre-
sent the different instructions executing in parallel.

The specification does not precisely prescribe the behaviour of an
implementation. Variables that appear in an implementation and
not in the specification are not constrained at all. Variables appear-
ing in both may not match exactly on a cycle to cycle basis. For
example, the specification may state that an instruction updates the
register file and the program counter in the same cycle, while in a
particular implementation an instruction may update the register
file several cycles after updating the program counter.

An implementation is defined to be correct with respect to a speci-
fication if the specification and the implementation produce
exactly the same results for every program. At the conclusion of
any program the memory contents produced by an implementation
and its specification must be equivalent. If there is a bug in the
implementation then some sequence of instructions exists that
cause the implementation and the specification to finish execution
with different memory states. Using this definition of correctness,
an implementation can be correct even if the implementation state
never exactly matches the specification state during program exe-
cution.

2.2  Pipelining
Pipelines divide the execution of an instruction into a number of
steps. Each step is known as a pipeline stage. The depth of a pipe-
line corresponds to the number of stages in the pipeline. Instruc-
tions enter a pipeline at stage one and, under normal operation,
progress to the next stage on each new clock cycle. Once an
instruction has progressed through all the pipeline stages, its exe-
cution is completed.

Pipelining is complicated by pipeline hazards. Different instruc-
tions are in different steps of execution in each pipeline stage.
Hazards arise when an instruction executing in an earlier pipeline
stage requires the result of an instruction executing in a later pipe-
line stage. There are three basic techniques for coping with pipe-
line hazards: bypassing, squashing and stalling [7]. Bypassing
forwards values produced by an instruction deep in the pipeline to
an instruction earlier in the pipeline. Squashing annuls the execu-
tion of instructions earlier in the pipeline. Stalling delays the exe-
cution of instructions earlier in the pipeline.

Bypassing, squashing and stalling all require the addition of feed-
back logic to forward results from later pipeline stages to earlier
pipeline stages. This feedback can be built from the three network

Figure 1. Pipelines execute instructions in stages.
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topologies shown in Figure 2. Bypassing uses type (a); data is for-
warded from a deeper stagej to an earlier stagei based on the
comparison of the instructions in each stage. Squashing uses type
(c); an instruction earlier in the pipeline is nullified based on a sig-
nal determined by the results of an instruction deeper in the pipe-
line. Stalling uses both types (b) and (c); type (c) is used to insert a
bubble into the pipeline and type (b) is used to delay the execution
of earlier stages by one cycle, the control signals being determined
from a combination of instructions in the pipeline.

Figure 3 shows an example of a pipeline in execution. Here,
instruction  stalls the instructions behind it in the pipeline. Pipe-
line stages one through five have been labeled IF (instruction
fetch), ID (instruction decode), EX (execute), MEM (memory) and
WB (register write-back) respectively, corresponding to the five
stages of instruction execution presented in [7].

3 Pipeline Deconstruction
Pipeline deconstruction is the process of merging pipeline stages.
If there were no pipeline hazards, then merging pipeline stages
would amount to simply removing the latches between them. The
logic that copes with hazards introduces feedback between stages;
this makes pipeline deconstruction more difficult.

An iteration of pipelining deconstruction merges the deepest two
pipeline stages. Feedback between the deepest pipeline stage and
earlier stages is removed depending on the type of pipeline hazard.
In the case of stalling, both the logic that inserts the bubble into the
pipeline and the logic that stalls subsequent instructions are
removed. For squashing, only the logic that squashes instructions
in the second to last stage is removed; logic that squashes instruc-
tions in other stages is unaffected as it is still required.

Since instructions complete one clock cycle earlier after an itera-
tion of unpipelining, all processor state that was updated in the
deepest stage will be updated one cycle earlier. This will eliminate
certain hazards associated with that stage and eliminate the need
for the feedback logic to deal with them, making it safe to remove
the feedback. Conversely, if feedback logic were not removed, it
would become unclocked feedback when the latches between the
pipeline stages involved are removed by subsequent iterations of
pipeline deconstruction.

Figure 2. Pipeline feedback blocks.

 Cycle 1 2 3 4 5 6 7 8

Instr IF ID EX MEM WB

Instr IF ID stall EX WB MEM

Instr IF stall ID EX WB MEM

Figure 3. A pipeline in execution.
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Pipeline feedback can be represented using the topologies shown
in Figure 2. Feedback is removed by determining which multi-
plexer input will be selected in the absence of a pipeline hazard
and connecting that input directly to the multiplexer output. Once
the feedback has been removed, the latches between the two stages
can be removed. Figure 4 shows how instructions flow though a
pipeline with stages EX, MEM and WB combined. Notice that the
stalling between instructions  and  has been eliminated.

Pipeline deconstruction is a mechanical process that yields a cor-
rectly functioning pipeline on each iteration assuming the original
pipeline implementation is correct. The process of determining
whether or not an implementation is correct is described in the
next section.

4 Verification of Equivalence
After an iteration of deconstructing pipeline , the resulting pipe-
line  must preserve ’s behaviour. We prove the equivalence of

 and  using an inductive argument on the number of execution
cycles. For each processor state variable and feedback variable in

, we form an inductive hypothesis expressing the variable in
terms of variables in .

By definition, instructions executed on  must produce the same
results as on  to be correct. The hazards in  are the same as
those that were not eliminated by unpipelining from . Since the
hazards are the same and the results must be the same, the same
values must be forwarded whenever a hazard is detected. This
forms the basis for the induction hypotheses.

While we need only show that these hypotheses hold to show cor-
rect operation, if we assume generally that the same values are for-
warded even when hazards are not detected, the proof can be
further simplified. At worst, the more general assumption results in
a false negative; the assumption can then be tightened to exclude
this case. However, we have not required this in practice.

4.1  Bypassing
To understand how the induction hypotheses are generated, con-
sider first the case where only bypassing logic has been removed.
As seen in Figure 5 and Figure 6, instructions executing on
complete execution a cycle earlier than their counterparts on ,
since the latch between the deepest two stages has been removed.
Thus, processor state variables and feedback values generated in
the deepest stage should be produced one cycle earlier by . Pro-
cessor state variables and feedback values generated in any other
stage should be unaffected by the iteration of unpipelining and
should match cycle for cycle.

 Cycle 1 2 3 4 5

Instr IF ID EX/MEM/WB

Instr IF ID EX/MEM/WB

Instr IF ID EX/MEM/WB

Figure 4. A partially unpipelined pipeline in execution.

 Cycle 1 2 3 4 5 6

Instr IF ID EX MEM WB

Instr IF ID EX MEM WB

Figure 5. Pipeline
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Definition 1: Let  be the stage in which a processor state
variable or feedback value  is assigned.

Let be the number of stages in pipeline. For each processor
state variable or feedback value  the inductive hypotheses are:

(EQ 1)

(EQ 2)

The  is used to indicate the cycle of execution at which the vari-
able is evaluated. For example,  would be the evaluation
of the register file at clock cycle . Primed variables belong to

 whereas unprimed variables belong to .

For each inductive hypothesis, the base case is true by construction
of . Thus, one need only show that assuming all the hypotheses
hold at cycles , then they hold at cycle . This is done by
forming left and right-hand-side equations. The left hand side
equation expresses ; and the right hand side expresses

 or  depending on the stage value of . Using
the next-state equations for ,  is expanded. Whenever a
variable for which there is an inductive hypothesis appears in the
expansion it is replaced and the expansion for that variable stops.
Since there are inductive hypotheses for all the feedback variables,
this process is guaranteed to eventually terminate. The left hand
side will then be expressed entirely in terms of variables from .
In lock step, the right hand side is also expanded using the next-
state equations for .

Validity checking with uninterpreted functions is used to compare
the left and right hand sides, and determine if they are equivalent.
The validity checker does not know about the next-state equations
and will not perform any additional expansion on the terms; all
necessary expansion is performed before calling the validity
checker. To deal with the bypassing logic that has been removed,
the term that replaced the bypassing multiplexer in  must be
expanded until a  combination is encoun-
tered. As described in [8], the validity checker interprets
and  operations and automatically reasons that:

(EQ 3)

where  is a two input multiplexer.

4.2  Stalling and Squashing
Squashing and stalling disrupt the flow of instructions in the pipe-
line. By removing such logic we complicate the relationship
between  and . Let  be a three-stage pipeline that uses a
branch-not-taken strategy with a two cycle penalty for mispredic-
tion. Figure 7 and Figure 8 show  and  in execution when the
branch is taken.

Because the final pipeline stages in  were merged and the
squashing logic removed,  never squashes .  calculates the
correct PC one cycle earlier and avoids fetching .

Stalling is similar. Consider a pipeline with a load-use stall
between stages 2 and 3, as shown in Figure 9. Since the result of
the load instruction is not ready until the MEM/WB stage, the EX

 Cycle 1 2 3 4 5

Instr IF ID EX MEM/WB

Instr IF ID EX MEM/WB

Figure 6. Pipeline
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stage of  must stall. In Figure 10 we see that  performs the
load one cycle earlier than  so that the result can be forwarded to

 without any stalling.

Since pipeline deconstruction removes stalling and squashing
logic,  and  become increasingly unsynchronized with every
stall or squash that occurs in  and not in . To synchronize the
pipelines, we introduce induction variables  and . We define
inductively as ,
and .  is a signal
automatically extracted from  that is asserted whenever a squash
occurs in  that does not occur in .  is defined similarly for
stalls.

Intuitively,  is the number of clock cycles that  and  are out
of synchronization due to squashes when  is at cycle , and  is
the number of clock cycles  and  are out of synchronization
due to stalls. Using  and  to synchronize the two pipelines and
letting  and  be the depth of pipeline , the induction
hypotheses are:

(EQ 4)

(EQ 5)

Using these hypotheses, the technique of generating and expand-
ing left and right hand side equations can be applied. However, a
few more assertions must be provided to the validity checker to
enable it to reason successfully that the two sides are equivalent.
Since stalls and squashes nullify the previous pipeline stage, two
squashes or stalls cannot occur in immediate succession. Nullified
instructions do not squash other instructions or stall the pipeline.
Thus, using the previous definition we can assert:

(EQ 6)

 Cycle 1 2 3 4 5 6

Branch IF ID EX/MEM/WB

Instr IF squash

Instr squash

Instr IF ID EX/MEM/WB

Figure 7.  executing a branch instruction.

 Cycle 1 2 3 4

Branch IF ID/EX/MEM/WB

Instr squash

Instr IF ID/EX/MEM/WB

Figure 8.  executing a branch instruction.

 Cycle 1 2 3 4 5 6

Load IF ID EX MEM/WB

Instr IF ID stall EX MEM/WB

Figure 9.  executing a load instruction.

 Cycle 1 2 3 4

Load IF ID EX/MEM/WB

Instr IF ID EX/MEM/WB

Figure 10.  executing a load instruction.
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Nullified instructions furthermore should not modify processor
state. (All of these assertions regarding nullified instructions are
easily checked in .) This provides the additional assertion:

(EQ 8)

5 Example
Here we present an example of applying unpipelining to a simple
four-stage pipeline. We focus on the key aspects of unpipelining,
showing how the pipeline is transformed after each iteration and
sketching out the inductive part of the verification proof.

The pipeline, shown in Figure 11 uses a predict-not-taken branch
prediction scheme. If the prediction is wrong, squashing logic
between stages two and three nullifies the mispredicted instruc-
tion. Bypassing logic between stages three and four resolves data
hazards.

The state machine representation for the processor is given in
Figure 12.  (new) variables are next-state variables and  (old)
variables are current-state variables. By definition,

. Wires  and  have been introduced to make
the description simpler. The state equations are automatically clas-
sified by pipeline stage. This classification is based on the number
of cycles for a change in the PC to propagate to the left hand side
of a state equation.

The first unpipelining iteration merges stages 3 and 4 in  and
removes the bypassing logic between them to produce .  is
shown in Figure 13; the changes made to remove the bypassing
and the latch between stages 3 and 4 are emphasized in bold text.

To verify that  and  have the same behaviour we generate the
induction hypotheses using (EQ 1) and (EQ 2):

Figure 11.Schematic for 4-stage pipeline.
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(1)

(2)

(3)

(4)

(5) .

The last three induction hypotheses are required due to feedback
paths in .

We assume that all the induction hypotheses hold
and show they hold . The derivation for  is
given in Figure 14. Here the left and right sides are expanded and
the induction hypotheses are used to get both expressions in terms
of variables in . Since bypassing logic has been removed, addi-
tional expansion is performed on the right-hand side and (EQ 3) is
applied. For brevity “ ” has been used to replace terms that have
already been shown to be equivalent. The other induction hypothe-
ses can be similarly verified.

stage next state equations

Figure 12.Original description, .

stage next state equations

Figure 13.After one iteration of unpipelining, .
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Next we apply the pipeline deconstruction transformation again on
.  shown in Figure 15 is produced by merging stages 2 and 3

and removing the squashing logic between them. Changes are in
bold text.

Because squashing logic has been removed, (EQ 4) and (EQ 5) are
used to generate the induction hypotheses. They are:

(1)

(2)

(3)

(4)

Since the feedback path through  has been eliminated in ,
we now have only two additional induction hypotheses. The
details of the proof are similar to the previous iteration, except for

LHS Equation

RHS Equation

Figure 14.Proof of inductive hypothesis for
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Figure 15.After two iterations of unpipelining,
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the use of the induction variable . Figure 16 shows the proof of
the induction hypothesis for . Note that  is a squash signal,
allowing us to simplify the right hand side using (EQ 6).

 is reduced to  using (EQ 8).

The final step in the proof is to use the validity checker to compare
 directly with the ISA description.

6 Results
We have experimented on a variety of simple pipelines, the most
advanced being the five-stage DLX pipeline with a predict-not-
taken strategy for branches, a load-use interlock [7] and six opera-
tion classes: ALU immediate, 3-register ALU, branches, jumps,
loads and stores.

Starting with a state machine description of the processor, the
pipeline deconstruction was performed automatically. For every
unpipelining iteration the appropriate inductive hypotheses were
determined automatically. Expansion required some manual inter-
vention to overcome shortcomings in our software. The inductive
hypotheses were then input to a validity checker for verification.

For the most complex DLX pipeline, pipeline deconstruction and
the generation of inductive hypotheses took 2.8s on a 200MHz
SGI Indy. Table 1 shows the time required to verify the inductive
hypotheses on an SGI Indy for each iteration.

Notice that the time required at each step is insensitive to the depth
of the pipeline. Rather, the time is a factor of the number of induc-
tion hypotheses and the amount of feedback removed on that itera-
tion of unpipelining.

LHS Equation

RHS Equation

Figure 16.Proof of inductive hypothesis for

stages merged time

MEM - WB 2.1s

EX - WB/MEM 2.8s

ID - WB/MEM/EX 0.9s

IF - WB/MEM/EX/ID 0.9s

Table 1: Time required to verify induction hypotheses for DLX

si
br ′ ′ br ′

rf ′@ k sk+( ) rf ′@ k sk 1–+( )

br ′ ′@k

op READ icache′ ′ pc′ ′@k 1–,(( ) #BR≡=

op READ icache′ pc′@ k 1 sk+–( ),( )( #BR≡=
READ rf′ ′@k 1– srcA …( ),( ) 0≠∧

READ rf′@ k sk 1–+( ) srcA …( ),( ) 0≠∧

op ir1′ ′@k( ) #BR≡ a1′ ′@k 0≠∧=

br ′@ k sk 1+ +( )

op MUX2 br ′@ k sk+( ) 0, ,((=

op READ icache′ pc′@ k 1 sk+–( ),( )( ) #BR≡=

READ rf′@ k sk+( ) srcA …( ),( ) 0≠∧

READ rf′@ k sk 1–+( ) srcA …( ),( ) 0≠∧

op ir1′@ k sk+( )( ) #BR≡ a1′@ k sk+( ) 0≠∧=

READ icache′ pc′@ k 1 sk+–( ),( ) ) ) #BR≡

br ′ ′

P′ ′

7 Conclusions
We have presented a verification methodology that specifically tar-
gets the pipeline control logic of a microprocessor. It builds on
previous work by using validity checking with uninterpreted func-
tions. By introducing two novel ideas: pipeline deconstruction, and
an inductive proof on the number of execution cycles, our tech-
nique is much better able to cope with pipeline complexity. We
have implemented our algorithms in software and proven the cor-
rectness of a five stage DLX pipeline.

While unpipelining is not directly applicable to microprocessor
implementation techniques such as register renaming or out-of-
order execution, we have demonstrated the potential benefits of
investigating domain specific verification. Future work will focus
on developing domain specific verification techniques for other
advanced microprocessor implementation techniques.
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