
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Constructing Application-Specific Heterogeneous Embedded Architectures from
Custom HW/SW Applications

Steven Vercauteren Bill Lin Hugo De Man

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
E-mail: fvercaut,billlin,demang@imec.be

Tel: +32/16/28.15.25 ; Fax: +32/16/28.15.15

Abstract
Deep sub-micron processing technologies have enabled the imple-
mentation of new application-specificembeddedarchitecturesthat in-
tegrate multiple software programmable processors (e.g. DSPs, mi-
crocontrollers) and dedicated hardware components together onto a
single cost-efficient IC. These application-specific architectures are
emerging as a key design solution to today’s microelectronics design
problems, which are being driven by emerging applications in the ar-
eas of wireless communication, broadband networking, and multime-
dia computing. However, the constructionof these customized hetero-
geneous multiprocessor architectures, while ensuring that the hard-
ware and software parts communicate correctly, is a tremendously
difficult and highly error proned task with little or no tool support.
In this paper, we present a solution to this embedded architecture co-
synthesis problem based on an orchestrated combination of architec-
tural strategies, parameterized libraries, and software tool support.

1 Introduction
Significant advances in broadband digital communication, wireless
technologies, and multimedia computing have led to many new
emerging business and consumer applications. The design of VLSI
chips in these applications are often subject to stringent requirements
in terms of programmability, processing performance, and power dis-
sipation. Due to strong economic pressures, they must be highly cost-
efficient and delivered in increasingly shorter time-to-market win-
dows.

To enable flexible low-cost designs in a short design cycle, emerg-
ing designs are based on heterogeneous embedded system architec-
tures that integrate multiple software programmable components, e.g.
DSP and microcontroller cores, together with dedicated hardware
components on to a single cost-efficient VLSI chip. Programmabil-
ity is introduced in these system-on-silicon architectures (thus offer-
ing the desired flexibility in the design process), while maintaining
most of the advantages of customized VLSI architectures (such as
the potential to optimize the processing performance and power dissi-
pation). Depending on the application, different application-specific
multiprocessor architectures utilizing different combinations of soft-
ware and hardware components may be required.

Despite these new tradeoff opportunities, designers of embed-
ded systems are currently confronted with the enormously difficult
task of constructing these complex architectures. Particularly error
proned and timing consuming are the tasks of interfacing the hard-
ware and software components together and providing communica-
tion between them. Designers currently spend a tremendous amount
of time with low-level design details and extensive debugging to en-
sure correctness, thus leaving little room for optimization or explo-

ASIC
M

I/O unit

Communication Structure

µPM

I/O unit ASIC

M

Drivers Real-time Kernel Interface Interface

“C”
app. code

C C C C
“VHDL”
app. code

“VHDL”
app. code

DSP

φ1=100Mhz φ2=200Mhz

Fig. 1. Symphony: an orchestrated solution

ration of alternative solutions. Surprisingly, there is remarkably little
CAD support today to assist the designers in these key design tasks.
Most research efforts have focussed on higher level issuessuch as sys-
tem behavioral modeling, system level transformations, and system
partitioning [6, 7, 9, 3, 15, 1, 16, 10, 12, 18]. Although these efforts
have led to promising results, they are addressing largely complemen-
tary problems. The lower-level problems of embedded architecture
co-synthesis and system integration still remain largely open. Recent
efforts, e.g. [4, 24, 14], have led to promising progress in this area.

In this paper, we present Symphony as a solution to the system ar-
chitecture co-synthesis and integration problems, based on an orches-
trated combination of architectural strategies, parameterized libraries,
and CAD tools for automating low-level design tasks that are error
proned and time consuming. This system is part of a larger heteroge-
neous system co-design environment called CoWare under construc-
tion at IMEC [5].

A key mechanism employed in Symphony to enforce the above
design principles is the use of layering, as shown in Figure 1. In our
approach we first build up the physical architecture layer, viewing
the system to be composed of unified hardware modules and soft-
ware modules with well defined interfaces at the circuit level. This
is described in Section 2 where we propose a scalable target architec-
ture model to construct the physical architecture layer. Secondly, we
construct a HW/SW communication and run-time abstraction layer,
that provides a language level communication interface by supporting
VHDL packages and C call-able functions. This “HW/SW kernel”
hides the details of the underlying physical layer, thus simplifying the
programming of each component significantly. This is described in
Section 3 and Section 4, where we present our strategy for modeling
and programming software programmable processors and hardware
components respectively. Section 5 describes some implementation
issues. Section 6 highlights our preliminary application experience

DSP

P−RAM

D−RAM

I/O unit

(b)

(a)

Proc.
core

HW3

RISC

HW2Co−Processor
Hardware

Hardware
FIFO

Memory Component

Fig. 2. A scalable component architecture model.

with using the proposed architectural strategies and design tools. Fi-
nally, conclusions are drawn in Section 7.

2 A Scalable Target Architecture
This section describes a scalable component architecture model that
we use as the basis for constructing the physical architecture of
application-specific embedded systems. Section 2.1 presents the ar-
chitecture model. Section 2.2 describes our implementation strategy
for realizing the architecture.

2.1 Architecture Model
In our model, the physical architecture is abstracted as an interconnec-
tion of “Processor Component Units” (PCUs) and unidirectional or
bidirectional point-to-point communication channels, as depicted in
Figure 2(a). Communication between the different component units
is based on sending and receiving data to each other via the commu-
nication channels. We use Hoare’s model of rendezvous, as defined
for CSP [12], to define our channel communication semantics. In this
model, the sender must block until the receiver is ready to receive,
and vice versa. This rendezvous semantics ensures that both parties
are synchronized with each other before the data transfer takes place.
We have chosen the CSP communication model because it has a rig-
orously defined semantics along with a well defined algebra to reason
about the communication behavior, supported by existing formal ver-
ification methods [22].

In this channelmodel, processorcomponentscan communicate di-
rectly via explicit “send” and “receive” operations on a specific chan-
nel or indirectly via an intermediate shared memory component. In
Figure 2 this is illustrated by allocating a memory component that can
be accessed by the DSP processor, the RISC processor and the hard-
ware co-processor. This configuration will allow the three processor
components to communicate with each other via shared memory. We
believe this architecture model is sufficiently general as other commu-
nication models, such as buffered communication can be mimicked in
a similar way by using intermediate component units that implement
that communication behavior. In Figure 2 this is depicted by the hard-
ware FIFO that buffers the communication between the RISC and the
DSP processor.

A processor component unit can either be a hardware component
or a software programmable component (e.g. DSP, ASIP, or micro-
controller core). In the case of hardware, the processor component

Rec’verSender

sendRdy

recvRdy

data

ready to send

ready to receive

n

Fig. 3. Channel implemented using a synchronous wait protocol.

unit can either be a “pre-designed” library component, including pa-
rameterized communication components like buffers or memories, or
an “application-specific”hardware processor that has still to be imple-
mented. The hardware component may consist of internal storage. In
the case of a software programmable component, the processor com-
ponent unit consists of the processor core itself, an internal memory
structure for storing the program instructions and run-time data, and
a hardware I/O unit that implements the communication interface to
its external environment, as depicted in Figure 2(b). The I/O unit acts
as a “hardware wrapper” that effectively encapsulates a software pro-
grammable component into a hardware component. The I/O unit is
driven by the processorcore via the software program that executeson
it. The implementation of this software side architecture is described
in Section 3.

2.2 Implementation Strategy

To ensure different components can be integrated together at the “im-
plementation” level, they must communicate with each other in a
well-known and consistent manner at the “circuit” level. Our strategy
to this problem is to define a common circuit level channel protocol
that will be used by all components to implement the control mecha-
nism for synchronizing the channel transfers.

We use in this work a synchronous transfer protocol called a
synchronous wait protocol to implement our channels. In the syn-
chronous wait protocol, the sender and receiver partners synchronize
the communication by a pair of sendRdy and recvRdy signals, as
shown in Figure 3. The sender partner implements a send opera-
tion by setting its sendRdy signal high and placing valid data on the
data lines. This is shown in Figure 4. If the receiver is not yet ready,
as indicated by the input recvRdy signal being low, then the sender
enters into a “wait state” until the receiver is ready. This ensures syn-
chronization. When the receiver is ready, as indicated by the input
recvRdy signal being high, then the transfer is assumed to be com-
pleted in that clock cycle; thus the completion of of the data transfer
is left implicit.

T1

T2

recvRdy

recvRdy

T1 : sendRdy = 1, data is valid.
remain in T1 until input recvRdy is high.
if input recvRdy is high, advance to T2 in next state.

Sender
data
sendRdy
recvRdy

clock

n

Fig. 4. Sender’s abstraction.

T1 :

data
sendRdy
recvRdy

clock

n

Rec’ver T1

T2

sendRdy

sendRdy

recvRdy = 1.
remain in T1 until input sendRdy is high.
if input sendRdy is high, latch data,
advance to T2 in next state.

Fig. 5. Receiver’s abstraction.

Similarly, the receiver partner implements a receive operation

data

sendRdy

recvRdy

n

Rec’ver

n

Sender Channel
Adapter

data

sendRdy

recvRdy

clock(R)clock(S) clock(C)

Fig. 6. Channel adapter for frequency conversion.

by setting its recvRdy signal high. This is shown in Figure 5. If
the sender is not yet ready, as indicated by the input sendRdy signal
being low, then the receiver enters into a wait state until the sender is
ready. When the sender is ready, as indicated by the input sendRdy
signal being high, then the receiver latches the data and moves to the
next state.

For bidirectional channels the same reasoning applies, as in our
model bidirectional channels are regarded as the merging of two op-
posite directed unidirectional channels sharing the same pair of con-
trol signals.

Despite its simplicity, the synchronous wait protocol offers sev-
eral important advantages. One advantage is that the completion of
communication is implicit. This means that when both partners are
“ready”, the communication behaves like a register transfer operation
between two components. “Burst” transfer modes, where the sender
transfers consecutively a sequence of data to the receiver, can be im-
plemented very efficiently.

When the communicating components are clocked by different
clock frequencies, we automatically produce a small channel adapter
to handle the clock conversion. This is shown in Figure 6. When
the communicating components operate under clocks that are derived
from the same global system clock, this channel adapter is in effect
a frequency converter, and it can be implemented using simple state
machine logic. When the communicating components operate under
unrelated clocks where the skew between clocks is non-deterministic,
then the channel adapter is implemented using an internal handshake
protocol and synchronizers.

Using this channel adapter approach, we can integrate “pre-
designed” reusable library components into a new custom embedded
system architecture without the need to modify the description or the
behavior of the reusable component itself, if the component has been
designed in compliance with our componentarchitecture model using
the synchronouswait protocol. This issue is addressed in more details
in Section 4.

3 Software Component Architecture
3.1 Processor Template
A processor component unit in our component architecture model
may in fact be based on a software programmable processor core (e.g.
DSP or micro-controller cores). Our approach to incorporating soft-
ware processorcomponentunits into a custom target embedded archi-
tecture is based on building a parameterized “architecture template”
around the processor core. There are three main components to this
architecture template: the processor core itself, an internal memory
structure for storing the program instructions and run-time data, and
a hardware I/O unit that implements the hardware communication in-
terface to the external environment. These components are intercon-
nected via the “processorbus”, which consists of the data bus, the ad-
dress bus, and the control bus.

Using an architecture template to model a software processor, a
software component is seen to other components in our component

architecture model simply as another hardware processor component
that communicates via dedicated channels, and the channels are im-
plemented using a common circuit-level channel protocol, i.e. the
synchronous wait protocol, as described in Section 2.2. From the
user’s perspective, the architecture template can be customized to pro-
vide a specified number of “physical” channels that supports user-
defined directions and data widths. In fact, it is the hardware I/O unit
in the architecture template that actually implements these physical
channels for interconnection with other components. Based on this
processor architecture model, a software processor component unit
can be integrated into a custom target embedded architecture in the
same way as another hardware processor component, using the ap-
proach described in Section 2.

3.2 Details of the Processor Template

In our architecture template, the I/O unit implements the commu-
nication protocol between the processor core and the external envi-
ronment. Communication with the external environment is accom-
plished through one or more input or output ports attached to the I/O
unit. These input or output ports are connected to communication
channels that are connected to other processor components. These
ports implement channel control using the implementation protocol
described in Section 2.2. A more detailed architecture template using
the ARM processor is shown in Figure 7. The input and output of data
to and from the processor core is accomplished through one of two
different methods: memory-mapped I/O or instruction-programmed
I/O.

Address
Decoder

Select lines

Port
I/O

Port
I/O

nMREQ
nRW
MCLK
nIRQ
nFIQ

I/O unit

Memory

Data

Address

Architecture template

ARM−6
Core

Interface
Controller

Port
I/O

Fig. 7. Architecture template with hardware I/O unit expanded.

Memory-Mapped I/O. Memory-mapped I/O provides a data-
transfer mechanism that is convenient because it does not require the
use of special processor instructions, and can implement practically
as many input or output ports as desired. In memory-mapped I/O,
portions of the address space are assigned to input and output ports.
Reads and writes to those addresses are interpreted as commands to
the I/O ports. “Sending” to a memory-mapped location involves ef-
fectively executing a “Store” instruction on a pseudo-memory loca-
tion connected to an output port, and “Receiving” from a a memory-
mapped location involves effectively executing a “Load” instruction
on a pseudo-memory location connected to an input port. When these
memory operations are executed on the portions of address space as-
signed to memory-mapped I/O, the memory system ignores the op-
eration. The I/O unit, however, sees the operation and performs the
corresponding operation to the connected I/O ports.

For custom embedded architecture synthesis, the number of mem-
ory locations assigned for memory-mapped I/O will depend on the
number of “channels” that a software processor component has to
“physically” implement. Here, the assignment of address locations to
channels can be user-defined. However, it is usually preferred that the
address locations assignedfor memory-mapped I/O be a “contiguous”
memory region. This greatly simplifies the address decoding logic for
the I/O unit. In this case, address location assignment is automatically
performed by off-setting from a user defined base address location.

Instruction-Programmed I/O. Some processors also provide
special instructions for accessing special I/O ports provided with the
processor itself. Using this scheme, these special communication
ports of the processor are connected the external channels via the
I/O unit. We use a simple greedy algorithm (like in [4]) that uses
these programmed I/O ports first if they are less expensive than using
memory-mapped I/O. If communication via special programmed I/O
instructions is more expensive, or not available, then only memory-
mapped I/O will be used.

Interrupt Control. In addition to providing hardware support for
memory-mapped and instruction-programmed I/O, the I/O unit also
provides support for hardware interrupt control. Interrupts are used
for different purposes, including the coordination of interrupt-driven
I/O transfers, as described in Section 3.4. Different processors pro-
vide different degree of hardware interrupt support. Some proces-
sors provide direct access to a number of dedicated interrupt signals.
Our I/O unit architecture makes use of these signals when available.
If more interrupt “channels” are required, as for example required
to support a number of interrupt-driven communication channels, we
use the strategy of interrupt vectors. Interrupt vectors are pointers or
addresses that tell the processorcore where to jump to for the interrupt
service routine. In effect, this is a kind of memory-mapped interrupt
handling.

Direct Memory Access Support. Optional to our I/O unit archi-
tecture template is the addition of a direct memory access (DMA) con-
troller. This DMA controller can access directly the data memory of
the software processor component unit via the processor bus. It can
be used to support high-speed data exchangedirectly between the (ex-
ternal) communication channels and the processordata memory with-
out intervention of the processor. This leaves the processor to proceed
with other computation tasks rather than being consumed by manag-
ing data transfers. The processor needs to initiate the DMA transfer
by indicating to the DMA controller the start address of memory, the
numberof items to be transferred, the (external) communication chan-
nel where the transfer will take place, and the direction of transfer (i.e.
reads or writes). Once initiated, the direct memory access transfers
are accomplished between the specified communication channel and
the memory. Upon completion of the transfer, the DMA controller
will interrupt the processor to indicate completion. If the DMA con-
troller option is desired by the user, we will also produce automati-
cally the necessary bus arbitration logic to manage the bus contention
on the processor bus and the control logic to enable the processor to
control the DMA controller.

3.3 Generation of I/O Unit
The I/O unit must be connected to the processor bus of the proces-
sor core. Different processors use different processor bus protocols,
usually described as timing diagrams in data books, for implement-
ing their memory “read” or “write” operations, or their special pro-
grammed I/O operations. Our interface synthesis tools can also au-
tomate the design of the necessary protocol matching hardware for

communication with a specific processor bus protocol [20].

3.4 Software Communication Synthesis
On the software side, the processor can be programmed using the C
or C++ language. To facilitate external communication, we automati-
cally generate a custom library of C or C++ “call-able” functions with
send and receive operations. This library is automatically gen-
erated depending on the number of channels that the software com-
ponent must support, their directions, and their data width. The li-
brary can be thought of as a “customized” communication kernel.
From the programmer’s perspective, the application program commu-
nicates with the external world via function calls to the appropriate
send and receive operations. This abstraction isolates the pro-
grammer from the low-level details of how the processor actually in-
teracts with the environment.

The send and receive routines are implemented using the mem-
ory “read” and “write” instructions if memory-mapped I/O is used for
the specific channel, or the corresponding special programmed I/O in-
structions if instruction-programmed I/O is used.

Because we use a rendezvous semantics to implement the chan-
nels in our componentarchitecture model, a communication operation
to another processor component unit may take an arbitrary amount of
time since both the “sender” and the “receiver” must be “ready”. To
avoid unnecessary “idling”, we use an interrupt-driven I/O scheme.
In this scheme, the “send” and “receive” routines in software are each
split into two operations: the initiation and continuation operations.
The initiator routine is responsible for getting an I/O operation started.
In the case of a “send” operation, the processor transfers the data to
the I/O unit. Once the data has been transferred to the I/O unit, the
processor can proceed with other tasks if it is using a multi-tasking
kernel, or a compiler can insert instructions at compiled time after the
initiator operation that don’t depend on the completion of the send op-
eration. When the actual send operation to the external environment
is completed, the I/O unit interrupts the processor. The continuator
routine is then responsible for notifying the calling routine that the
send operation has completed. Similar, in the case of a “receive” op-
eration, the processor initiates the operation by notifying the I/O unit.
The I/O unit then coordinates the receive operation via the I/O ports
along the specified channel. When the actual receive operation from
the external environment is completed, the I/O unit interrupts the pro-
cessor. The continuator routine is then responsible for transferring the
data to the processor. To support the above I/O operations, the neces-
sary interrupt controller functionalities are also synthesized into the
I/O unit hardware.

If DMA support is also included into the I/O unit, as specified by
the user, then the necessarysoftware routines for coordinating “burst”
direct memory access transfers are also automatically generated, sim-
ilar to the single “send” and “receive” operations above, but parame-
terized for block transfers.

Shared Memory Communication. For certain applications in the
domain of modern telecommunication systems, the desired behavior
is often characterized by complex algorithms that operate on large dy-
namically allocated data structures. Designing an embedded archi-
tecture for such applications will involve allocating a large memory
that is shared by different tasks within the application. From a pro-
grammer’s point of view shared memory communication will then be
a much more “natural” paradigm to use, compared to message pass-
ing. We have chosen to support the designer with this facility. If de-
sired, the programmer can then work with traditional memory point-
ers for managing the shared data structures, instead of calling explicit

send and receive functions. As it was clear from the discussion in Sec-
tion 2, shared memory communication can be supported in our com-
ponent architecture model by communicating with a shared memory
component unit. From a user’s perspective, the designer only has to
allocate a memory space for the shared data structures. Each memory
access that falls within this memory space will then activate appro-
priate channel communications with the component memory compo-
nent.

4 Hardware Component Architecture
4.1 Hardware Communication Synthesis
In our target architecture model, a hardware processor component
in an application-specific embedded system architecture may still
need to be implemented. In this case, we automatically generate for
the user a “container” that essentially implements a “communication
wrapper” around the hardware that the user will later provide. From
a user’s perspective, the designer only needs to declare the number
of communication channels required for the hardware processorcom-
ponent, their directions, and the data width that they must support.
We then automatically generate a customized VHDL package that im-
plements the communication channels, according to the synchronous
wait protocol described in Section 2.2.

This VHDL package provides a set of send and receive op-
erations that can be “called” by an application program in VHDL,
which provides an abstraction of the external communication. The
designercan then “program” this “container” by writing a VHDL pro-
gram that uses the send and receive operations provided by the
VHDL package for external communication. If the designer chooses
to use another programming language to program the hardware, e.g.
Silage [11], then VHDL and the VHDL packages generated can be
used as an intermediate interface to a lower level hardware implemen-
tation trajectory.

4.2 Parameterized Libraries
Using our component architecture model and our common circuit-
level protocol, reusable library components can be modeled and inte-
grated into a custom embedded architecture. The library component
can be in the form of synthesizable VHDL source code or already at
the circuit level. The main requirement is that all external commu-
nication with the outside world must be implemented using the CSP
rendezvouschannelconcept (cf. Section 2.1), and the implementation
protocol is the synchronous wait protocol described in Section 2.2.
The components may operate under different clocks. Such compo-
nents can be automatically integrated into a custom architecture, with-
out the need to modify the description or the behavior of the reusable
component itself, by synthesizing channel adapters (cf. Section 2.2).
To represent parameterizable components, we use the parameteriza-
tion features of VHDL.

Communication Components. An important class of parameter-
ized library hardware components is the class of communication com-
ponents. For example, we keep in the library a parameterized synthe-
sizable VHDL model of a FIFO communication buffer. This model
is parameterized by depth and data width. It is designed to commu-
nicate using the CSP channel model and the synchronous wait proto-
col. This hardware “component” can be instantiated and integrated
like any other hardware component. As already mentioned in Sec-
tion 2, we only model rendezvous channels in our component archi-
tecture model. We instead mimic other communication models by
means of intermediate communication components that implement
that communication behavior. This strategy has the advantage that

different communication models can be supported and the semantics
of the communication paradigm is made explicit. Given a library of
parameterized communication components, a custom embedded ar-
chitecture can be defined at a high level using them as intermediate
communication units, as for example illustrated in Figure 1.

4.3 Shared Memories
Particularly interesting is the integration of memory components as
they will allow for shared memory communication. Memory compo-
nents can be seen as special cases of hardware components as they
consist of large internal storage with minor combinational logic. In
a application-specific embedded system architecture, a memory com-
ponent can be used from a previous design or may still need to im-
plemented. In the former case, the memory component is instanti-
ated from the library of predefined communication components. In
the latter case we build a parameterized architecture template around
the specific memory. In this architecture template, communication
with the other components is accomplished through a number of I/O
ports attached to a memory controller. These I/O ports are connected
to communication channels and implement channel control using the
implementation protocol described in Section 2.2. The memory con-
troller arbitrates the different accesses of the I/O ports to the mem-
ory and reflects the number of ports, the storage size, the word width
and other specific characteristics of the selected memory. Depending
on the required channel layout, the architecture template can then be
hardwired automatically.

5 Implementation
We have implemented the proposed techniques that have been de-
scribed in this paper. As mentioned above, Symphony is part of
a larger heterogeneous system co-design environment called CoW-
are [5]. In CoWare the communication programming model is built
on top of the concept of the Remote Procedure Call (RPC), i.e. one
component can trigger the execution of a procedure in another com-
ponent. From the designer’s perspective, the different processors can
then be programmed using the C, C++ or VHDL language, commu-
nicating with the external world via explicit RPC calls. To facilitate
this RPC mechanism, the automatically generated libraries also pro-
vide communication stubs that actually refine the abstract RPC calls
by marshaling and passing argument parameters, if necessary, some-
what akin to remote procedure calls in computer communication and
networking. To transfer data to another component, the communica-
tion stubs call the generated send and receive operations for ex-
ternal communication on the appropriate communication channels.

6 Application Experience
The demonstrator application discussed in this paper is a Segment
Protocol Processor (SPP)[27]. This chip is a crucial component of
a connectionless server in an Asynchronous Transfer Mode (ATM)
network[28]. ATM is a fast packet switching transfer mode that sup-
ports high-speed integrated services by splitting all communications
into equal 53-byte cells. These cells can be used to carry every kind
of information, be it computer data, video, or voice. In addition to the
original packet data, the cells also carry various fields for control and
management purposes. Packets from different applications are also
interleaved.

In this demonstrator we present an experiment that considers a
partitioning, as depicted in Figure 8, with two ARM RISC proces-
sor cores, one hardware fifo and a shared memory. The code mapped
onto the upper ARM processor receives incoming ATM cells, does

ARM−6
RISC

Processor

HW
FIFO

ARM−6
RISC

Processor

SPP

ATM cells

ATM cells

SHARED

MEMORY

Fig. 8. The system architecture

some processing, checks the cells for their integrity, creates and up-
dates some dynamically allocated data structures and stores cells into
the hardware fifo. The code on the lower ARM processor is responsi-
ble for getting cells out of the hardware fifo, deallocating the appro-
priate data structures in the shared memory, outputting updated ATM
cells, etc.

The “plug-and-play” concept offered by our scalable architecture
model reduced the problem of constructing this customized architec-
ture to simply specifying the processor and communication channel
layout. For the shared memory we used an architecture template built
around a VTI memory VHDL model. The memory controller and the
I/O ports were then automatically generated. The hardware fifo was
programmed in VHDL and using thesend andreceive procedures
from the VHDL communication packages synthesized. The software
running on the ARM processors was implemented in C using the gen-
erated library of C call-able send and receive functions for com-
munication with the hardware fifo. Manipulations and modifications
of the data structures allocated in the shared memory, were specified
with “ordinary” pointer references.

The whole design flow was supported by tools, for generating the
hardware containers, software libraries and VHDL packages, partly
based on parameterized libraries.

7 Conclusions
In this paper, we presented an approach to the embedded architec-
ture co-synthesis problem. Our approach is based on an orchestrated
combination of architectural strategies, parameterized libraries, and
software tool support. We showed how software programmable and
dedicated hardware components can be integrated together to form
an application-specific multiprocessor architecture. In the future, we
plan to expand our support for a larger portfolio of processor cores
and to further apply our approach to other practical applications. It
would also be interesting to see how system partitioning techniques
(e.g. [9, 6, 7, 15]) can be applied on our customized architectures.

Acknowledgments
We would like to thank K. Van Rompaey, D. Verkest, I. Bolsens, G. Goossens,
F. Catthoor, B. Gyselinckx, J. Silva, C. Ykman, G. de Jong, T. Kolks, and
E. Verhulst for numerousinsightful discussionson the system integration prob-
lem.

References
[1] G. Berry, P. Couronne, and G. Gonthier. The synchronous approach to

reactive and real-time sysems. IEEE Proceedings, 79, September 1991.

[2] J. T. Buck et al. Ptolemy: A framework for simulating and prototyping
heterogeneoussystems. International Journal on Computer Simulation,
January 1994.

[3] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, and A. Sangiovanni-Vincentelli. A formal methodology for
hardware/software codesign of embedded systems. IEEE Micro, August
1994.

[4] P. H. Chou, R. B. Ortega, G. Borriello. The Chinook Hardware/Software
Co-Synthesis System, International Symposium on System Synthesis,
September 1995.

[5] H. De Man, I. Bolsens, B. Lin, K. Van Rompaey, S. Vercauteren, and
D. Verkest. Co-design of DSP systems. NATO ASI Hardware/Software
Co-Design, Tremezzo, June 1995.

[6] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for
microcontrollers. IEEE Design and Test of Computers, 10(4):64–75,De-
cember 1993.

[7] D. Gajski, F. Vahid, S. Narayan, and J. Cong. Specification and Design
of Embedded Systems. Prentice-Hall, 1994.

[8] G. Goossens, I. Bolsens, B. Lin, and F. Catthoor. Design of heteroge-
neous ICs for mobile and personal communication systems. IEEE Inter-
national Conference on Computer-Aided Design, November 1994.

[9] R. Gupta and G. De Micheli. Hardware-software cosynthesis for digital
systems. Computers and Electrical Engineering, 10(3)29–41, Septem-
ber 1993.

[10] D. Harel. StateCharts: A visual formalism for complex systems. Science
of Computer Programming, (8):231 – 274, 1987.

[11] P. .N. Hilfinger et al. DSP specification using the Silage language. Pro-
ceedings InternationalConference on Acoustics, Speech and Signal Pro-
cessing, page 1057 – 1060. April 1990.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[13] IEEE, IEEE/ANSI Standard 1014, Versatile Backplane Bus: VMEbus,
IEEE Service Center, Piscataway, NJ, 1987.

[14] C. A. Valderrama, A. Changuel, P. V. Raghavan, M. Abid, T. Ben Ismail,
and A. A. Jerraya. A unified model for co-simulation and co-synthesis
of mixed hardware/software systems. Proc. ED&TC-95, Paris, France,
March, 1995.

[15] T. B. Ismail, K. O’Brien, and A. A. Jerraya. Interactive system-level par-
titioning with PARTIF. Proc. EDAC-94, Paris, France, February, 1994.

[16] A. Kalavade, E. A. Lee. A Hardware/Software Codesign Methodology
for DSP Applications. IEEE Design and Test of Computers, vol.10, no.3,
pp.16-28, September, 1993.

[17] D. Lanneer, J. Van Praet, K. Schoofs, W. Geurts, A. Kifli, F. Thoen, and
G. Goossens. Chess: retargetable code generation for embedded pro-
cessors. In P. Marwedel and G. Goossens, editors, Code Generation for
Embedded Processors. Kluwer Academic Publishers, Boston, 1995.

[18] R. Lauwereins et al. Grape-II: A system level prototyping environment
for DSP applications. IEEE Computer, pages 35 – 43, February 1995.

[19] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. IEEE Pro-
ceedings, September 1987.

[20] B. Lin and S. Vercauteren. Synthesis of concurrent system interface
modules with automatic protocol conversion generation. In Proceed-
ings of the IEEE International Conference on Computer-Aided Design,
ICCAD 94, pages 101 – 108. San José, CA, November 1994.

[21] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala. FlexWare : a flexi-
ble firmware development environment for embedded systems. In Code
generation for embedded processors, pp. 67–84, Kluwer Acad. Publ.,
Boston, 1995.

[22] A. W. Roscoe, C. A. R. Hoare. Laws of Occam Programming. Theoret-
ical Computer Science, 60, 177–229, 1988.

[23] C. L. Seitz. System Timing. In C. .A. Mead and L. A. Conway, editors,
Introduction to VLSI Systems, Chapter 7, Addison-Wesley, 1980.

[24] M. Srivastava, B. Richards, and R. W. Brodersen. System level hardware
module generation. IEEE Transactions on VLSI Systems, 3(1), March
1995.

[25] K. van Berkel. Handshake circuits: an intermediary between communi-
cating processes and VLSI. Ph.D thesis, Philips Research Laboratories,
Eindhoven, The Netherlands, 1992.

[26] A. van Someren and C. Atack. The ARM RISC Chip, A programmer’s
Guide. Addison-Wesley Publishing Company, 1994. ISBN 0201406950.

[27] Y. Therasse, G. Petit, M. Delvaux, “VLSI Architecture of a SMDS/ATM
Router”, in Annales des Télécommunications, Vol. 48, No. 3-4, 1993.

[28] M. De Prycker, “AsynchronousTransfer Mode, Solution for Broadband
ISDN”, Ellis Horwood, 1991.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

