
Network Partitioning into Tree Hierarchies*

Ming-Ter Kuo, Lung-Tien Liu†, and Chung-Kuan Cheng

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, California 92093

†AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

This paper addresses the problem of partitioning a circuit
into a tree hierarchy with an objective of minimizing a glo-
bal interconnection cost. An efficient and effective algo-
rithm is necessary when the circuit is huge and the tree has
many levels of hierarchy. We propose a heuristic algorithm
for improving a partition with respect to a given tree struc-
ture. The algorithm utilizes the tree hierarchy as an efficient
mechanism for iterative improvement. We also extend the
tree hierarchy to apply a multi-phase partitioning approach.
Experimental results show that the algorithm significantly
improves the initial partitions produced by multiway parti-
tioning and by recursive partitioning.

1. INTRODUCTION

In the design of large scale circuit systems, hierarchical
approaches are widely applied in order to deal with the high
complexity of various design problems. Physically, the cir-
cuit system is also organized in multiple levels of hierarchy
and divided into system level, board level, chip level, mac-
rocell level, and so on. At each level, the circuit is parti-
tioned into subcircuits that are implemented in separate
components with limited resources. Therefore, a partition
can be viewed as a mapping from a given design hierarchy
into a hardware tree structure that satisfies certain con-
straints. Practically, there are many hierarchies into which
we can partition a circuit. The problem is how to find a hier-
archy and a partition so that the interconnection cost
between components in the entire system is minimized. In
this paper, we call this the hierarchical tree partitioning
problem.

In the implementation of a circuit, the wiring cost of a
net that connects different components may vary at different
levels. Usually, the interconnection cost is greater at higher
levels. To formulate the cost of a multipin net, we use a cost
weighting factor for the I/O pins consumed on a component

*This work was supported in part by grants from the NSF
project MIP-9315794 and the California MICRO program.

at each level. For example, Fig. 1 shows a system hierarchy
with two boards containing two chips each. Let the cost
weighting factor be 2 for I/O pins on each board and 1 for I/
O pins on each chip. Then a net that crosses chipsa, b andc
will consume 3 I/O pins on the chips and 2 I/O pins on the
boards. The total interconnection cost of this net will be 7
since each I/O pin on the board has a cost weighting factor
of 2.

Conventionally, two approaches may be used for map-
ping the circuit into a tree hierarchy: recursive top-down
partitioning and bottom-up clustering. Both approaches
optimize the partitioning one level at a time. However, a
good partitioning result at one level may sacrifice the qual-
ity of the entire hierarchical tree. Suppose we want to parti-
tion the circuit in Fig. 2 into the tree structure in Fig. 1 with
an objective of minimizing the total interconnection cost. In
Fig. 2, each node is labeled with its size and each net is
labeled with a weight that denotes the number of connec-
tions. Using recursive two-way partitioning, the circuit in
Fig. 2(a) is first partitioned into two boards with a minimum
cut of 5 (denoted by a bold line) if the capacity of each
board is 20. To connect the four nets in this cut, an intercon-
nection cost of 20 (5× 2 for each part) between boards and
an interconnection cost of 10 between chips (5 for each
part) are required. At the chip level, each part of the circuit
is further partitioned into two chips with a minimum cut of
12 (denoted by a dashed line) if the capacity of each chip is
10. These two cuts totally create interconnection cost of 48
between chips, giving a total cost of 78. However, if the
same circuit is partitioned as shown in Fig. 2(b), it has a
smaller cost of 72 even though the cut at the board level is
not a minimum cut. This example shows that the recursive
partitioning approach may not obtain the minimum global
cost when mapping the circuit into a tree hierarchy.

Fig. 1. A system hierarchy.

System Level

Board Level

Chip Level a b c d

In considering the global cost, Vijayan proposed a tree
partitioning of hypergraphs for VLSI design applications
[5]. He formulated a cost function that minimizes the rout-
ing cost of hyperedges. However, the tree in [5] has no lev-
els of hierarchy and each vertex of the tree represents a
block of the partition in a floorplan. As an extension, verti-
ces in our hierarchical tree partitioning problem denote
blocks of partitions at different levels in the system hierar-
chy. Moreover, the tree structure in [5] is fixed with a given
floorplan. In the hierarchical tree partitioning problem, the
tree can be dynamically changed to fit into an optimal hier-
archical structure of a design.

As it will be shown in Section 2.3 of this paper, the hier-
archical tree partitioning problem is an NP-hard problem. It
is still NP-hard even if the tree structure is specified. For
partitioning a hypergraph into a specified tree structure, we
propose an iterative improvement algorithm to minimize the
global interconnection cost. The algorithm utilizes the tree
hierarchy as a sorting tree to efficiently retrieve the next
move for improvement in each iteration. In our implementa-
tion, we extend the tree structure to represent the netlist and
apply a multi-phase approach to further improve the parti-
tion. Experimental results show that our algorithm can
effectively reduce the interconnection cost of partitions.

The rest of the paper is organized as follows. In Section
2, we formally define the hierarchical tree partitioning prob-
lem and discuss the NP-hardness of the problem. The pro-
posed heuristic algorithm and the multi-phase approach are
described in Section 3 and Section 4, respectively. We
present the experimental results in Section 5 and conclude
the paper in Section 6.

2. HIERARCHICAL TREE PARTITIONING

2.1. Definitions

Given a circuit system, we use a hypergraphH=(V, E) to
represent its netlist, whereV (|V| = n) is the set of nodes and
E (|E| = m) is the set of nets. Each nodev in V has sizes(v);
each nete in E is a subset ofV with cardinality |e| ≥ 2 and
has associated weightc(e).

The hierarchy of the circuit system in partitioning is rep-
resented by a rooted tree. The height of the tree,L, is the

3 3 3

1

1

1

2

3

3 3 3

10

2

2

10

4

6

4

3

2

1

1
3

2
4

4

6

3 3 3

1

1

1

2

3

3 3 3

10

2

2

10

33

Fig. 2. A hierarchical tree partitioning example.

(a) (b)

4

6

4

3

2

1

1
3

2
4

4

6

(b) A partition with an interconnection cost of 72.
(a) A partition with an interconnection cost of 78.

length of the path from the root to the leaves. The level of a
vertexu in the tree is the height of the subtree rooted atu
(see Fig. 3). At each level, a vertex has a maximum number
M of branches. The interconnection cost between vertices at
each levell has a weighting factorw(l). All the leaves are at
the same level and represent the basic components. They all
have a same size upper boundB that represents the capacity
of a basic component. Note that we use “node” and “vertex”
to refer to hypergraph nodes and tree vertices respectively in
this paper.

A hierarchical tree partitionP of a hypergraphH=(V, E)
assigns the nodes inV to the leaves of a treeT. Let N(u)
denote the nodes that are assigned to leafu in P. A partition
P is feasible, if for any leafu in T, the total size of nodes in
N(u) does not exceed the size upper bound, i.e.

.
In hierarchical tree partitioning, assigning a node to a

vertexu in the tree also assigns the node to the parent vertex
of u. Therefore, the tree partitioning forms a multi-way par-
tition with respect to each level of the tree. For example, in
Fig. 3, the hierarchical tree partitioning forms a 8-way parti-
tion at level 0, where the hypergraph is divided into 8 parts.
Similarly, there is a 4-way partition at level 1 and a two-way
partition at level 2.

For each nete in E, we definespan(e, l) to be 0 ife con-
nects exactly one block at levell, andf if the net connects
exactlyf blocks wheref ≥ 2. Here,span(e, l) represents the
number of blocks at levell to which nete contributes I/O
pin cost. (span(e, L) is always 0.) The interconnection cost
of each nete is defined as the total weighted cost on the
blocks to which it connects at all levels, i.e. cost(e) =

.

2.2. Problem Statement

The Hierarchical Tree Partitioning Problem: Given a
hypergraph H=(V, E), the size upper boundB of a leaf, the
maximum numberM of branches of a vertex, and function
w (w(l) defines the cost weighting factor at levell), find a
feasible tree hierarchyT and a partitionP for T such that

cost(e) is minimized.
In this paper, we set the weighting factor of the intercon-

nection cost to have an exponential growth from the bottom
level to the top level, i.e.w(l) = 2l. The weighting factor is
set to derive a good metric on the interconnection cost of a
partition in VLSI applications. With the factor being expo-

Fig. 3. A rooted tree hierarchy with height 3.

level 3

level 2

level 1

level 0 a b c d e f g h

Σv N u()∈ s v() B≤

Σ0 l L 1–≤ ≤ span e l(,) w l() c e()××

Σe E∈

nential in the level number, the metric discourages intercon-
nections between nodes separated by many levels of
hierarchy. For different applications, the weighting factor
can be adapted to optimize the entire system.

2.3. Complexity of the Hierarchical Tree Partitioning
Problem

To find an optimal tree hierarchy, we may start by deter-
mining the height of the tree. Due to the cost weighting fac-
tor at each level, intuitively, partitioning a circuit into a tree
hierarchy with a lower height could achieve a smaller cost.
Fig. 4 shows a counterexample to this statement. The circuit
in Fig. 4(a) has four nodes; each node is labeled with its size
and each net is labeled with its weight. Suppose the size
upper bound of a leaf in the tree structure is 20. Fig. 4(b)
shows the optimum partition for mapping the circuit into a
tree with height 1. This partition has a cost of 20 since the
net connectingb andc contributes a cost of 10 to each part.
On the other hand, Fig. 4(c) shows another partition where
the height of the tree is 2. This partition has a cost of only 8.
Thus, a tree hierarchy with a lower height does not neces-
sarily generate a partition with a smaller interconnection
cost.

The problem of determining the optimal tree hierarchy
with a height not greater than a specific numberK is NP-
hard. We can reduce the BIPARTITION problem [2, page
255] to this problem by settingK=1 and the size bound of
each basic component to be the size bound of the BIPARTI-
TION problem. Therefore, the hierarchical tree partitioning
problem, which has no constraint on the height of the tree, is
also NP-hard. Even if the tree structure is specified, the
problem is still NP-hard since multiway partitioning is a
special case of this problem.

b, c daa, b

b d

a
c18

17

3

2

1 10
1

c, d

Fig. 4. An example for determining the height of a tree hierarchy.

cost of 20 in a tree hierarchy with height 1. (c) A partition with
 a cost of 8 in a tree hierarchy with height 2.

(a)

(b) (c)

(a) A hypergraph with 4 nodes and 3 nets. (b) A partition with a

3. A HEURISTIC HIERARCHICAL TREE

PARTITIONING ALGORITHM

Since the problem of finding the optimal tree hierarchy
is NP-hard, we focus on the hierarchical tree partitioning
problem with a given tree structure. We propose an iterative
improvement heuristic for the problem to improve an initial
partition.

3.1. Outline of the Algorithm

We show the outline of the heuristic algorithm for a
specified tree structure in Fig. 5. Starting with given initial
partition, the algorithm adopts the local search method of
Fiduccia-Mattheyses algorithm [1] for iterative improve-
ment by moving a node from one leaf to another leaf of the
tree. The initial partition can be any feasible partition of the
hypergraph for the hierarchical tree.

In Fig. 5, Step 1 to Step 5 show one pass of the heuristic
in which each node is considered once for possible move-
ment. In Step 1, the gain (reduction in cost) of moving each
node is computed and stored. A node is subsequently con-
sidered for movement in Step 2. Then, the following steps
update the gain (Step 3) and check the condition for moving
the next unlocked node (Step 4) or start another pass (Step
5). Because the computation of the cost function is compli-
cated, we devise an efficient method described next for
computing the gain of moving a node. Also, we use a tree
structure for retrieving the next node to be moved.

3.2. Computing the Gain and the Destination for a Node

When partitioning a huge circuit system, the number of
levels and number of branches of a vertex in the tree struc-
ture can be large. This means there is an enormous number
of leaves in the tree to which a node may be moved. There-
fore, it is impractical to maintain all the possible moves and
gains inbucket arrays as it is done in the FM-based multi-
way partitioning algorithm [4]. In our heuristic, we use an
efficient and flexible method to maintain the best possible
moves. For each nodev, we only maintain a destination ver-
tex (denoted bydest(v)) and its gain (denoted bygain(v)) in

Given a hypergraphH=(V, E), a treeT, and an initial partitionP.

Step 1. Compute the gains of all the nodes inV with respect

Step 2. Select an unlocked nodev to move;

Step 3. Movev and log the move with the cost;

Step 4. If there are unlocked nodes, goto Step 2;

Step 5. If the smallest cost logged is better than the cost ofP,

Lock nodev and update the gains after movingv;

UpdateP to the best partition logged and goto Step 1;

Fig. 5. Outline of the partitioning algorithm.

Otherwise, stop.

to the current partitionP and unlock all the nodes;

the tree. The destination vertex may be a leaf or an internal
vertex which represents a set of leaves in a subtree. For
example, if moving a nodev to any of leavesf, g, h, or i in
Fig. 6 results in maximum gain, we setdest(v) to be vertex
x, which is the root of the smallest subtree containingf, g, h,
andi. The particular destination leaf of the subtree rooted at
x to whichv is moved is determined whenv is selected as
the node to move, and this decision depends on the current
capacities of the leaves. This method is efficient since we
only compute and store a destination vertex and a gain for
each node. It is also flexible since we keep the best moves
that have the same gain and the tie is resolved dynamically
only when a decision is demanded.

The destination vertex and the gain of each nodev is
computed from the current bindings of all the nets contain-
ing v. Given a partition, letroot(e) be the root of the smallest
subtree containing nete, i.e. all the nodes connected toe are
assigned to a leaf in the subtree. Then,root(e-{ v}) denotes
the root of the smallest subtree that contains all the leaves to
which other nodes ine excluding nodev are assigned. Mov-
ing nodev to vertexroot(e-{ v}) will reduce the interconnec-
tion cost of nete, if v is not currently assigned to this vertex,
(i.e. assigned to a leaf of the subtree rooted atroot(e-{ v}.)
On the other hand, ifv is assigned toroot(e-{ v}), moving v
out of root(e-{ v}) will create new interconnection cost for
nete. Considering all the netse containingv, the best desti-
nationdest(v) for nodev is the root of the subtree in which
most of the verticesroot(e-{ v}) are located. We use a search
operation on all the verticesroot(e-{ v}) to computedest(v).
Once the destination vertex is found, the gain of movingv to
dest(v) is computed.

For example, suppose a nodev currently assigned to leaf
a in Fig. 6 is connected to three 3-pin netse1, e2 ande3.
Each dashed line in Fig. 6 represents each of the three nets
and depicts the leafs to which the nodes of the net are cur-
rently assigned. If we consider nete1, movingv to root(e1-
{ v}) = y gives a positive gain. Similarly, for nete2 and net
e3, moving v to root(e2-{ v})=z or root(e3-{ v})=w also
reduces the interconnection cost. Since there are two verti-
ces,z andw, in the right subtree of the root, vertexx is cho-
sen as the destination vertexdest(v). Neither z nor w is
further searched as the destination because there is a tie in
the gain of moving nodev to z or w.

h

Fig. 6. Destination to which a node is moved.

a b c d f g i

y z w

x

e1
e2
e3

3.3. Selecting a Node to be Moved

In the Fiduccia-Mattheyses algorithm [1], bucket arrays
are used to store the gains and retrieve the next node to be
moved. As mentioned in Section 3.2, one problem in using
bucket arrays in hierarchical tree partitioning is that there
are too many blocks (leaves) and each one requires a bucket
array. Another problem is that the size of the array [-p..p] is
large wherep is the maximum possible change in the gain
of a node. (, where
dmax is the maximum number of nets to which a node con-
nects,cmax is the maximum weight of a net, andL is the
height of the tree.) Note thatp is proportional to the sum of
the weighting factorsw(l), which can be exponential in the
height of the tree in our problem.

Instead of using bucket arrays, we use a sorting tree for
selecting the next node to be moved. The sorting tree fol-
lows the structure of the tree hierarchyT in partitioning. For
each leafu of T, the node inN(u) (nodes assigned tou) with
the biggest gain is stored at the corresponding leaf. These
gains are sorted from the bottom level to the top level of the
tree. Therefore, the node with the biggest gain is available at
the root of the tree. Initially, sorting the gains requiresO(b
log b) time whereb is the number of leaves inT. For subse-
quent steps, it takesO(log b) for updating the sorting tree
each time the gain stored in a leaf ofT is changed.

Using the same strategy, we also maintain the gains of
all the nodes inN(u) for each leafu in T by a sorting tree Tu.
Thus, a similar sorting algorithm can be used to sort and
maintain the gains of nodes stored inTu. The time complex-
ity for each update when the gain of a node inTu is changed
will be O(log n/b) if the partitioning is balanced so that each
Tu will contain approximately the same number of nodes.

3.4. Selecting a Node to be Replaced

When selecting a nodev to be moved, it is possible that
its new location has its capacity being full. One solution is
to discard the selection of nodev and choose the next best
node to move. However, this process of searching a feasible
move may take several iterations. In our heuristic, we use a
replacement strategy instead of discarding the best (but ille-
gal) move. When moving nodev, the capacity of its destina-
tion dest(v) is checked. If the capacity is not full, nodev is
moved to a leaf of the subtree rooted atdest(v). If the capac-
ity is full, we choose a nodev´ currently assigned to a leaf
of the subtree rooted atdest(v) to move next and placev in
the location ofv´. Selecting nodev´ is straightforward by
utilizing the sorting tree that maintains the gains. We select
the node with the biggest gain stored indest(v) in the sorting
tree, which is the best node assigned todest(v) to move.
Therefore, the sorting tree provides an efficient mechanism
for both selecting the next node to be moved and selecting
the node to be replaced. Note that the best node and the big-
gest gain stored indest(v) may have already changed afterv
is moved. For efficiency, we update the gains approximately
before the next node to move indest(v) is retrieved.

p dmax cmax× Σ0 l L 1–≤ ≤ w l()×=

4. A MULTI -PHASE APPROACH FOR

HIERARCHICAL TREE PARTITIONING

As described in Section 3, we use the given tree struc-
tureT as a sorting tree to maintain the best gains at the verti-
ces ofT. The gains of all the nodes assigned to the same leaf
of T are also maintained by a similar tree structure. In fact,
we can use an extended tree hierarchyT* as shown in Fig. 7
to combine these two tree structures. The leaves inT* repre-
sent nodes in the hypergraph.

In the heuristic outlined in Fig. 5, the local change of the
partition only moves or replaces one leaf (i.e. one node inV)
at the bottom level ofT* . To further explore the solution
space by moving a group of nodes at a time, we apply a
multi-phase hierarchical tree partitioning approach. A
“phase” refers to an execution of the iterative improvement
algorithm in Fig. 5, using an extended tree hierarchyT* to
partition a hypergraphH. After executing the algorithm,
nodes assigned to the same parent vertex are considered as a
cluster and are merged to a supernode. Thus,T* is reduced
by one level and the hypergraphH is condensed. Given the
new tree hierarchy, we then apply the iterative improvement
algorithm again on the condensed hypergraph. This process
of iterative improvement and merging of the leaves of the
tree hierarchy is repeated for several phases until the tree
has a small height and the hypergraph has a small number of
nodes. After the last phase, we flat the hypergraph and map
the partition of the condensed hypergraph to a correspond-
ing partition of the flattened hypergraph.

The effectiveness of the multi-phase approach depends
on how nodes are chosen to be merged into a supernode.
Those nodes have to form a good cluster, i.e. a highly con-
nected group. Recall that the weighting factor of intercon-
nection cost at each level of the tree grows exponentially
from the bottom to the top. With the objective of minimiz-
ing the total cost, there is a tendency that highly connected
nodes will be assigned to the same subtree at the bottom
level. Thus, we merge these nodes with the same parent ver-
tex to supernodes in each phase.

5. EXPERIMENTAL RESULTS

We implemented the multi-phase hierarchical partition-
ing algorithm (HIPAR) described in this paper and tested it
on MCNC benchmarks to show the effectiveness of the

c g

Fig. 7. Extended tree hierarchyT*.

a b d e f h

algorithm. The multi-phase algorithm was iteratively
applied until no further improvement was made. Two exper-
iments using different initial partitions for iterative
improvement were conducted. The first experiment used
initial partitions generated from multiway partitions pro-
duced by theGradient decent based Fiduccia-Mattheyses
(GFM) algorithm in [3]. The second one used initial parti-
tions generated by a recursive FM (RFM) algorithm. In both
experiments, the target tree hierarchy was a full binary tree
with height 4 for all test cases. Number of nodes in the test
cases ranges from 924 to 2856 and number of nets ranges
from 860 to 2824. The size upper boundB was calculated as
(total node size)× 110% / 16 since there are 16 leaves in the
tree. The program was run on a Sun Sparc20 and the runt-
ime reported in the tables are measured in seconds.

Table 1 shows the results of the HIPAR algorithm using
initial partitions produced by GFM. We applied the GFM
algorithm to generate a 16-way partition with the objective
of minimizing the total number of I/O pins, without consid-
ering the cost weighting factors. We then mapped the 16-
way partition to an initial partition for the target tree hierar-
chy by taking the cost weighting factors into account. The
initial partition was iteratively improved by the HIPAR
algorithm to minimize the total interconnection cost. From
Table 1, we can see that the HIPAR algorithm reduced the
cost by 31.4% to 42.6%.

To investigate how the HIPAR algorithm improved the
partitioning, we calculate the interconnection cost at each
level and compare the cost distribution of the initial parti-
tion with that of the final partition. Fig. 8(a) shows the cost
distributions of initial partitions produced by the GFM algo-
rithm. Since the GFM algorithm minimized the number of I/
O pins at level 0, the initial partitions (mapped from the
multiway partitions) of all test cases had most of the cost at
higher levels. After applying our HIPAR algorithm, the
costs at higher levels were greatly reduced as shown in Fig.
8(b).

Table 2 shows the results of the HIPAR algorithm using
initial partitions produced by RFM. We applied the RFM
algorithm, which recursively called the two-way FM algo-
rithm, to generate an initial partition for the target tree hier-
archy. The objective of each two-way partitioning was to
minimize the number of crossing nets. Therefore, it did not
take the cost weighting factors and the global cost into

TABLE 1. RESULTS USING INITIALS PRODUCED BYGFM

Circuit Initial Cost Final Cost Improv. Runtime (s)

c2670 2740 1572 42.6% 529

c3540 5208 3345 35.8% 843

c5315 5412 3198 40.9% 3519

c6288 5326 3437 35.5% 4517

c7552 4268 2926 31.4% 9561

account. Starting with the initial partition, the HIPAR algo-
rithm was applied for iterative improvement to minimize
the total interconnection cost. From Table 2, we can see that
the HIPAR algorithm reduced the cost by 11.3% to 68.4%.

As in the first experiment, we also compare the cost dis-
tributions of the initial partition and the final partition. In
Fig. 9(a), the initial partitions produced by the RFM algo-
rithm had lower costs at level 3 since the algorithm parti-
tioned the netlist starting from the top level. However, the
partitioning qualities of the subsequent levels 2, 1, and 0
were sacrificed. After applying the HIPAR algorithm, the
costs at lower levels were reduced significantly to improve
the partition (Fig. 9(b)).

6. CONCLUSIONS

In this paper, we have investigated the partitioning prob-
lem of mapping a circuit into a tree hierarchy. Since both
recursive top-down partitioning and bottom-up clustering

TABLE 2. RESULTS USING INITIALS PRODUCED BYRFM

Circuit Initial Cost Final Cost Improv. Runtime (s)

c2670 7214 2277 68.4% 1394

c3540 3596 3189 11.3% 977

c5315 6827 3555 47.9% 5851

c6288 4626 3676 20.5% 3720

c7552 5084 2461 51.6% 8494

methods optimize the partition one level at a time, they are
not able to handle the hierarchical tree partitioning problem
which has an objective of minimizing a global cost. There-
fore, we proposed a heuristic algorithm for partitioning a
circuit into a given tree hierarchy. Experimental results
showed that the heuristic algorithm can effectively improve
the partitions. In the future, we will extend our work to
generic hierarchical tree partitioning where the tree hierar-
chy is dynamic.

REFERENCES

[1] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time
Heuristic for Improved Network Partitions,”Proceed-
ings of the 19th Design Automation Conference, 1982,
pp. 241-247.

[2] T. Lengauer,Combinatorial Algorithms for Integrated
Circuit Layout, New York, Wiley, 1990.

[3] L.-T. Liu, M.-T. Kuo, S.-C. Huang, and C.-K. Cheng,
“A Gradient Method on the Initial Partition of Fiduc-
cia-Mettheyses Algorithm,”Proceedings of the Inter-
national Conference on Computer-Aided Design,
November 1995, pp. 229-234.

[4] L. A. Sanchis, “Multiple-Way Network Partitioning,”
IEEE Transactions on Computers, Vol. 38 No. 1, Janu-
ary 1989, pp. 62-81.

[5] G. Vijayan, “Generalization of Min-Cut Partitioning to
Tree Structures and Its Applications,”IEEE Transac-
tions on Computers, Vol 40, No. 3, March 1991, pp.
307-314.

500

1000

1500

2000

2500

c2670 c3540 c5315 c6288 c7552

level
 cost

c2670 c3540 c5315 c6288 c7552

level

0

500

1000

1500

2000

2500

 cost

0

Fig. 9. Interconnection cost distributions of partitions. (a) Initial partitions produced by RFM. (b) Final partitions improved by HIPAR.

c2670 c3540 c5315 c6288 c7552

level 3 2 1 0

c2670 c3540 c5315 c6288 c7552

level

Fig. 8. Interconnection cost distributions of partitions. (a) Initial partitions produced by GFM. (b) Final partitions improved by HIPAR.

500

1000

1500

2000

2500

 cost

0

500

1000

1500

2000

2500

 cost

0

3 2 1 0

3 2 1 0

3 2 1 0

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

