
Abstract - Functional verification of the new generation
mic roprocessor deve loped by SGS-THOMSON
Microelectronics makes extensive use of advanced technologies.
This paper presents a global overview of the methodology and
focuses on three main aspects :

- Use of acceleration and emulation technologies for the
verification of the VHDL specification in the early stages of the
design.

- Development and use of sequential verification methods built
upon a commercially available formal proof tool.

- Extensive use of combinational proof for circuit-level
verification, in conjunction with transistor abstraction.

1 Introduction

Chameleon is a programme of next generation microprocessors
developed by SGS-THOMSON Microelectronics. It is based on a
modular, core-based 64-bit superscalar architecture. The first
microprocessor generation is targeted at the consumer computing
market. It implements multi-media features, as well as common
microprocessor capabilities.

For such highly complex microprocessor developments, functional
verification is estimated to take between 30 and 50% of the design
resources. Imperfections in the verification process not only affect
time to market but also lead to costly mask revisions.

The goal of silicon design functional verification is to gain a high
level of confidence that the silicon implementation satisfies the
specification of behaviour. To achieve the verification of such a
highly complex chip, and to ensure quality improvement throughout
the design process, different technologies are used: simulation,
acceleration, emulation, test generation, formal verification and
ASIC prototyping.

Priority is given to the objective of reaching a high level of
confidence in the first stages of the design. In fact when the physical
design starts, the RTL (Register Transfer Level) specification has
already been verified by running billions of machine cycles and
making use as much as possible of formal verification techniques.
Each step of the physical design is checked versus the RTL
specification.

This paper explains the functional verification methodology used for
the design of Chameleon processors. It consists of 2 major points:

- verify that the VHDL specification is conformant to architecture
and microarchitecture specifications.

- verify that actual layout is conformant to the VHDL specification.

The first issue is addressed in Sections 2 (Description levels), 3
(Simulation-based verification) and 4 (Sequential verification).
Verification of the VHDL reference specification uses both
simulation-based (including acceleration and emulation) and formal
verification-based techniques. The second issue is addressed in
Section 5 (Circuit verification): transistor abstraction and
combinational formal proof are the primary mechanisms used for
circuit-level verification.

2 Description levels

The different levels of specification developed for Chameleon
design and relevant in terms of functional verification are the
following:

- Level 0: Instruction Set C simulator.

- Level 1: Behavioural VHDL RTL model.

- Level 2: Structural VHDL RTL model.

- Level 3: Circuit transistor level model.

The instruction set C simulator is the golden reference model; it
accurately models the function of the processor instructions. This
simulator is used by the software group, application developers and
customers.

The level 1 model is a behavioural VHDL model with two main
characteristics: first, it is accurately faithful with respect to the
micro-architecture specification, and second it is synthesizable.

Compliance w.r.t. the micro-architecture specification means that it
is cycle-accurate at component boundaries. It describes precisely the
interactions between the components of the chip at each clock cycle.
Within each component, resource allocation and exact scheduling of
operations does not necessarily reflect the silicon implementation.
Level 1 issequentially equivalent to the final implementation with
respect to the observable behavior at component boundaries.

This level 1 model is also designed to be synthesizable in order to
benefit from acceleration, emulation and sequential proof as
explained in the following sections. The objective of producing this
model is to have, as soon as possible during the design process, a
sensible model of the chip which can serve as a reference for the rest
of the logical and physical design.

The level 2 model is a structural and state accurate VHDL model
obtained by successive refinements of the level 1 model. It is
combinationally equivalent to the final implementation, i.e. each
VHDL state corresponds exactly to a memory element in the actual
silicon. Moreover, the block decomposition exactly matches the
physical block decomposition.

Functional Verification Methodology of Chameleon Processor

Françoise Casaubieilh, Anthony McIsaac, Mike Benjamin, Mike Bartley, François Pogodalla,
Frédéric Rocheteau, Mohamed Belhadj, Jeremy Eggleton, Gérard Mas, Geoff Barrett, Christian Berthet

Chameleon Programme, SGS-THOMSON Microelectronics

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

Finally, the level 3 model is the final implementation in the silicon
directly extracted from the chip layout databases.

The VHDL model is used as the reference design specification
throughout the entire design cycle. It is validated, both at level 1 and
level2, by comparison with the instruction set C simulator by
running billions of cycles. The size of the VHDL code is typically of
the order of several hundred thousand lines.

3 Simulation-based verification

3.1 Global overview

The important point about the implemented methodology is that the
functional verification is done at chip-level. This requires some
validation to be done by the designers on their blocks before going
to integration in the whole model, using an appropriate testbench for
each block. Then, after integration of the different components into
the whole model, the functional validation of the VHDL
specification is done via chip-level verification.

Verification patterns are applied to the whole chip rather than
component by component. This is realised by putting the chip in
either a VHDL model of its environment (VHDL, acceleration) or in
a hardware environment (emulation). Chameleon binaries
(assembler programs) are effectively executed by the model.
Executed means that the design fetches itself its patterns as they are
actual programs. Patterns should not be considered as classical bit-
vector patterns, but rather as design-environment communication in
the execution of a program.

A regression test procedure serves as the cornerstone of the
verification at chip-level. This procedure is composed of Chameleon
assembly code programs. Any version of the design process must
successfully pass this regression test before being officially released.

The design of Chameleon, as any other microprocessor design,
requires the simulation of many billions of machine cycles in order
to assess the global coherency of the circuit design with respect to
its operating environment. Therefore, regression testing is extended
to include large programs such as OS, C programs and applications.

The size of test suites is traditionally a limiting factor in this
validation phase. This is overcome by faster implementations of the
models (hardware acceleration and emulation) and by using test
suites which give a high degree of coverage within a small number
of cycles.

3.2 General Simulation Flow

The following figure shows the global flow for validation of the
chip, from test generation to the comparison between the software
simulator and the hardware models.

3.3 Test Case Generation

Test generation is driven by a test-plan with 2 parts: architecture
verification and implementation verification. The first part is
dedicated to testing the compliance of the chip to its architectural
specification. Architecture verification tests aim at verifying access/
update of architectural resources as defined in the architecture
manual, without regard to implementation issues. They are targeted
at stressing the architecturally visible resources just as a user of the
chip could do by using the microprocessor in a system and running
code on it.

The second part of the test plan validates the conformance of the
chip to its micro-architectural specification. It is intended to verify
the micro-architectural features like protocols between blocks, state
machines, hardware resources (circular tables, counters, ...).

Both parts result in the production of tests, so-called Architecture
Verification Patterns (AVP) and Implementation Verification
Patterns (IVP) [1]. These tests are actually assembler programs that
are either compiled with the Chameleon software toolchain
(assembler-linker) to produce Chameleon microprocessor binary
code or directly generated as binaries to bypass the constraints and
optimisations done by the assembler-linker. Assembler programs
may be hand-written or generated with an automatic generation tool.

Chameleon uses both an internal tool and Chameleon Test
Generator (CTG), built upon a model-based technology developed
by IBM research laboratories at Haifa [1].

The internal tool generated tests for the verification of a Chameleon
ASIC prototype that has been developed within the project. It
produced a test database of 17 million clock cycles, all being AVPs
and single instruction based (that is, dependencies between
instructions are not taken into account for example). Hence, the fact
that the needs in terms of test generation were bigger for the
verification of the Chameleon led the project to go for CTG.

The motives for using such a tool are the following :

- changeability of architecture details, reusability of generator core :
during the design process, the way the architecture evolves should
not impact the generator core. In addition, it is important to be able
to reuse this core for different designs of the architecure, avoiding
any redevelopement, and allowing immediate focus on test
specification issues

- visibility, changeability and reusability of the testing knowledge :
the improvement of the quality of tests requires the building of a
continuously upgraded knowledge database. Moreover, this
knowledge database has to be readable and reusable for future
designs based on the architecture

- capability of biasing the tests : it is essential to be able to specify
test patterns that have to be exercised (hit corner and boundaries of
test-space, stress shared architectural or micro-architectural
resources)

- dynamic generation : the generation is interleaved with the
computation of the expected results; thus each test instruction
generated can be chosen in a way that depends on the current state
of the machine. Test scenarios that involve numerous instructions
can be described.

The test-cases binaries are run on both the reference behavioural C
simulator and the VHDL model.

Hand-writing

Assembler

Memory init
& dump address

Executable file

Reference memory VHDL memory

Compare

Simulation

C simulator

CTG Acceleration

Emulation

In-house generator

Fig.1. Simulation flow

All the tests are built according to the scheme:

- resource initialisation (registers,...)

- instructions under test execution

- write results in memory

The validation consists in comparing the resulting memory zones
against the reference dumps that are produced by the reference
simulator. This technique has several advantages: it stresses the
design with actual instructions; it provides a coverage that is
dependent on the quality of the test specification; and it is usable on
all the validation platforms (simulation, acceleration, emulation), as
well as on a real hardware platform, providing the capability to run
the tests that have been used during the verification process on the
actual silicon. However, some tests, targeted at exercising specific
microarchitecural resources (IVP), require the forcing of internal
states of the machine, which is not easily portable across platforms.
But effort is put into using that kind of techniques only when biasing
of chip-level tests fails to provide precise control over these
resources.

3.4 Simulation Tools

VHDL models and testbenches are developed by Chameleon
designers using a VHDL environment. VHDL is used for rather
high-level descriptions, but these are still RTL and not fully
behavioural.

As validation of a complex microprocessor requires a large number
of cycles, RTL simulators are not performant enough (less than 10
clock-cycles per second) and faster implementations must be used to
achieve the goal of running several billions of machine cycles before
taping out. The techniques used on Chameleon are hardware
acceleration and hardware emulation.

An HW accelerator is a dedicated machine that does event-driven
simulations of a gate-level netlist. The performance obtained with
such a machine is about 200 times faster than a software simulator,
which is about 2 kHz.

HW emulation consists in mapping a gate-level netlist onto an
FPGA network, which results in an actual programmable hardware
implementation of the netlist. Here the performance is around 350
times the performance of an accelerator, ie around 700 kHz.

Both of them require a gate-level netlist as input. It is obtained from
RTL VHDL code via synthesis. Although gates and not RTL
statements are simulated, the objective remains the same: to run
programs on the chip and to verify the correctness of the results.

In this context, the model of the chip is not sufficient for the
verification, and some environment is also required : memory for
handling the code and the results, interrupt generators, ... This
environment is connected to the chip to run the tests. The model of
the environment is driven by the same synthesis constraints as the
actual design, as it has to be accelerated and emulated as well.

3.5 Tool-specific flows

Although the global methodology is the same whatever the
simulation platform, there are some specificities depending on
whether the target is a VHDL simulator, an accelerator or an
emulator. The following figure details the possible paths.

3.5.1 Synthesis

The synthesis is targeted at a generic functional library. The same
netlist can be used as input for both acceleration and emulation
platforms. When entering the part of the flow that is specific to
acceleration or emulation, each library cell is described using the
vendor’s library.

This verification methodology implies that one can obtain, from

some kind of high-level description, a netlist compatible with
acceleration and emulation. This means that the synthesis tool must
be capable of synthesising VHDL code that is not really optimised
for real circuit design, code with generics, redundant operators,
complex procedure calls, etc..

With such a huge design, synthesis time is not negligible. In order to
have the highest possible turn-around time, synthesis is performed
on each block, independent of hierarchy, which saves synthesis time
for unmodified blocks from one VHDL release to another, but
entails very strict data management. It is also compatible with the
parallelisation of synthesis jobs on several machines.

Synthesis is performed in batch mode with a set of script files to
automatically generate the full model netlist. The synthesis is not
focused on area or any other strong constraint, in order to keep
synthesis time reasonable. The purpose of this synthesis being
functional verification, there is no constraint on timings, and the use
of a functional library (few cells, no timing informations) yields
gains in synthesis time.

3.5.2 Hardware platforms

Acceleration and emulation require some extra work to be done on
the netlist, particularly with RAMs. All the memories described in
the VHDL specification, if synthesised as flip-flops, require a lot of
resources (either generate events in acceleration or use emulation
gates). Some structures would require such a long CPU time to
synthesise that it would be prohibitive. It is worth extracting these
RAMs and instantiating specific memory components provided by
the acceleration/emulation vendors. These components rely on real
memories embedded in the platforms.

In this context, it is sometimes an issue to map a memory in the
design onto a different memory : as an example if a platform
provides dual R/W port memories, and if a design needs a n-read/m-
writes, n>2 and m>2, this becomes an issue. A simple way of
multiplying read ports is to duplicate dual ported memories. But
there is no simple way of increasing the number of write ports : it
requires a division of the clock period into several sequential write
operations as shown in the next figure.

Emulation brings specific difficulties : as it is a real hardware
machine that basically connects gates, and as resources in terms of
gate capacity and routing are limited, some care must be taken when
mapping a netlist : as in silicon, routing such a complex design is
not straightforward, and this operation requires the user to bear in
mind the available resources and the needs of the design. As an
example, let us consider an FPGA containing n truth tables and m
IO pins. If one gate of the design has a fanin + fanout equal to m,

VHDL RTL synthesisable model

VHDL simulator

HW Accelerator HW Emulator

 synthesis Handcraft
RAM models

gate-level netlist

Fig.2. Accelerator - Emulator mapping

then only this gate can be mapped in the FPGA ! If it has fanin +
fanout greater than m, then it has to be duplicated into several
FPGAs until the right IO resource is obtained, leading to a very bad
filling ratio of the machine. Tri-states are not emulated as tri-states :
they are resolved with OR-gates, increasing the number of nets to be
routed.

More generally, emulation requires the user to know the machine
quite well, as it happens that the tools themselves do not always find
a routable partitioning of the netlist. This leads to modification of
the netlist logic hierarchy, modification which is driven by
placement and routing issues to help the emulation compilation
tools.

Due to these limitations, emulation is introduced into the
verification process only when a good level of maturity and
confidence is reached with acceleration.

3.6 Code Coverage

A code coverage analysis is done using a commercially available
tool in order to make sure that any VHDL statement of the
specification is exercised at least once during the regression test
simulation. Using this code coverage facility, it is possible to have a
very precise idea of the regions of code that receive little or no
coverage. Additional tests can then be generated to increase this
coverage. The designers and verification engineers collaborate to
derive these ad hoc tests from the analysis of the coverage results,
on a case by case basis.

4 Sequential verification

SGS-THOMSON Microelectronics has long recognised the value of
formal verification within the silicon design process. Sequential
proof tools can automatically prove sequential properties of
complex control logic. A particularly fruitful area for the application
of sequential property checking is in the verification of arbitration
mechanisms and other protocol-based state machines. For instance,
it is possible to prove absence of starvation in bus protocols and the

correct implementation of coherency in cache protocols [7].

Temporal properties can be used to “simulate” a (possibly infinite)
set of test programs. For instance, suppose we wish to verify that
once a request line is asserted, then eventually the response line will
be asserted. It potentially requires an infinite number of test
sequences to verify this property exhaustively. However, using
formal mathematical techniques it is possible to verify such a
property for all possible test sequences, often within seconds.

Current property checking methods do not scale to the full size of
modern designs. It is only possible to apply property checking to
large designs if details of the design which are not relevant to the
property can be abstracted.

4.1 Sequential verification tools

With the new generation of formal verification tools, it is possible to
fully integrate formal verification within a design flow. Sequential
proof techniques require a powerful Boolean engine and a robust
interface to VHDL. Chameleon uses two sets of tools:

a. Vformal: a commercially available suite of tools developed by
Bull and marketed by Compass. Two of the most important tools
are fsmc, which compiles VHDL designs to a finite state machine
format, and vprover, which proves that two VHDL designs are
combinationally equivalent. For sequential verification, Chameleon
uses fsmc; vprover is used in the circuit verification (Section 5).

b. Shadow: a tool developed within SGS-THOMSON [3]. This
works as a back end tool with fsmc: it manages the manipulation of
the FSM representations produced by fsmc. It performs two main
functions:

- Abstraction. The tool is able to reduce the complexity of a design
in such a way that parts of the design which are not relevant to the
property can be removed. Given a property and a finite state
machine, Shadow automatically removes those variables that do not
influence any of the variables appearing in the property, and
constructs the projection of the FSM onto the remaining variables.
Then the property holds for the abstracted machine if and only if it
holds for the original system.

- Sequential proof. The proof engine of Shadow verifies either that
two FSMs are equivalent in terms of input-output behaviour, or that
a property holds for a given FSM. A property can be expressed as an
assertion in the original VHDL; for sequential properties that
express the relationship of variables over a number of cycles, one
can construct an automaton to represent the property. The proof
engine is based on the Bull BDD library TDGLib. It uses both (i)
algorithms based on an explicit construction of the transition
relation, as in the SMV tool developed at Carnegie Mellon
University [9], and (ii) state traversal algorithms based on a
representation of an FSM as a vector of BDDs, one for the transition
function of each state variable [6]. Algorithms of the latter type can
achieve results when the transition relation is too large to be
constructed.

If there are assertions in the VHDL, the output of fsmc includes
BDDs representing the sets of states in which they are violated. The
abstraction process also constructs BDDs representing the sets of
states in the abstract FSM where the assertions are violated. If there
are assertions to be checked, the proof engine determines whether
any of the states in which the assertions are violated are reachable
from the initial states of the system.

Recently, model-checking for the temporal logic CTL [5] has been
implemented in Shadow, making it possible to check a wider range
of liveness properties. However, in the work reported here, such
properties have been checked using the SMV tool, after translating
the FSMs into the SMV format.

Read port 0

Read port 1

Read port 2

Read port 3

Write port 1

Write port 2

Read data 0
Read data 1

Read data 2
Read data 3

2 R/W
core

2 R/W
core

Fig. 3a. Multi read-port memory mapping

clock
read

write0
write1
write2

Fig. 3b. Multi write-port memory mapping:

write3

Internal write0
Internal write1
Internal write 2
Internal write 3

Internal read

accesses serialisation

4.2 Sequential verification flow

Sequential verification has been used in the validation of the VHDL
specification. The areas to which this technique is applied have been
chosen so as to reinforce simulation-based verification in cases
where incorrect behaviour might only be shown up by particular
sequences of signal values over many cycles. A number of crucial
temporal properties have been identified, expressed either as VHDL
assertions in the original VHDL, or as assertions in VHDL automata
specifically representing the property, or as CTL formulae. These
properties are checked at component level.

The VHDL for the component is compiled using fsmc. The resulting
FSM, and the property to be checked, are then read into Shadow,
which constructs a simpler abstract FSM that is adequate for the
verification of the property. The property is then checked for the
abstract FSM.

4.3 Tool performance

The most substantial example to which the techniques have been
applied is a subcomponent of the unit that handles memory
instructions. There are complex interactions betweeen the various
subcomponents in this unit; the property to be checked was that the
subcomponent in question cannot permanently send a stall signal to
the buffer from which it receives its data.

The input to fsmc was a release of the Level 1 VHDL for the
subcomponent, exactly as written by the designer. The construction
of the FSM representation took 24 hours on a Sparc 10 processor.
Memory requirements were 40MB. The FSM had 696 state
variables (not including inputs and outputs). The abstraction process
took 20 minutes; the abstract FSM contructed by Shadow had only
37 state variables. The construction of the transition relation and
checking of the property in SMV took 25 minutes, using 8 MB of
memory.

The property turned out to be violated. There were circumstances
under which the stall signal can be permanently asserted; these
depended on a particular pattern of the way that resources became
available to the subcomponent. At the stage this work was done,
these circumstances had not arisen in simulation, although the
model had been in use for several weeks.

The property was checked on a new release and found to hold. The
figures were similar, except that the abstract FSM had 55 state
variables. The time for SMV increased to 28 hours, using 140 MB
of memory.

Since the verification was carried out at component level, the
validity of the property depended on assumptions about the
environment of the component. The hardest part of the work of the
verification engineer was the specification of an adequate and
tractable model of the environment.

These results reflect the relative demands of the various stages, but
other work on smaller components has been less demanding overall.
For a set of 6 properties fully defining a preliminary version of a bus
arbiter, typical times were 20 minutes for fsmc, less than 1 minute
for abstraction (14 state variables reduced to 10), and 5 minutes for
SMV. The reduction of the number of state variables from 696 to 37
in the memory unit example was one of the most striking results, but
not exceptional: reductions of between 75% and 95% for large
components are typical.

Using vectors of transition functions in Shadow, it has been possible
to check assertions for FSMs with more state variables. Typically,
these have been assertions that a component cannot get into some
bad state. Some results are: 3 assertions for an FSM with 30 state
variables checked in 3 seconds; 1 assertion for 357 state variables in
3 seconds; and 5 assertions for 507 state variables in 25 seconds. In
the last two cases, it would have been impossible to build a BDD
representation of the transition relation on our largest machines,
although the properties were fairly simple, and the proofs did not
involve large intermediate BDDs.

5 Verification of the circuit

Functional verification of the circuit uses combinational formal
proof, providing an exhaustive comparison between the behaviour
of the circuit and that of the specification.

Application of formal proof techniques to large industrial designs
has been used for many years and has now reached a very high level
of maturity [2], [8]. This is mainly due to, first, the general
acceptance of this technology within the design community and
second, the existence of robust and reliable commercial tools, such
as VFormal, integrated with standard Hardware Description
Languages.

In Chameleon methodology, formal proof is performed at block
level between the level 2 VHDL specification of a block and a
VHDL gate-level description automatically extracted from the
layout of the block.

5.1 Transistor abstraction

A VHDL gate-level description is extracted from the transistor-level
view of the block using a transistor abstraction tool internally
developed by SGS-THOMSON Microelectronics. This tool, called
Laybool, generates a gate-level description from the layout view.
More precisely, it transforms a SPICE-like netlist of transistors
(possibly hierarchical) into a VHDL dataflow description (keeping
the same hierarchy).

The VHDL dataflow description contains the same nets as the
transistor netlist; each channel-connected group is transformed into
one or several VHDL dataflow statements. This description can be
used as input to either a VHDL simulator or a formal proof tool.

The tool is completely generic in the standard cells/custom
approaches used in the circuit design. It is capable of handling
transistor strengths, pass transistors, precharge logic and other
standard circuit design techniques. It does not use any sort of library
structural models and is based upon funct ional boolean
computations built upon Bull BDD library TDGLib.

The tool uses techniques similar to those described in [4], plus
additional capabilities. Memory elements (latches) are recognized

VHDL

(+ assertions)

FSM

(+ sets of states where
assertions are violated)

fsmc

properties and assertions checked

CTL

properties

abstraction

Sequential

Shadow

Fig. 4. Sequential verification flow

proof engine

as stable fix-points of feed-back loops. Oscillations are flagged and
clock and reset conditions are automatically extracted. Tri-state
drivers are recognized.

5.2 Block-level combinational formal verification

The formal proof tool used by Chameleon is VFormal, a
commercial combinational prover from Compass. It is applied for
block verification by comparison of the VHDL specification w.r.t to
the extracted functionality (extracted from the transistor level using
the transistor abstraction tool).

The following figure describes the complete process.

Application of this technique to a 64-bit adder datapath design gives
the following figures: transistor abstraction is performed in a few
seconds and formal proof of equivalence to the VHDL specification
in a few minutes.

Application of formal proof requires that each block be decomposed
into a suitable hierarchy. A typical block is a complex shifter made
of 30 thousand transistors and decomposed into 13 sub-blocks; this
block is formally proved equivalent to the VHDL specification in
less than one hour.

Formal proof is applied on the vast majority of Chameleon blocks.
Unfortunately, not all designs can be compiled using VFormal as the
underlying BDD representation can become too large to manage,
even on today’s largest computers (the representation of a 16-bit
multiplier requires more than a gigabyte of physical memory and
more than a week of CPU time).

When formal proof fails, comparison of the extracted gate-level
with its VHDL specification is done using simulation techniques.
This verification is either partial or exhaustive, as it was done for the
exhaustive co-emulation of a 16 bits multiplier, by running 4 billion
vectors in less than one hour at 1 MHz frequency.

VFormal is also applied to prove the equivalence of the two
hierarchical netlists, the VHDL specification on the one hand and
the netlist extracted from the layout on the other hand.

6 Conclusion

As the size and complexity of the design increase, it becomes a
strong requirement to put in place powerful verification methods.
Within the SGS-THOMSON Microelectronics Chamelon project,
several state-of-the-art techniques are used to address this
complexity.

The starting point is an RTL VHDL description, on which the
functional verification is fulfilled by running billions of machine
cycles as tests. Acceleration and emulation technologies
dramatically increase the power in terms of cycles simulated per
second, and provide an acceptable turn-around time. Formal
verification techniques are used to complement the verification of
the specification wherever it is possible to use them. Combinational
proof is in a state of maturity that enables one to rely almost entirely
on it for circuit-level verification.

The main point of this methodology is to use advanced technologies
such as acceleration, emulation and formal verification in the very
first phases of the design rather than after physical design. The
design implementation starts with a functional specification that can
be used at each step as a reference, minimising the risk of facing
huge functional issues just before tape out.

References

[1] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y.
Malka, C. Metzger, M. Molcho & G. Shurek, “Test Program
Generation for Functional Verification of PowerPC Processors in
IBM”, Proceedings of the Design Automation Conference, pp.279-
285, 1995.

[2] D. P. Appenzeller and A. Kuehlman, “Formal Verification of a
PowerPC Microprocessor”, Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers & Processors,
pp 79-84, IEEE, October 1995.

[3] G.Barrett, M.Belhadj, C.Berthet, A.McIsaac and F.Rocheteau,
“The Application of Design Abstraction and Transistor Abstraction
in an Industrial Design Flow”, submitted to FMCAD, 1996.

[4] R.E. Bryant, “Extraction of Gate Level Models from Transistor
Circuits by Four-Valued Symbolic Analysis. In Proceedings of the
International Conference on Computer-Aided Design, pages 350-
353, 1991.

[5] E.M.Clarke, E.A.Emerson and A.P.Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications”, in ACM Trans. on Programmimg Languages
and Systems, 8(2), 1986.

[6] O.Coudert, C.Berthet and J.C.Madre, “Verification of Sequential
Machines using Boolean Functional Vectors”, Proc. of the
Workshop on Applied Formal Methods for Correct VLSI Design,
Houthalen, Belgium, November 1989, in Formal VLSI Correctness
Verification, vol. II, North-Holland, 1990.

[7] A.Th.Eiriksson and K.L.McMillan, “Using Formal Verfication/
Analysis Methods on the Critical Path in System Design: A Case
Study”, in P.Wolper (ed.), CAV’95, Lecture Notes in Computer
Science 939, Springer Verlag, 1995.

[8] C. Malley & M. Dieudonne, “Logic Verification Methodology
for PowerPC Microprocessors”, In Proceedings of the Design
Automation Conference, pp. 234-240, 1995.

[9] K.L.McMillan, Symbolic Model Checking, Kluwer 1993.

FULL-
CUSTOM

SEMI-
CUSTOM

DATAPATH
COMPILER

STANDARD
CELLS

Transistors

TRANSISTOR
ABSTRACTION

VHDL Dataflow

FORMAL PROOF

VHDL RTL

Fig. 5. Circuit verification flow

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

