
Abstract. We present a method for the automatic generation of
test vectors for functional verification, giving the advantages of
random and directed testing. We show the use of a formal specifi-
cation as input to a test generator. We present techniques for the
efficient implementation of the generator. We discuss our experi-
ence with this method applied to commercial designs. We show
how our approach is a stepping stone towards practical formal
verification.

1.0  Introduction

1.1  Background
Current approaches to functional verification range from the ideal
(various flavors of formal verification[1]]) to the pragmatic (simu-
lation driven by directed tests). The latter, usually done in a lan-
guage like Verilog[2], is generally the standard approach to
verification in many industrial settings. Usually, the more compre-
hensive the verification, the higher is the cost associated with the
method, both in terms of resources and necessary skills. We
believe in the ideal but are restricted by the practicalities of com-
mercial existence to technologies that we can immediately use to
verify commercial designs. We have developed a test strategy and
toolset that offers an incremental path to formal verification, com-
bining the advantages of random and directed testing in an existing
environment.

1.1.1  Rambus Designs
Rambus1 designs Rambus DRAMS (RDRAMS), ASICS and
related products. RDRAMS are 500 Megabyte/second memory
chips, with a bus based protocol and a comprehensive set of mask-
ing operations. RDRAMS have an instruction set containing 30
operators and a register state of 10 registers, parameterizing the
device operation. It is important to distinguish, at the outset, the

1. For further information on Rambus, see http://www.ram-
bus.com.

problem of verifying Rambus DRAMs from the typical DRAM
test problem. At Rambus, we are concerned solely with the func-
tional verification of the Rambus protocol logic, not with verifica-
tion of the DRAM core. Indeed, in our simulations the core is
always modeled in software. The combined Rambus protocol
interface and core model has the flavor of a simple microprocessor
and our method is applicable to microprocessor verification.

A significant aspect of our approach is using a formal specification
to drive the test generation. Rambus has a business model that
involves many partners implementing from a common specifica-
tion, which means an accurate specification is fundamental. Given
the existence of such a document, it seemed natural to take advan-
tage of it, and the format of the specification has evolved to be suit-
able for test generation.

1.2  Our Approach
The Rambus Automated Verification System (RAVS) offers an
environment for the specification-directed generation of test vec-
tors. These vectors may be symbolic, for use with a formal verifi-
cation tool, or tri-state for input to a conventional Verilog
simulator. RAVS combines the strengths of randomized, X-based
and directed testing, since all values will be left as general as is
consistent with the constraints expressed in the specification.

Since this system is in use in an industrial setting, attention has
been paid to relevant pragmatics, and RAVS is incorporated into
the standard document production and simulation environments.
This ensures that testing is an integral part of the specification and
design process.

1.3  Overview of the paper
Section 2.0 presents the specification language, RS. Section 3.0
presents details of the vector generation. Section 4.0 presents our
experience in using RAVS to verify a commercial design. Section
5.0 presents current work and discusses the incremental path to
using RAVS as a practical formal verification system.

2.0  Formal Specification using RS

2.1  General
The formal specification completely describes the correct func-
tional behavior of the device. This document serves as a design
reference for implementors and as the source for generating test
vectors.
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The most important characteristic of the formal specification is
that it defines theuser-visible behavior of a device. In general, the
user of a device is not concerned with its internal structure, only
with its behavioral characteristics. Very often in the literature of
formal verification [3] a specification of a device is taken to mean
an abstraction of the device. Such an abstraction might be suitably
represented in an RTL description, or the behavioral component of
a commercial HDL, or a specialized state-machine description lan-
guage, to name a few possibilities. An RS specification is gener-
ally quite different; it expresses not the logical structure of a
device, but rather its operational interface. If RS were used to
describe a processor, for example, the specification would limit
itself to the operations supported by the device and as little of the
internal state as is necessary to forecast operational outcomes.

We have found it convenient to express the operational behavior of
a hardware device as collection of constraints; thus RS is designed
to be suitable for expressing such constraints. An RS specification
is generally not suitable for simulation. However, it serves two
purposes:

1. It defines the correct behavior of the device. Given a complete
set of stimuli and responses, it defines whether this represents a
correct behavior for the device. Given a set of stimuli, it
defines the corresponding output from a correctly behaving
part.

2. It allows the generation of sequences of stimuli and responses
that characterize correct function of the device.

To ensure that there is consistency between the published specifi-
cation and the generated tests, we use the same source for both,
and embed the machine-readable specification within the text of
the published document. The specification text is automatically
extracted from the document as part of test generation. A second-
ary advantage of this strategy is that the specification can be pre-
sented taking full advantage of the features of a document
production system to enhance legibility.

2.2  The RS Language
RS is a comparatively simple language for defining temporal con-
straints on the IO behavior and internal states of a device, giving a
specification that is formal and intuitively clear. We do not have
the space to give a full exposition, so we restrict ourselves to pre-
senting the general concepts and illustrating the language suffi-
ciently to motivate the following sections. A complete description
of RS, together with a specification of a Rambus DRAM, can be
found in the RDRAM Specification[4].

An RS specification consists of a set of primitive names and a set
of constraints on the values associated with these names over
time1. The complete set of value sequences characterized by this
model identifies all correct behaviors of the device.

2.2.1  Names
The name space of a specification consists of:

• signals representing values that hold only when explicitly
driven, such as the pins on the device. At any time for which
there is no value explicitly defined, a signal will be X, unless
there is an explicit default value associated with its definition.

1. We assume a base clock of sufficient discrimination.

• state variables representing internal values that persist until
explicitly changed, such as internal registers.

Signals can be grouped into buses, with the individual signals
accessed by indices. RS allows reverse polarity, and bi-directional
properties to be specified.

For example, we specify a simple channel2 consisting of a single
control signal and a data bus as shown in Table 1.

Packets: Packets are an abstraction mechanism for grouping
related signals over a contiguous interval of time.

For example, an element of a simplified RDRAM protocol is the
channel tiled as shown in Table 2.

This table defines a packet,Request, which has the following
properties:

• it occupies the channel for 4 clock ticks.

• it has fields:

Start, Op[3:0] andAdr[35:2]

• there is an abstraction mapping relating these constructs to
actual pin locations, relative to invocation time of the packet.

The packet makes it more convenient to write constraints. For
example, if we want to constrain theRequest.Op to be a register
write, represented by the opcode constantRegisterWrite, then we

2. For historical reasons, we refer to the collection of I/O signals
as a channel.

TABLE 1. External Signals
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BusCtrl n/a - Bidir Pulldown Any ,

BusData [8:0] - Bidir n/a Any ;

TABLE 2. Request Packet

Clock BusCtrl

BusData
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0 Start O
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Adr
[17:10]

2 U Adr
[26:18]

3 Op[2] Adr
[35:27];



could write as part of a constraint ‘Request.Op == Register-
Write’ and, relative to the current time, the signals corresponding
to the bits ofOp will be constrained to have values that match
RegisterWrite.

State Variables: variables are named objects whose values persist
over time. Once a variable is constrained to have a value, this
value will persist until explicitly changed.

Below, we use a variable that indicates if the device is busy at the
current time, to ensure there are no overlapping requests. The
statement in Table 3 declaresDeviceBusy as a variable with an

initial value oflogical 0.

2.2.2  Constraints
Not all sequences of state instantiations denote valid behaviors. RS
allows the definition of sets of constraints which restrict the possi-
ble state instantiations to only those considered valid.

Constraints consist of relational operators over the state elements,
together with time shifting operations -- allowing the relationships
between states in the sequence to be expressed. Each constraint is
implicitly a function of the current time.

A transaction representing an operation with associated data for
our simplified device is shown in Table 4

If this constraint can be satisfied, then the state instantiations
define the well formed transactions relative to the current time.

2.2.3  Assertions
Since the specification is completely general, given infinite time
and space it would generate all correct behaviors for the device. In
practice, we usually need to focus our attention more specifically,
to get meaningful coverage in a reasonable time1. Assertions are
additional constraints that further restrict the valid behaviors to a
subset of the full state space.

1. In Section 5.0, we discuss how we try to increase the generality
we can practically handle by using symbolic values.

TABLE 3. State Variable

State DeviceBusy=1’b0;

TABLE 4. An Example Constraint

Constraint Transaction =
Packet(Request)&
 Request.Start == 1’b1 &
 @tDATATIME{

DeviceBusy == 1’b0 &
Case {
 Request.Opcode == ReadOp =>

 ReadData,
Request.Opcode == WriteOp =>

WriteData}};

For example, if we wish to generate only tests that are composed
of a MemoryWrite followed by aMemoryRead from the same
address, we add the extra constraint shown in Table 5. Anything

not explicitly constrained by the assertion is allowed to be any
value consistent with the full specification, so we need only con-
strain a small number of items.

Note: This assertion is deceptively simple, so we should be clear
about what it actually implies. Any behavior that satisfies this eas-
ily expressed relationship could be generated by this assertion. The
full RDRAM supports more that 20 operations, involving bit and
byte masking, sequential and non-sequential addressing, that are
valid MemoryWrites. There are a number of choices for Memo-
ryRead. The transactions can be of arbitrary data length, and may
even be terminated early. Any solution involving any of these
combinations is a valid instantiation of this assertion. We are
allowing a great deal of freedom of choice here, insisting only on
the highest level property: that it be a write followed by a read.

2.3   Summary
The RS language uses a simple state model together with a set of
constraint expressions to completely define the correct behavior of
a device. This specification is embedded in a document con-
structed using Framemaker. This document is formatted for human
readability and the formal text is mechanically extracted for auto-
matic input to the test generation tool. Assertions are used to gen-
erate “interesting” behaviors for test purposes.

In the next section, we see how such a model can be given an oper-
ational semantics and can be solved to produce meaningful tests
for the device.

3.0  RAVS Test Generator
RAVS is both the name of the integrated toolset used to verify
Rambus designs, and the name of the program which lies at its
core: a test generator that converts specifications and assertions
about device behavior written in the RS language into test vectors
suitable for running on a simulator. This section describes the
RAVS test generator.

RAVS is written in the Scheme Lisp[5] dialect and runs on both
Suns and HP Snakes. It implements a small, specialized program-
ming language, basically the core of the specification language RS
that results from deleting RS’ many syntactic sugaring devices. A
RAVS program comprises a device specification, and an assertion.
The output of a program is a set of tests for the assertion.

TABLE 5. A Simple Assertion

Assert “Simple Memory Test”
  “Write Memory location and read value written”
  Local column = Arbitrary(8) {

Request.Opcode == MemoryWrite &
Request.Adr[10:3] == column &
Transaction &
@tNEXTTRANSACTION {

Request.Opcode == MemoryRead &
Request.Adr[10:3] == column &
Transaction}};



solution, if, for example, there is an incompatibility with a later
constraint, RAVS returns to the choice point and tries a different
alternative. If no alternatives are left, RAVS backtracks out of the
choice point.

All RAVS statements are compiled into two-argument Scheme
functions. The first argument is the time point at which the con-
straint is executed. The second argument is a function called the
“continuation” of the statement. When the statement has success-
fully computed its value, that value is passed to the continuation. If
the statement fails to compute a value the continuation is not called
and the statement returns normally, giving the effect of backtrack-
ing.

3.2.2  Unification
Given two expressionse1, e2, unifying e1 ande2 is the process of
determining a substitution of expressions for the variables ine1, e2
that makes them equivalent expressions. The definition of a unify-
ing substitution fore1, e2 depends on the algebra over whiche1 and
e2 are expressions. In Prolog, this is the algebra of free terms. In
RAVS it is boolean algebra.

RAVS uses the Coudert-Berthet-Madre[7] cofactoring method for
boolean unification. A test sequenceTA of length n requiresn
invocations of the cofactoring algorithm. Unlike Prolog, in which
a unification statementA == B would cause invocation of the
underlying unification algorithm,A == B in RAVS merely adds a
new boolean fact to a collection of all known facts. The “collection
of all known facts” is a boolean expressionK in OBDD form;A ==
B is processed into another expression of the same kind; addingA
== B to the collection entails setting K to the boolean AND ofA
== B andK. K can become inconsistent (0) as a result of this oper-
ation, in which case backtracking is initiated, but if execution of an
assertion ends with a consistentK the values of every signal and
state element at every time point are cofactored with respect toK
to produce test vectors. These test vectors can still contain boolean
expressions; an extra step is required to instantiate all boolean
variables to boolean constants.

3.2.3  Temporal Constraints and Memo-ization
RAVS is a temporal language in the sense that all constraints are
executed with respect to a current time point which may be shifted
by various temporal operators. RAVS is also a nondeterministic
language in the sense that a call to a constraint may return one of
several valid results1. However, when a constraint is executed
twice at the same current time point and with identical arguments,
it must return the same result both times. The second call must
agree with the result of the first, even if the first was randomly cho-
sen. It is inefficient to allow RAVS to re-execute a constraint under
these circumstances. The solution is to “memo” all constraint com-
putations, that is, to store in memory the result of every constraint
call and to make the second invocation a simple look-up. This is
implemented by a hashing scheme.

3.3  Boolean Expressions and Patterns
Boolean expressions are represented by a variant of ordered binary
decision diagrams (OBDDs)[8]. The same implementation of
memo-ization that is used for constraints applies to OBDDs. A

1. This is required for test sequences to exhibit the Randomness
property.

One of the principle challenges in implementing RAVS was to
ensure sufficient efficiency to allow the production of enough tests
within a practical time period.

3.1  The Structure of RAVS Tests
A RAVS test is a sparse array of stimulus and response patterns at
the IO boundary of a device, in increasing temporal order. We refer
to such an array as apin buffer.

For each assertionA, RAVS generates a sequence of testsTA, the

length of which is determined by a user-specified parameter.TA has

three important properties:

1. Each test inTA obeys the specification’s definition of a valid
stimulus-response pattern (Correctness).

2. If TA is generated with no length limit, it would constitute a
complete set of tests forA (Completeness).

3. Tests in the sequenceTA are produced in random order (Ran-
domness).

4. No test inTA can be strengthened by substituting an X for a 0
or 1 in its stimulus section (Maximal strength).

The need for Correctness is obvious. Randomness is vital when
small numbers of tests are generated for an assertion for it assures
that radically different variations on the same assertion can be
examined within the test sequence length budget.

It may seem that Completeness is a useless property under the
practical limitation of finite test sequences, but Completeness
implies that there are no classes of behaviors that are in principle
untestable. Coupled with Randomness, Completeness provides
some assurance that the generated tests will exercise the corner
cases of the design.

Maximality of strength means that the tests cannot be generalized
by introducing don’t-cares for 0’s or 1’s in the stimulus. A maxi-
mally strong test is one that may cover many billions of more spe-
cialized tests. In practice, Maximal Strength is a property that can
be preserved by the test generator, but it is very dependent on the
specification. It is easy to write correct specifications that are none-
theless overconstrained.

3.2  Constraint Solving
RAVS creates tests via a process of constraint-solving. A RAVS
specification is a list of constraints that define the correct IO
behavior of a device. An assertion is a conjunction of constraints
on the behavior of the IO pins over time, based on the specifica-
tion. A test for an assertion is a consistent solution of all the asser-
tion’s constraints. RAVS’ task is to produce many such solutions in
an efficient manner

There are many constraint solving techniques, but the ones
employed in RAVS derive from logic programming languages
such as Prolog[6]. Prominent among these are backtracking, unifi-
cation, and memo-ization.

3.2.1  Backtracking
Backtracking is a depth-first strategy for finding solutions to a set
of constraints. At various points in RAVS’ execution, a set of
choices may be encountered. RAVS picks one of the choices and
continues execution, but if the choice just made cannot lead to a



Human action is needed only to provide the specification and the
design, and to analyze the log in the case of failures.

4.3  Specification
For the current generation of Rambus DRAMS, the specification
of the device, including both the physical and the logical descrip-
tions, is a 150 page document. The formal text within this docu-
ment consists of 5000 lines of RS.

4.4  Assertions
We used an assertion suite containing 120 assertions. An assertions
may describe general behaviors, such as a read following a write
retrieves the correct value, or a very specific circumstance, such as
a specific combination of writes and powerdowns does not cause
cache loss. General assertions ensure broad coverage of function-
ality in a way analogous to random tests. Specific assertions allow
focus on complex or difficult aspects of the design analogous to
directed testing, while still allowing “unusual combinations” to
happen.

4.5  Tests
For a complete regression, we generated 128 sections (a section is
one complete instantiation of a pin buffer) for each assertion. This
gives the equivalent of approximately 16000 directed tests, on the
order of 10 Million vectors.

To generate these tests, takes approximately 136 hours on HP
Snake workstations. To execute the resulting tests, took 92 hours
using Verilog-XL.

4.6  Results
RAVS verification followed testing with a hand written suite of
directed tests. This suite is as complete as many of the total verifi-
cation suites used for some designs in current use and so the design
had already been “verified” before RAVS was run.

In early tests, running only 32 sections, we found a small number
of errors missed by the directed tests. For full regression, we ran
128 sections and found further problems -- some of which were
detected due to unusual combinations of circumstances as a result
of the random instantiation in the tests.

To date, there have been no functional errors found in designs that
passed RAVS verification.

5.0  Conclusions and Future Work

5.1  The Method
Our experience shows that use of RAVS can give greater meaning-
ful coverage, for equivalent effort, than directed or random testing.
The combination of constraining the general form of the test, by an
assertion, but still allowing randomness in the choices, results in
concentration of effort on significant areas within the design but
still allows unusual combinations to be tested. The designers
admitted that some of the errors found by RAVS were unlikely to

popular implementation technique for OBDDs is to use two hash
tables: a “unique table” to maintain the property that distinct nodes
represent distinct boolean functions, and a “computed table” to
hold the results of boolean function evaluations. Both the unique
table and the computed table are merged with the random heap
used for memo-ization.

The implications of the fact that patterns are constants which
remain unchanged in meaning even when used in unifications are
profound in a system such as RAVS in which unifications with pat-
terns occur frequently. A naive implementation of patterns would
force the system to create new boolean expressions every time a
pattern is used. Thus, every invocation of a pattern would require
new OBDDs to be created even though the OBDDs created from a
patternP are isomorphic up to variable relabeling.

The data structure used in RAVS to represent boolean expressions
abstracts the variable labeling from the OBDD data structure using
the technique ofvariable shifters as described in [9].

4.0  Case Study: an 18 Megabit
RDRAM
RAVS has been applied to a number of designs, some of which are
now in production as commodity parts. To show how the tech-
niques work in practice, we present an outline of the environment
and process used for the verification of an existing design.

4.1  The Example
The specific project discussed here wasRB, a generic 18 Megabit
RDRAM design, implemented independently by two of Rambus’
manufacturing partners.

4.2  The Environment
The RAVS environment in use at Rambus is shown in Figure 1

The specification was developed and published as a report, using
Framemaker 4. From this, we used the Frame batch programming
language to extract the text. A preprocessor removes irrelevant text
and the formal text is passed to the RS translator which produces
RAVS input. From this, RAVS generates a number of pin buffers.
Each pin buffer is used to drive a Verilog simulation against a
netlist extracted from the design database. The simulation pro-
duces output logs showing either successful completion or the
number and location of errors.

FIGURE 1. The RAVS Environment
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have been discovered so early without it, since no one would have
been likely to have written a test that had quite the characteristics
that discovered the problem.

The major drawback of the approach is that RAVS still depends on
simulation and so the results are ultimately only as good as the
number of sections that can be run. It does not offer verification in
any stronger sense. We believe that there is significant worth even
in this level of automation. In Section 5.3, we discuss how we can
make further steps towards verification using the RAVS concepts.

5.2  RAVS in Practice
Incorporating RAVS into an existing simulation/verification envi-
ronment is not difficult: the greatest cost is to develop a sufficient
specification. If a formal specification already exists in a suitable
form, all that is necessary is to add the framework that allows the
RAVS generated tests to be used as if they were manual tests. If no
such document exists, then it has to be provided, but this gains the
extra benefits that are derived from having a complete and concise
specification of the device.

The resources needed to use RAVS are of the same order as those
necessary to run Verilog. The test generation process takes approx-
imately 60% of the runtime. The upper bound on the number of
sections that can be run is a function of the memory size of the
scheme implementation and the Verilog simulator. We found that
128 sections was a good compromise between coverage, time and
practical limits. The limiting factor in our environment was the
capacity of the existing Verilog.

RAVS is now used for verification of all RDRAM designs and has
been successfully used on other projects at Rambus.

5.3  Formal Verification
RAVS can be used to create tests for symbolic simulators. RAVS’
natural output is, indeed, boolean expressions; it must go through
an extra processing step to instantiate boolean variables to 0 or 1
when it creates tests for standard three state simulators. We have
addressed one of the practical difficulties of symbolic simulation,
namely, providing input and expected output sequences for simula-
tion

In experiments, we have used COSMOS[9] in symbolic simulation
mode and we have found a single symbolic test, in our environ-
ment, can cover a billion three-state tests. Given a sufficiently gen-
eral assertion, symbolic simulation represents full verification of
the design. Our results have encouraged us to incorporate symbolic
simulation into our future plans, and we are currently evaluating a
RAVS/COSMOS combination prototype.
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