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Abstract

Functional (i.e., logic) verification of the current generation of
complex, super-scalar microprocessors such as the PowerPC
604 microprocessor presents significant challenges to a
project’s verification participants.  Simple architectural level
tests are insufficient to gain confidence in the quality of the
design. Detailed planning must be combined with a broad col-
lection of methods and tools to ensure that design defects are
detected as early as possible in a project’s life-cycle.

This paper discusses the methodology applied to the functional
verification of the PowerPC 604 microprocessor.

1. Introduction
Only in recent years have industry practitioners begun publishing
information detailing functional verification practices and proce-
dures [1, 2, & 3]. Building on work previously published describ-
ing the PowerPC 604 microprocessor project [4 & 5], this paper
describes the  functional verification methodology employed.  The
design methodology and specification approach are briefly dis-
cussed. Practices covering project and verification planning,
testcase generation, simulation,  coverage assessment, and design
quality confidence are included. Finally, possibilities for future
improvements to these functional verification practices are exam-
ined.

The term “verification methodology” used in this paper should be
interpreted to mean “an integrated set of techniques and methods
applied to produce a defect-free microprocessor design”.

2. Design Methodology and Specification
Approach
At the Somerset Design Center, methods and tools used in the
microprocessor verification effort are significantly influenced by
the tools used to develop the design model.

2.1 Development and Design Modeling
The selected hardware design modeling language (HDL) now
entrenched in the design process is a proprietary superset of the
Verilog language.  Depending upon how a design is partitioned,
portions of the logic and physical design may be synthesized while
other portions may be constructed as custom logic and layout in a
traditional manner. The logical and physical design characteristics
can then be analyzed in parallel.

The design’s logic characteristics are examined from the perspec-
tive of functional logic -- “Does the design correctly execute
according to the architectural and implementation-dependent
design specifications?”.  For the PowerPC 604 microprocessor
project, design description was captured at the gate and logic
device levels.  Using a variety of tools for compilation and transla-
tion,  models were produced in forms usable by multiple simula-
tion systems including a Verilog event-driven simulator and
proprietary cycle based simulators. Simulation was performed to
verify the correctness of the simulation model.

The design’s physical characteristics were examined from the per-
spective of physical circuit design -- “Does the design correctly
meet desired timing and electronic specifications (i.e.,  set-up and
hold constraints, switching speeds, power consumption, etc.).

An equivalency check,  shown in Figure 1,  was performed period-
ically to ensure that the hardware technology description of the
design was synchronized with the high-level logical description.

Figure 1: Equivalency Check and Logical/Physical Views

Figure 2 illustrates  the  design process used by the PowerPC 604
microprocessor project. It resembled a spiral-type software devel-
opment approach. Most project effort involved  two (iterative)
steps:

• improve design, and

• evaluate improvements;
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Figure 2: Design process with feedback loops

2.2 Specification Approach

The PowerPC 604 microprocessor conforms to a fundamental
architecture, yet includes a set of implementation dependent fea-
tures.

The architectural specification for most  microprocessor is typi-
cally semiformal -- that is, it is not mathematically rigorous. The
PowerPC architecture [6] provides an example of a semi-formal
description of a microprocessor architecture.  Semi-formal
descriptions follow natural language prose and include helpful
tables and block diagrams to clarify structure and behavior.  Figure
3 is an excerpt from the PowerPC 604 Users Manual [7] which
describes, in semi-formal terms, how memory addressing is per-
formed.

5.1.1 Memory Addressing
A program references memory using the effective
(logical) address computed by the processor when
it executes a load, store, branch, or cache
instruction, and when it fetches the next instruc-
tion. The effective address is translated to a
physical address according to the procedures
described in Chapter 7, "Memory Management," in
The Programing Environments Manual, augmented
with information in this chapter. The memory sub-
system uses the physical address for the access.
For a complete discussion of effective address
calculation, see Section 2.3.2.3, "Effective
Address Calculation"

5.1.2 MMU organization
Figure 5-1 shows the conceptual organization of a
PowerPC MMU in a 32-bit implementation; note that
it does not describe the specific hardware used to
implement the memory management function for a
particular processor. Processors may optionally
implement on-chip TLBs and may optionally support
the automatic search of the page tables for PTEs.
In addition, other hardware features (invisible to
the system software) not depicted in the figure
may be implemented.

      Figure 3: Sample Semi-formal Architectural Specification

At Somerset, the general architectural specification is combined
with implementation dependent features to produce amicro-archi-
tectural specification. Figure 4 is an extract from the PowerPC 604
microprocessor micro-architectural specification describing a  por-
tion of the Branch Target Address Cache (BTAC) unit.  From these
examples it becomes evident  that  the model implementation itself
comes closest to capturing mathematical rigor.
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 Figure 4:  Typical Semi-formal Micro-Architectural Specification

A lack of mathematical rigor in the specification process combined
with the cultural acceptance of the development method outlined
above and designer resistance to formal specification and verifica-
tion techniques makes simulation and emulation the de facto
options for demonstrating processor model correctness.

3. Project and Verification Planning

3.1 Project Milestones
As project development proceeds, model refinement follows a suc-
cession of milestones. The most significant of these  are:

• Publication of the micro-architecture: the decomposition of the
chip into functional blocks and definition of the basic data and
control flow interfaces between these blocks.

• Preliminary model integration: blocks (units) which have been
implemented and tested by individuals or a small group of
designers are combined into a single processor model. Track-
ing of defects and counting of simulation cycles begins.

• Stable model: declared when  a pre-determined set of regres-
sion testcases execute without fail.  The precise goals vary
from implementation to implementation but usually involves
thousands of testcases executing tens of millions of simulation
cycles. These testcases are retained and rerun with each suc-
cessive model refinement.

• Tapeout: performed when (a)  zero functional defects occurred
during for a pre-determined period of time and  (b) equiva-
lency checking between logical and physical designs passes
with no fails and (c)  targeted simulation cycle count attained
and (d) simulated boot of a simple operating system completes
successfully, and (e) all physical design checks (e.g., DRC,
LVS, etc.)  complete with no fails. A tapeout database is pro-
duced and released to the fabrication facility mask shop.

Signal/Bus Name
Destination

 Unit
Description

sbr_btac_add BTAC When asserted add the branch
to the BTAC. When unasserted
no add can occur.

sbr_btac_del BTAC When asserted del the branch if
in the BTAC. When unasserted
no delete can occur.

sdi_br_phantom BTAC When asserted flush the BTAC.

btac_pred_tar

(0:29)

FAR The prediction addr from the
BTAC. The most significant 29
bits are used to address the
ICache. The other bit specifies
the word location of the branch.
This data is used within the
IBUF to invalidate instructions.
This is always the target
address.

.... ... ...



3.2 Verification Planning

The traditional approach to microprocessor design verification
allows a project to make considerable progress before verification
staffing commences. At the Somerset Design Center, verification
staffing was an integral part of the project plan.  The verification
engineer at Somerset plays a  significant role in the development
process and, therefore, the team begins assembly at project start.

Verification engineers were  devoted to one or more logic blocks of
the chip and some participated in additional support roles. For
example, one verification engineer focused his or her efforts solely
on verification of execution blocks such as integer and floating
point units. Another verification engineer was involved with sup-
port  of project progress reporting tools.  Still another verification
engineer was responsible for multiple tasks such as verification of
logic bus interface unitplus development of the system behavioral
model (i.e., the  behavioral model which interacts with the proces-
sor model during  simulation).

For the PowerPC 604 microprocessor, members of  the  verifica-
tion group were divided across the functional blocks indicated in
Figure 5, so that each block had at least one responsible verifica-
tion engineer.

Figure 5 - PowerPC 604 Microprocessor Block Diagram

The verification team derived a series of plans from the micro-
architectural specification. Plans included:

• Unit Verification Plan supporting pre-integration activities;

• Architectural Verification Plan (AVPs) demonstrating the pro-
cessor meets the “black box” behavior defined by the basic
architectural specification.

• Implementation Verification Plan (IVPs)  demonstrating
“white box” correctness by exploiting knowledge about details
of the design implementation (e.g. ensure instructions proceed
through the pipeline precisely as defined by the micro-architec-
tural specification).

A plan was captured documented and maintained for each respec-
tive logic block.

4. Test Types and Testcase Generation
The verification plans produced at  successive stages of project
development guided the generation of testcases. The following list
describes testcases  constructed during project development:

Fetch Unit

PowerPC 604 Microprocessor Block Diagram

Branch Unit

Dispatch / Completion Busses

General Purpose
Register File

Load / Store
       Unit

Floating Point
         Unit

COP / JTAG

Memory Queues

Integer Units

Decode / Dispatch & Completion Units

Instruction MMU / ICache

Data MMU / DCache

Bus Interface Unit

Floating Point
Register File

Test Access Address Data

Unit Phase:The unit testcases were hand generated as assembly
programs and translated into a form usable for unit level simula-
tion. The unit simulation form was a sequence of bit vectors.
These testcases enumerated variable fields such as testcases con-
taining only  load word instructions using every possible destina-
tion register. Unit testcases were constructed at a high level (i.e.,
assembler mnemonics). These testcases formed the basis of “unit
regressions”.  These unit regressions were reused after model inte-
gration had occurred and also during  model refinement iterations.

Successive Iteration (Integrated Model) Phase:A  Random Test
Program Generator (RTPG) [8] generated most testcases during
this project phase. It produced a baseline set of regression testcases
used to qualify a stable mode. The regression set consisted of
instruction streams containing single instructions, streams contain-
ing an enumeration of all pairs of instructions, and instruction
streams containing complex instruction sequences employing ran-
domly selected operands.

The verification plans developed for each logic block guided the
generation of additional testcases. These testcases were generated
after the verification engineer specified a file containing  one or
more sets of biasing parameters. These biasing parameter files
were referred to asmenus.  Hundreds of biasing parameters  were
supported by RTPG including the following examples -- select
specified groups of instructions, select specified effective address
regions for load/store instructions,  select probability of branch
forward or backward target addresses,  enable external interrupts,
enable L1 caches, and suppress address translation traps. Menus
were used by the random testcase generation program to produce
large numbers of complex testcases. The biasing parameter files
were further combined with simulation run-time parameters to
produce a wide range of random events for stimulating the proces-
sor model.

5. Simulation: Getting “Megacycles”
Several hundred workstations were  available at the Somerset
Design Center. These computing resources were effectively
exploited on a continuous basis through the use of an automated
simulation environment  described in [9].

As shown in Figure 6,  the Automated Simulation Environment for
Somerset comprised the following integrated components:

• a distributed batch job processing facility (dbj),

• a flexible random testcase generator (rtpg),

• a fast cycle-based simulator (sim),

• a common model server from which newly refined and up to
date models were available (msrv), and

• a common simulation database server provided up-to-date sta-
tistics on passing and failing testcases (stat).

5.1 Run-Time Controllability and
Observability of Signals

The Somerset HDL modeling environment provided two impor-
tant constructs that permitted complete controllability and observ-
ability of signals (referred to as “facilities”) during simulation of
the compiled design model. The PUTFAC construct allowed forc-
ing any facility to a specified logic value. PUTFAC invocations
override existing logic values on the specified facility. The inverse
construct, GETFAC, allowed probing a logic value for any speci-
fied facility.



These two constructs afforded enormous possibilities for maneu-
vering the design model, thereby expediting the verification pro-
cess. It was possible to stress the design by creating pathological
inputs and states with the use of specific PUTFACs. Likewise, it
was possible to check for specific critical events through GET-
FACs. These constructs formed the backbone of coverage analysis
and functional design checking of the PowerPC 604 microproces-
sor.

Unlike typical controllability/observability procedures and func-
tions that are written and compiled within the design model, the
coverage monitor and checking procedures written with PUTFAC
& GETFAC could be compiled independent of the design model
and invoked at simulation time,  as illustrated in Figure 7.

Figure 7:  Design model data structure to support PUTFAC/GET-
FAC

A program called an IVPC (Implementation Verification Program
in C) was used to interface to the model by using the PUTFAC/
GETFAC constructs.  Figure 8 depicts the operation of the inter-
face.

Figure 8: IVPC interface to the design model
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The logic design team influenced the deployment of IVPCs and
the allocation of limited verification resource. During several
design verification reviews, the designers indicated areas of the
design requiring additional checking and coverage monitoring.
Units with a history of bugs or complex unit interfaces  were also
targeted for IVPC-based verification.

Since controlling and observing the PowerPC 604 microproces-
sor’s model signals did not have to be programmed into the simu-
lation model at compile time, verification engineers continued
writing verification programs without disturbing stable versions of
the model.

5.2 Stressing the Design
On the PowerPC 604 microprocessor development project, IVPCs
were used for the following specific purposes:
• To generate external interrupts (random and event-triggered).

• To invalidate cache lines (random and event-triggered).

• To artificially fill the Translation Lookaside Buffer (exercise
overflow functionality).

• To artificially exercise the stall mechanisms (sequencer unit
pipelines).

• To verify sub-unit functionality under various conditions of
instruction aborts, branches, and operand sources.

The GETFAC construct was used liberally since it was  risk-free.
GETFAC could not modify facility values and, therefore, was not
capable of altering the normal flow of simulation. The PUTFAC
construct, on the other hand, could modify the state of simulation
and deserves discussion.

The three issues influencing the use of PUTFACs for stressing the
design or expediting event occurrence were:

• Knowing exactlywhat facilities to PUTFAC:
The architecturally or even micro-architecturally visible registers/
latches have buffer latches placed around them. For timing rea-
sons, sometimes these latches serve as the source for  circuits that
must be stressed. They do not appear in the micro-architectural
specification. If PUTFACs are used only on the visible latches,
there is a possibility of  obtaining unintended behavior. Therefore,
it was necessary to understand the design, as modeled.

•  Knowinghow to PUTFAC:
Since the simulator is cycle based, depending on the facility, one
needs to know whether to set the facility “before” the model is
evaluated or “after” the model is evaluated. Also, if one can be
sure that the chosen tests to be run during simulation will not affect
the facility, one may be able to dispense with a facility PUTFAC
every cycle, thereby speeding simulation.

• Understandingramifications:
Even if PUTFACs are used on the right facilities at the correct
time, it is imperative that one fully understands the ramifications of
forcing signal values.

In a notable example, PUTFACs were used in an IVPC to fill up
reservation stations (registers containing dispatched instructions
waiting for an execution unit to become available). For  fixed point
units, doing so  exercised the stall mechanisms in the sequencer
unit pipelines as well as in the adder, multiplier and divider sub-
units.

While the example IVPC succeeded in exercising the sequencer
stall mechanisms, it also managed to a hide a bug at the interface
of  the reservation stations of the load-store unit (LSU). According
to the design, all units interfacing the reservation stations (operand



source/destinations) get the “RS_full” signal when the reservation
stations are full. In addition the LSU would get a signal
“RS_full_but_one” before “RS_full”, that lets it decide whether it
can send two operands simultaneously.  The bug in LSU made it
ignore “RS_full” when it was in “RS_full_but_one” state while
serving a misaligned exception. This allowed the LSU to errone-
ously send an operand to the reservation stations when they were
full thereby overwriting an existing operand. The tests using the
IVPC completely missed this bug. The PUTFACs directly placed
the LSU in “RS_full” state, thereby preventing the LSU from
sending operands to the reservation stations.  However, this bug
was  caught during random testing with other testcases during the
course of the design progress.

6. Coverage Assessment

6.1 Event monitoring and Assertion checkers
Two basic approaches were used to examine various states within
the model.  These were IVPC coverage “monitors” and IVPC
“checkers”.  Monitors extracted information from the simulation
model as the simulation executed.  They were built to gain visibil-
ity into the model. They were especially useful during the debug
process.  A simple monitor might observe a datapath only when
valid data is expected to exist.

Checkers evolved from monitors and were an implementation of
automated monitoring, rather than human monitoring.  Checkers
were sometimes referred to as  “self-checking” monitors because
they checked for error conditions. When illegal conditions were
detected, the checker immediately failed the testcase. Checkers
provided output  detailing when in the simulation and where in the
design failures occurred.

6.2 Coverage Analysis
Event coverage through monitors was a valuable scheme for mea-
suring the thoroughness of logic exercise. It targeted specific
desired events.  The complexity of events ranged from the simple,
one signal events to more complex, multi-cycle combinations of
signals and states.

For example, an event could be defined as a busy resource (e.g.,  a
bus unit or simple fixed point unit).  Monitoring this simple event
verifies that some amount of stress is applied to the resource in
question.  If the resource is never busy, then the unit is not being
tested adequately.  Where the busy condition is itself a net in the
model, then the defined event is equivalent to simple toggle cover-
age of this net.  A slightly more complex category of event moni-
toring could be  to monitor for the busy condition for all possible
combinations of fullness of the reservation stations for a resource.
Illegal conditions (say the resource responded busy if all reserva-
tion stations were empty) are coded  causing immediate failure of
the testcase.  Finally, complex  multi-cycle events may be coded.
One example of a multi-cycle event would be to watch for the start
of a bus transaction, termination,  then followed by a valid retry
condition.

In the case of the PowerPC 604 microprocessor, this last strategy
was utilized in checking the bus interface. Originally the checker
was designed to just check for all bus transaction types, but
quickly grew to encompass a wide range of events, ranging from
the simple detection of transaction types to multi-cycle events like
bus sequences (start of bus transaction, wait for response).  Simple
state machines that check multi-cycle operations were easily
implemented in an IVPC.

Once events were coded in the IVPC checker, testcases were gen-
erated and run with the monitor and events collected in a database.
Testcases were initially generated by random methods  and later
augmented with hand generated, focused testcases. The random
testcases picked up a large proportion of the simpler events
quickly, eliminating the need to hand code testcases in order to
capture all the events.  Some corner case were more difficult to
conceptualize and took more care to uncover.

Randomly generated testcases were automatically saved along
with their run-time options in an event database.  Testcases were
added to the database only if they contained new events or combi-
nations not already contained in the database.  Database support
programs were run periodically (e.g. daily) to determine what per-
centage of events were covered, and what events lacked coverage.
The output of these support programs consisted of combinations of
covered events and not-covered events.  The outputs indicated how
well the collection process was proceeding, and directed the verifi-
cation effort to those areas that needed better coverage.

The database itself was very useful since it captured a large collec-
tion of testcases and run-time options together.  These formed an
extended regression suite that was run on iterations of the simula-
tion model in order to show that proposed bug fixes did not break
other correct model behavior.  Periodically the event database was
reset and the regression suite of testcases was rerun to insure that
all events were covered by new models.

The process was iterative and new corners were often identified
while event coverage/collection was in progress.  The collection of
events ceased when all events had been found by the combination
of random and hand generated testcases or when it could be dem-
onstrated that an event could not occur. Table 1 contains some sta-
tistics from event coverage analysis.

Since construction of checkers and monitors was labor intensive,
an automated approach for state machine analysis was applied to a
subset of the bus interface unit logic as described in reference [10].

* 13 events specified in this checker were never found.  Upon close examina-
tion with the design engineer’s help, these conditions were realized to be
impossible events.  The next step for these 13 events would be to recode
them as checking errors, rather than treat them as events needing to be
found.

7. Design Quality and Stopping Criteria
Specifically, two primary metrics were tracked after stable model
milestone was  achieved in order to support the decision to  tape-
out: cumulative simulation cycles and defect rate.

The simpler of these two metrics is cumulative cycles.  Cycles are
tracked on a common simulation cycle database server. The data-
base also holds information about defects vs. model revision. On a
regular basis during the project, plots are generated which show
progress toward simulation cycle goals  determined at the project
start. A sample plot is provided in Figure 9.

TABLE 1.  Event Coverage

IVPC Coverage Checker

#  of
events
specified

# of
events
found

Percent
Covered

linefill buffer coverage   13   13 100

copyback buffer coverage 133 120* 100

bus events coverage   71   71 100



Accumulated defects from the project start date are also plotted on
a weekly basis. For the PowerPC 604 microprocessor project, the
defect rate decreased logarithmically as the project proceeded.

As the rates of change in total defects decreased, a series of design
reviews were held between verification and logic design engineers
in an attempt to uncover events which may not have been moni-
tored or tested. Additional testcases were constructed and run prior
to tapeout.

The defect rate fell to zero during the two week period prior to pro-
jected tapeout while a constant number of simulation cycles were
exercised daily.  This provided confidence in the design quality. A
sample chart tracking cumulative defects, shown in Figure 10, was
used to determine the defect rate.

8. Results

First pass functioning silicon was produced for the PowerPC 604
microprocessor.  It was capable of booting several operating sys-
tems including MINIX, MAC O/S, AIX, and Microsoft NT.
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9. Conclusions

The approach to functional verification described in this paper
demonstrates several important advances. First, it quantifies model
goodness on a sustained basis through most of the project develop-
ment lifecycle.  Second, it establishes a standard approach to
project development.  Last, it encourages discipline for process
improvement.

A significant area for verification methodology improvement
involves  the large number of simulation cycles exercised for the
PowerPC 604 microprocessor project. These numbers cannot be
sustained as the variation and proliferation of this family of micro-
processor grows unless a substantial commitment is made to
acquire a geometrically increasing supply of computing resource.

Rather than rely solely on the volume of random simulation cycles
and declining bug rates as  goodness criteria, improvement to cov-
erage measurement is proceeding. Enumerative exercise of all
combinations of processor logic is impossible. Bounding the veri-
fication problem by stressing block interfaces and targeting com-
plex state machine and combinational logic is proceeding with
promising results.  More optimal utilization of budgeted simula-
tion resource should be realized without compromising model
quality.
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