
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Code Generation and Analysis for the Functional Verification
of Microprocessors

Anoosh Hosseini Dimitrios Mavroidis Pavlos Konas
Silicon Graphics Inc.

2011 N. Shoreline Blvd.,
Mountain View, CA 94043

anoosh@sgi.com

Abstract
A collection of code generation tools which assist designers in

the functional verification of high performance microprocessors is
presented. These tools produce interesting test cases by using a va-
riety of code generation methods including heuristic algorithms,
constraint-solving systems, user-provided templates, and pseudo-
random selection. Run-time analysis and characterization of the
generated programs provide an evaluation of their effectiveness in
verifying a microprocessor design, and suggest improvements to
the code generation process. An environment combining the code
generation tools with the analysis tools has been developed, and it
has provided excellent functional coverage for several generations
of high-performance microprocessors.

1 Introduction
Functional verification is a vital part in the design and imple-

mentation of high performance microprocessors. Both customer
confidence and commercial success depend on a defect-free func-
tional product which is introduced into the market in a timely fash-
ion [1]. A design verification team (DVT) presently relies on
extensive simulation-based testing of the microprocessor’s RTL
model to achieve the functional coverage necessary for a design
to be released to the manufacturing process. State-of-the-art mi-
croprocessors,however, achieve high performance through several
advancedexecution mechanisms[5]. The increased complexity in-
troduced by these mechanisms forces DVT teams to increasingly
depend on advanced code generation tools for the functional veri-
fication of microprocessors [1, 2, 3, 6].

Code generation tools create interesting instruction sequences
which when simulated on the microprocessor’s RTL model can ex-
pose flaws and errors in the implementation. Code generation tools
are divided into three major categories: user-assisting tools, pseu-
dorandom and heuristic-based code generators.

User-assisting tools simplify and automate tedious tasks such as
the permutation, iteration, and interleaving of existing instruction
sequences into new sequences with interesting properties. Such
tools make the generation of diagnostics for known caseseasierand
less time consuming. Pseudorandom code generators, on the other

0

hand, focus on producing long sequences of legal instructions as-
suming that the random interaction of these instructions will pro-
duce conditions rarely created by compiler-generated code, or con-
ceived by a programmer. Unfortunately, they usually produce code
of poor quality. Finally, heuristic-based code generators combine
user-provided attributes and properties with knowledge of the ar-
chitecture and of the design to produce algorithms targeting the
most complicated features of the design. They generate code of
high quality by intelligently selecting instructions whose execution
will create the proper conditions for an interesting case, which has
not been previously covered, to arise.

Isolating a design flaw can be accomplished in two ways. The
simplest approach is to generate self-checking code. The test pro-
gram sets up a combination of conditions and then checks whether
the RTL model reacted correctly to the given situation. Unfortu-
nately, the state compare instruction sequence is usually too intru-
sive at the RTL level; it is coarse grain and, thus, not so accurate; it
consumes precious simulation cycles; and it may burden the code
generation tool by requiring it to maintain an extensive amount of
state. The most efficient approach is to non-intrusively compare
the traces generated by the simulation of the RTL model with the
simulation traces of an architectural reference model. Such an ap-
proach frees the diagnostic program from continuously checking
the reactions of the design under testing, it is more accurate, it al-
lows for a more powerful comparison process to be employed, and
it relieves the code generation tool from computing the results of
all the instructions it generates.

The execution of most tool-generated diagnostic programs re-
sults in instruction sequences which the designer can usually nei-
ther completely anticipate nor fully evaluate. It is important for
the designer, therefore, to analyze the sequenceof instructions gen-
erated by the tool, to characterize their behavior, and to evaluate
their effectiveness using several architectural and microarchitec-
tural metrics. Such metrics relate to utilization across the differ-
ent units of the microprocessor and include instruction histograms,
event coverage, and queue sizes. Furthermore, we can use these
metrics in subsequent code generations to improve the quality of
the generated programs as well as the efficiency of the generators
themselves.

This paper presents a collection of advanced code generation
tools employed in the functional verification of high-performance
microprocessors. In section 2 we briefly outline our verification
methodology. In sections 3 through 6 we present a few of our so-
phisticated code generation tools. In section 7 we present an anal-
ysis tool which is used in evaluating diagnostic programs. Finally,

H
a

n
d

−
w

ri
tt
e

n
 d

ia
g

s
(A

V
P

,
M

V
P

,I
V

P
)

T
o

o
l−

g
e

n
e

ra
te

d
 d

ia
g

s
R

e
a

l−
w

o
rl
d

 a
p

p
lic

a
tio

n
s

R
a

n
d

o
m

ly
−

g
e

n
e

ra
te

d
 d

ia
g

s

O
th

e
r

p
ro

fil
e

r
a

p
p

lic
a

tio
n

s
−

C
o

ve
ra

g
e

−
C

o
m

p
a

re

R
T

L

S
im

u
la

to
r

S
im

u
la

to
r

A
rc

h
.

R
T

L
T

ra
ce

A
rc

h
.

T
ra

ce

S
tr

e
a

m
e

r

A
rc

h
.

T
ra

ce

R
e

fd
if

X
−

b
a

se
d

d
e

b
u

g
 f
a

ci
lit

ie
s

B
U

G
?

Feedback
Path

A
n

s

D
D

B

A
n

s

D
ia

g
A

tt
ri
b

u
te

s

A
n

a
ly

ze

R
e

cy
cl

e
d

D
ia

g
s Profiler

Figure 1: Functional Verification Methodology

section 8 summarizes our approach to simulation-based verifica-
tion of microprocessor designs.

2 A Functional Verification Methodology
Functional verification aims at isolating design and implemen-

tation flaws so that the design released to the manufacturing pro-
cess is fully operational; that is, the RTL model exhibits the
same behavior as an architectural simulator would when execut-
ing the same instruction sequence. As the complexity of new
high-performance microprocessors increases, as the quality expec-
tations of new products are rising, and as the time-to-market de-
creases, functional verification becomes a more difficult process
and emerges as the bottleneck of the development cycle.

In order to improve the efficiency and the effectiveness of func-
tional verification, we follow the methodology outlined in Fig-
ure 1. First, four different sources (verifiers) generate diagnos-
tic programs. Hand-written directed diagnostics are developed by
the members of the DVT team and include architectural (AVP),
microarchitectural (MVP), and implementation (IVP) verification
programs. These diagnostics set up and check conditions deemed
interesting by the developer of each test. Second, advanced pseu-
dorandom code generators produce long instruction sequences
which aim at creating complicated interaction patterns among the
instructions. Such instruction sequences are rarely conceived by
a programmer or generated by a compiler. Third, sophisticated
tools generate instruction sequenceswhich stress the microproces-
sor model in ways that cannotbe achievedby the first two code gen-
eration approaches. Finally, “real world” software applications are
used to ensure that the design implements correctly and efficiently
the most common operations.

The diagnostic programs generated in any of the above ways
are compiled and provided as input into two simulators. The RTL
simulator represents the specific microprocessor’s implementation.
The architectural simulator, on the other hand, describes the be-
havior of any microprocessor design implementing the given ar-
chitecture as the latter is specified in the architectural manual. The
execution of the object code on the two simulators produces two
traces. The architectural trace captures how the architecturally vis-
ible state changes as a result of executing the instructions in the
diagnostic. The RTL trace, on the other hand, captures how the
microprocessor’s state changes as a result of executing the same
sequence of instructions. However, because of the large number
of advanced implementation features contained in state-of-the-art
microprocessors the two traces may not be the same. A conver-
sion tool (streamer) transforms the RTL trace into a trace repre-
senting the changes in the architectural state as they are deduced
from the information in the RTL trace. There are several interest-
ing and hard issues involved in such a conversion process, but they
are beyond the scope of this paper.

Once we have obtained an architectural trace from the RTL, we
compare it with the trace produced by the architectural simulator,
using an architectural comparator (refdif). If the two traces differ,
then the model does not behave correctly, and the diagnostic has
identified a flaw in the microprocessor’s implementation. A pow-
erful X-based graphical environment which exploits the informa-
tion provided by the architectural comparator can then be used to
debug the identified error.

In addition to identifying flaws in the implementation, traces of
diagnostic program executionsare also used to analyze the test pro-
grams, determine their properties and characteristics, and evaluate
their effectiveness (Profiler). The results of this analysis and eval-
uation are stored in a diagnostic database, and they are used subse-
quently to improve the quality of the generated code as well as the
effectiveness of the code generation tools.

In the following sections we take a closer look at the code gen-
eration tools as well as at the analyzer and the diagnostic database.
These are the most important parts of our approach to code gener-
ation for the functional verification of microprocessors.

3 SBVer: An External Interface Verifier
High-performance microprocessors employ complex external

interface units which buffer requests, allow multiple outstanding
loads and stores, maintain multi-level caches, and perform cache
coherencyin multiprocessor configurations. The many states of the
external interface combined with an abundance of asynchronous
events from other devices, makes the external interface a verifica-
tion challenge.

For this purpose we have developed SBVer (Store Buffer Ver-
ifier), a code generator which focuses on exercising the external
interface and the cache management units of the microprocessor.
Knowledge about the design of the primary and secondary caches,
of the various address spaces, and of the memory management unit
have been built into the tool. SBVer, combined with heuristic algo-
rithms, produces sequencesof instructions which cause interesting
interactions between the processor, the caches, and the main mem-
ory. SBVer has also the ability to program external event gener-
ators in the system model so that they interact with the processor
in a coordinated fashion. For system verification purposes, SBVer
may also produce self-checking code based on an internal mem-
ory model maintained during code generation. Finally, SBVer has
a large number of configuration options in order to provide the user

Random or
User−designed
Abstract graph
Description

Internal
Branch
Simulation

Branch.s
(code+data to

control flow)

Branch
Node Filler code

Branch setup code

Filler code

Branch

Branch delay slot

Filler code

Branch Node

0 27 FTFTFTTTFTFTTFFFFTTFTFFTFTTFT
1 10 TTFTTTTFFTTFFFFFFFFFFFFFFFFF
2 FTTFFFTFTFTFTFFFFFTTTTFFTTFF
3 13 FFFFFFTTFFFFFFTFFFF
4 0 FT
5 FTFTFTFTTTTTFFFF
6 8 FTFFFTTTTFFFTTTTFF
7 TTTFFTFTFTFFFTFTTF
8 28 18 FTFTTFF
9 FTFTTFTTFFFFTFFTTFFTTTFF

Figure 2: BRVer Design

with control over the tool’s behavior. SBVer has been successful in
finding flaws in four generations of microprocessors, and in vari-
ous hardware systems.

4 BRVer: A Branch Verifier
Many pseudorandom code generators avoid complex branch-

ing sequences, especially backward jumps, in order to prevent in-
finite loops. On the other hand, the length of the produced pseudo-
random programs results in the verification engineers having lim-
ited knowledge of the program flow, and of whether critical sec-
tions of the program have been executed. Furthermore, new micro-
processors attempt to predict the direction of branches and execute
instructions beyond a branch speculatively. The result of specula-
tive execution is a significant increase in the number of branch re-
lated cases which need to be examined. In order to address these
issues in a systematic way, we have developed BRVer. Figure 2
shows the various components of BRVer and how the branches are
modeled.

BRVer accepts as input a large number of configuration parame-
ters and an Abstract Graph Description (AGD) which is either pro-
vided by the user or it is generated heuristically. The input AGD
contains the number of nodes (effectively branches) in the graph,
how the nodes are connected to one another, and for each branch
the action to be performed (fall through or take the branch) upon
successive arrivals. BRVer “compiles” the AGD input producing
an instruction stream whose run time behavior correctly represents
the flow described.

BRVer also accepts user provided input streams as filler code in
between branches. This proves to be a convenientway to apply the
branch management mechanisms to code produced by other tools
such as SBVer and Theo.

5 Multiprocessor Verification
Over the last few years, most manufacturers develop multipro-

cessor ready microprocessors [7, 8]. As a result, it is essential that
the DVT team verifies the microprocessor’s mechanisms facilitat-
ing the sharing of information across the processors of a multipro-
cessor (MP) machine. Such a verification process entails two im-

C
P
U

C
P
U

C
P
U

C
P
U

0 1 2 3

0 1 2 3

4 5 6 7

S
econdary
C

ache
C

ache
P

rim
ary

Compute
Cpu ID

Final
Check

Figure 3: False Sharing in MPVer

portant issues. First, we need to verify the microprocessor’s correct
operation under stressful conditions, which rarely, if at all, happen
during its operation in a deliverable MP system. Second, we need
to verify its functionality and performance when the multiproces-
sor is running “real world” parallel applications.

5.1 MPVer: A Multiprocessor Verifier
The verification of multiprocessing features is complicated by

the interaction between multiple code streams; the unpredictable
nature of MP arbitration; and the limited number of MP test suites
available to the verification engineer. In order to address these is-
sues, we have used an abundance of asynchronous external events
in a uniprocessor environment, as well as developed an MP code
generator.

In general, MP verification necessitates the testing of cache co-
herency protocols and of the correct operation of MP primitives.
Generating MP test cases requires the sharing of data between
processors combined with locking mechanisms which manage ac-
cesses to shared data structures, and which synchronize concur-
rently executing instruction streams. Computing the expected re-
sults of MP test programs is challenging and it is not easily accom-
plished with a traditional reference machine. MPVer successfully
addresses these issues by generating multiple code streams which
interact with each other, and yet they are able to verify the produced
results with fine granularity. The runtime flow and relationship be-
tween the code streams is shown in Figure 3.

A novel approach is used to exploit the important issue of false
sharing. Through this approach we are able to achieve high pro-
cessor interaction and provide full coverage of the cachecoherency
mechanisms without using expensive locking and synchronization
operations, which interfere with the MP program flow and which
even limit the number of interesting situations.

True data sharing is supported and tested through the use of
locks. However,because intermediate values are unpredictable, re-
sults are checked after all MP operations are guaranteed to have
finished. For the verification of a microprocessor in a distributed
shared memory system, we have parameterized MPVer with the
frequency with which each CPU is to access the different mem-
ory segments. Such a parameterization is important because we
are able to program different traffic patterns, to stress routing al-
gorithms, and to observe MP system stability.

MPVer produces portable code which can run on either a sim-
ulation model or a true MP system. In both environments, MPVer

has been very successful in finding MP related microprocessor and
system hardware flaws.

5.2 MPApplicationVerifier
MPApplicationVerifier (MPAV) is an environment for the de-

velopment and execution of “real world” parallel applications as
diagnostics in the MP verification of a microprocessor. The en-
vironment supports thread-based parallel execution, and it can be
considered as a user-level, bare-minimum operating system [4].

The user of the environment writes a single C program, aug-
mented with directives which support its parallel execution. The
C program is compiled into two executables which facilitate three
execution modes. In the first mode, the user executes the applica-
tion natively on a workstation or on an MP system. In that way
the user is able to debug the application code, and improve its per-
formance and efficiency. In the other two modes of execution, the
parallel program is simulated by an architectural simulator and by
the microprocessor’s RTL model. The purpose of these two exe-
cution modes is to test the hardware under construction both at the
microprocessor level and at the system level. These modes of ex-
ecution allow us not only to isolate implementation flaws, but also
to pinpoint performance problems.

So far we have ported onto this environment several “real
world” parallel applications including the SPLASH-2 benchmarks
[9]. Other parallel applications including chaotic algorithms and
branch-and-bound algorithms are currently being ported. Incorpo-
rating a new application into the MPAV environment is simple. The
user only needs to write three “interface functions.” Two of these
functions perform the initializations of the data structures of the
parallel program, whereas the third function provides the environ-
ment with the “starting points” of the parallel program’s execution.
In addition, we can easily incorporate sequential applications into
the MPAV environment, such as the diagnostics programs created
by other code generation tools.

A powerful, yet flexible, X-based user interface makes MPAV
an easy to use MP code generation and execution environment.
The user selects the applications to be included in a particular ex-
ecution, sets the corresponding input parameters for each included
application, and then compiles and executes the resulting suite.
MPAV’s user interface makes the construction and execution of MP
test programs a simple exercise for the user.

6 Theo: A Sophisticated Code Generator
State-of-the-art microprocessors employ several advanced

techniques in order to improve their performance. At any given
time several partially executed instructions are active (i.e. at some
stage of their execution) in the processor. Instructions move
between different units as resources become available. In order
to reduce interruptions in the execution pipeline, which result
in lost performance, computed results are bypassed to previous
pipeline stages, and state is committed to registers or to memory
many cycles after the instruction was issued. Historically, most
design flaws have been attributed to the implementation of these
complex features. The design flaws typically exhibit themselves
when sequences of dependent instructions activate a combination
of conditions within the design.

Theo is based on the idea that if we focus on instruction se-
quences to which a particular implementation may be sensitive,
then we can reduce the number of test cases examined, as well as
improve the quality of the verification code generated. The overall
architecture of Theo is shown in Figure 4.

Branch
Manager

User Templates

Address
Manager

Event
Manager

ENGINE

Parsed Instruction
Class Tree

Register
Allocation
Manager

Data
Operand
Manager

THEO.s

Figure 4: Theo Architecture

The input to Theo is a collection of templates written in a super-
set of the assembly language, which permits instruction specifica-
tion at any level of detail, and, at the same time, allows the use of
symbolic notation for operands. These templates define sequences
of instructions representing “constraints.” Theo allows the users to
focus on developing sequences for their own area of interest, while
Theo’s engine searches for their “optimal” placement which sat-
isfies the specified constraints. A typical hand-written diagnostic
only stresses a particular unit, while other sections of the micropro-
cessor remain idle. Theo, on the other hand, attempts to combine
templates so that all units of the microprocessor are active simul-
taneously.

Theo uses a constraint solving engine to produce Intermediate
Code Representation (ICR) through repetitive application of tem-
plate instances. Subsequently, it performs instruction assignment,
global resource allocation, and condition setup to produce an as-
sembly program ready for simulation [2].

Templates only use symbolic names for registers. The actual
register assignment is performed by Theo during one of the last
phases in the code generation process. The use of symbolic in-
struction class names, register names, and operands in templates
is encouraged, since this allows Theo to select the actual assembly
instructions and operands using sophisticated heuristic algorithms.
At the same time, such a notation permits the verification engineer
to express the conditions of interest in the most generic way.

Code generation starts with an uninstantiated ICR. Each ele-
ment in this ICR is a place holder for an instruction which initially
has no particular attribute or property. Subsequently, Theo selects
one of the user provided templates and applies it to the ICR; that is,
the template instruction sequence, its properties, and its constraints
are transferred into the ICR. Theo’s template placement algorithm
avoids placing templates one after the other. Rather, it strives to
achieve overlap between templates while maintaining the require-
ments of each template. This is accomplished by checking for sub-
set properties, by constraint solving, and by temporary unification
in order to verify that an overlap can occur. If all resource require-
ments are met, then the unification becomes permanent. Succes-
sive application of the input templates to the ICR results in the fur-
ther refinement and growth of the code.

Template placement stops when the code size requirement is
met. Theo goes through the ICR assigning actual instructions for
any instruction class references that may exist. Then, the engine
consults the register allocation manager, the address manager, the
branch manager, the operand manager, and the external event man-

ager in order to allocate resources and insert condition setups. Fi-
nally, the ICR is translated into assembly code.

Though this technique for code generation is complex, it has the
unique property that it can create new test sequences from previ-
ously independent blocks which now interact with each other. By
overlapping templates, we are also able to activate multiple units of
the microprocessor while still maintaining the sequenceand condi-
tions represented by each template. The various managers utilized
by Theo encapsulate heuristic and formal algorithms which may be
applied across the entire code stream and which can be tuned with
user biasing.

7 Diagnostic Programs Evaluation
7.1 Code Analysis and Diagnostics Retrieval

In their effort to cover as many interesting cases of the given ar-
chitecture as possible, the code generators presented so far tend to
create a large number of lengthy diagnostic programs. This abun-
danceof test programs forces us to seek a systematic and automated
way of analyzing the run time behavior of these diagnostics, and
post processing this information into concise and meaningful met-
rics.

Several reasons warrant such an evaluation. First, the code gen-
eration tools could use the information from the analysis tool as a
feedback in order to improve their effectiveness. Given the pseu-
dorandom nature of the code generation tools, such an analysis
has been proven extremely useful in creating diagnostic programs
which cover in depth specific sets of interesting cases.

Second, even though the tools can generate a large number of
diagnostics relatively fast, only a limited number of them can ac-
tually be simulated daily on the RTL model, because this model
is complex and, thus, expensive to run. Code analysis is valuable
when trying to decide the subset of the created diagnostics that
should be simulated on the RTL model.

Third, as the design evolves the number of accumulated diag-
nostics continuously increases, and the selection of the diagnostics
that cover a specific case hardens. One way to address this issue
is to build a diagnostic database (DDB) containing all the test pro-
grams, along with some information characterizing their run-time
behavior. This information can later be used to retrieve a set of di-
agnostics with particular characteristics from the DDB.

In the following two sections we describe ther two major parts
of the evaluation process: the code analysis, which for each diag-
nostic deduces a set of attribute values, and the systematic storage
and retrieval of this information into and from the database. The
entire process is outlined in Figure 5.

7.2 Code Analysis - The Profiler
Each generated diagnostic program is currently executed on

two simulators. The first one is an architectural simulator which
is used as a reference machine. This simulator is fast and inexpen-
sive to use. The second one is the RTL simulator, representing the
particular microprocessor implementation. This simulator is much
slower than the architectural one, and much more expensive to use.

Whenever a diagnostic is run on any of the two simulators, a
trace file containing information about each execution cycle of the
diagnostic is created. The current model “passes” the specific di-
agnostic when the RTL and the architectural traces match under the
architectural comparator (refdif in Figure 1).

In order to analyze the execution of a diagnostic, we post-
process the trace file created during the execution of the code on
either of the simulators. By doing so, we can deduce information

F
ee

db
ac

k
to

 to
ol

(P
ro

fil
er

 a
pp

lic
at

io
n)

C
od

e
G

en
er

at
io

n
T

oo
l

Diagnostic

Simulation(s)

T
ra

ce
F

ile
(s

)

A
ut

ho
r

=

Jo

ne
s

IC
ou

nt

 =

 7
09

Im
m

ed
ia

te

 =

 4
57

A
rit

hm
et

ic

 =

 4
4

E
xc

ep
tio

n

 =

 4
C

ac
he

E
rr

or

=

 1
E

xt
In

t

=

 3
...

...
...

.

A
ttr

ib
ut

e
na

m
es

(s
am

e
fo

r a
ll

di
ag

s)
A

ttr
ib

ut
e

va
lu

es

A
na

ly
si

s
(P

ro
fil

er
 a

pp
lic

at
io

n)

A
ttr

ib
ut

es

O
th

er
 P

ro
fil

er

A
pp

lic
at

io
ns

−
S

ta
te

 c
ov

er
ag

e
−

C
om

pa
ris

on
 o

f t
ra

ce
s

D
ia

g
D

at
a

B
as

e

A
ns

(U
se

r
pr

ov
id

es
 a

 q
ue

ry
)

Figure 5: Code Analysis Methodology

about the interesting cases covered during the particular simula-
tion. Examples of interesting cases include cache hits and misses,
types of exceptions, and queue sizes. This information is later
stored in the DDB.

In order to probe into the trace files systematically and extract
interesting information quickly, we have developed the Profiler li-
brary which is used as an interface between the analysis code and
the trace files. It provides the user with a mechanism for “stepping”
through the simulation cycles recorded in a trace file, including go-
ing forward and backwards in simulation time. At any given “step”
(simulation cycle) the user can retrieve the value of any one of the
variables which constitute the machine state.

The library approach was chosen mainly because of the flexi-
bility it provides. Due to its object-oriented design, the interface
remains the same irrespectively of the type or format of the trace
file being processed. This interface allows the user to write C++
programs that are guaranteed to work in current and future simula-
tion environments.

In addition to diagnostic evaluation, the Profiler library has also
been used in a number of other tasks. We have used it to check
transition coverage in the RTL model; to compare traces from dif-
ferent models; and to verify that certain (illegal) conditions never
arise during the simulation of the model.
7.3 Storage and Retrieval of the Results - The Di-

agnostic Database
Every time a diagnostic program is simulated, a Profiler-based

analysis code is executed on the trace file which represents the par-
ticular simulation. The results of this analysis are typically ex-
pressed as a set of values for a prespecified, common for all diag-
nostics, set of attributes. Example of attributes generated during
the analysis include the number of instructions executed, the num-
ber of cache hits and misses, and the lengths of various queues in

the microprocessor.
We developed a tool called Ans which compresses all this in-

formation into a highly efficient, object-based diagnostic database
(ODDB). Ans both modifies the database and queries it to retrieve
a set of objects (diagnostics) that satisfy a given set of criteria. Ans
is a general tool, designed to handle any object-based collection of
data, in a highly sophisticated and user friendly way.

When retrieving objects from a database, Ans uses an input set
of criteria to select and return a set of objects which satisfy the
given criteria. These criteria are usually expressed in some form
of equalities or inequalities on the attribute values of the objects
stored in the database. For example, the user can ask for all the
diagnostics that contain less than 2000 instructions (i.e. attribute
’ICount’ is less than 2000), and take at least 10 floating point ex-
ceptions (i.e. attribute ’FP Exception’ is greater than or equal to
10). The following attribute form describes these two constraints:
((ICount <= 2000)&&(FP Exception >= 10)). Given
this form, Ans would select a subset of the diagnostics currently
stored in the given DDB whose attribute values satisfy the given
constraints and would return these diagnostics to the user.

8 Summary
In this paper we have presented a collection of advanced code

generation tools employed in the simulation-based verification of
high-performance microprocessor designs. Each of the presented
tools addresses a unit of the microprocessor which historically has
been a significant source of hard to find flaws. We presented SBVer,
a code generator which focuses on exercising the external inter-
face and cache management units of the microprocessor. Then we
described BRVer which targets the branch mechanisms of the de-
sign; these mechanisms become increasingly more complicated as
designers attempt to improve the performance of the chip through
speculative execution. We addressed MP verification by present-
ing two tools with complementary roles. MPVer targets the shar-
ing of information across the processor of an MP system as well
as the communication between processors. MPAV, on the other
hand, provides an environment for the development and execution
of “real world” parallel applications on our simulators. Finally,
Theo provides a state-of-the-art environment for the generation of
diagnostics based on user provided templates, constraint solving
systems, and knowledge of the microprocessor design.

We have also presented the Profiler and Diagnostic Database
which comprise a set of tools for the analysis of diagnostics and
their efficient storage and retrieval. These tools provide us with ef-
ficient ways to evaluate the code produced by the generators and to
propagate this information back to the tools so that we can improve
their effectiveness.

We are currently working on expanding our tool-set with highly
specialized code generators as well as powerful generic ones. Fur-
thermore, we are extending our sophisticated heuristic algorithms
to cover areas that have not yet been addressed. Finally, we incor-
porate all our verification tools in an integrated environment which
supports the easy and efficient production of high quality diagnos-
tic programs.

Design verification is an important part of the development of
a microprocessor. As time-to-market decreases and the complex-
ity of the high-performance microprocessors increases, design ver-
ification becomes the bottleneck of the development cycle. Good
verification tools become vital to the success of any microproces-
sor design, and their significance will continue to increase as we
move to even higher performance microprocessors.

References
[1] M. Bass, T.W. Blanchard, D.D. Josephson, D. Weir, and D.L.

Halperin. Design Methodologies for the PA 7100LC Micro-
processor. Hewlett-PackardJournal, 46(2):23–35, April 1995.

[2] A. Chandra et al. AVPGEN –A Test Generator for Architecture
Verification. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 3(2):188–200, June 1995.

[3] B. Turumella et al. Design Verification of a Super-Scalar RISC
Processor. In Twentyfifth International Symposium on Fault
Tolerant Computing, pages 472–477, June 1995.

[4] I. Foster. Designing and Building Parallel Programs. Addison
Wesley, 1995.

[5] J.L. Hennessy and D.A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc.,
1990.

[6] M. Kantrowitz and L.M. Noack. Functional Verification of a
Multi-issue, Pipelined, Superscalar Alpha-Processor – the Al-
pha 21164 CPU Chip. Digital Technical Journal, 7(1):136–
144, August 1995.

[7] D. Marr, S. Thakkar, and R. Zucker. Multiprocessor Validation
of the Pentium Pro Microprocessor. In Proceedings of COM-
PCON ’96, pages 395–400, January 1996.

[8] B. O’Krafka, S. Mandyam, J. Kreulen, R. Raghavan, A. Saha,
and N. Malik. MTPG: A Portable Test Generator for Cache-
Coherent Multiprocessors. In Fourteenth Annual Phoenix
Conferenceon Computers and Communications, pages 38–44,
March 1995.

[9] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd ISCA, pages 24–
36, June 1995.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

