An O(n) Algorithm for Transistor Stacking with
Performance Constraints
Bulent Basaran and Rob A. Rutenbar

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract modeling circuit performance. The cost function ensures that per-
We describe a new constraint-driven stacking algorithm for formance constraints are, if possible, met. Device matching is also
diffusion area minimization of CMOS circuits. It employs an guaranteed through symmetry and proximity constraints. The paper
Eulerian trail finding algorithm that can satisfy analog-specific is organized as follows. Section 2 describes the basic stacking strat-
performance constraints. Our technique is superior to other egy. Section 3 explains how the circuit performance is modeled. In
published approaches both in terms of its time complexity and in Section 4, the new stack generation algorithm is presented. Some
the optimality of the stacks it produces. For a circuit with n results on industry-quality circuits are given in Section 4. Finally,
transistors, the time complexity is O(n). All performance Section 5 offers some concluding remarks.
constraints are satisfied and, for a certain class of circuits,

optimum stacking is guaranteed. 2 Basic stacking strategy
. A stacking methodology is needed to model the circuit schematic in
1 Introduction a format appropriate for a graph algorithm to solve the layout prob-

In the layout of custom CMOS celigackingis defined as merging lem effectively. Our strategy is similar to that introduced in [6] and
the diffusion regions of two or more transistors that have a commonearlier in [4] in more general terms:

node, e.g., series-connected transistors have one node in commcy pjyide the circuit intgartitionswith respect to device type and
which can share a diffusion and save area. Since stacking has adri piss node (body node in MOS transistors).

matic impact on the total diffusion area and therefore on chip yield, .)) . .

there has been an extensive amount of research on optimizing leaf2- Perform devicéolding: split large transistors into smaller par-
cell layout through stacking. The original work of Uehara and van allel transistors. These are called “fingers” by designers; we re-
Cleemput [1] first posed the problem and offered a heuristic solu- fer to these more generally aodulesas they are the compo-
tion for digital circuits. For this important two-row P-over-N layout nent pieces of our solution.

style, polynomial time algorithms were later discovered to arrange 3. Perform further partitioning to reduce the variation on the mod-
series-parallel dual CMOS ([2] is a good survey here). When more ule widths in a partition,

general aspects of the layout are to be optimized, e.g., wiring as

. - Generatestacks that implement each partition.
well as stacking, a variety of combinatorial search algorithms have T L)
been used with success, e.g., [3]. In analog CMOS circuits, as in digital standard-library leaf-

cells, only transistors of the same type (e.g., NMOS), which share

s s oot 1. common el can b staked (. hercommon difusion nodes
P . para : pac “can be merged in the layout to minimize diffusion area). In addition
Unfortunately, the wider range of device sizes, and requirements.

) : - in analog circuits, itis fairly common to have transistors of the same
for device matching and symmetry render the simpler r_ow-basedtype which require distinct body potentials, for example, to opti-
digital layout styles inadequate for analog. To address this, &ohn 7! . ; . X
al. introduced a free form 2-D stacking strategy integrated with de- mize noise performance. Such transistors have their own isolated
viée placement [4]. Charbeet al. later introduced a technique to wells and cannot be stacked with other transistors of the same type.
satisfy performance constraints through constraint-driven s'[ackingT.herefore in the first step, we put such transistors in different parti-

) . : tions. We also allow the designer to specify explicitly to have two
during placement [5]. Both tools can generate high-quality layouts, or more transistors in the same stack
however, neither caguaranteea minimum diffusion area. More o) .
recently, [6] introduced a new stacking style and a novel techniqgue _ !N the second step, large transistors are folded into fingers to
to generateptimumstacks that satisfy performance constraints, us- Minimize the diffusion capacitances as well as to balance the aspect
ing a path partitioning algorithm. However, because it attempts to ratio of the resulting modu[e. This can either be done automgitlcqlly
enumerate all optimal stacks, runtime can be extremely sensitive tcl6] or manually by the designer. It is important to note that, in this
the size of the problem. Symmetry and matching constraints canstacking strategy, transistor folding is dangriori. The stack gen-

greatly prune the search, but the basic algorithm has exponentia®ration algorithm is given fixed-width modules as input — it does
time complexity [6]. not dynamically fold transistors. This is in contrast to tools such as

KOAN [4], in which the overall optimization loop treats stacking,
folding and placement simultaneously. Of course, such a separation
of design tasks is sub-optimal. One of our main motivations in this
paper is to devise a stacking strategy that is fast enough to be used
in the inner loop of a placement tool like KOAN.

In the third step, the partitions are examined again to account
for variations in module widths. If it is requested, modules with
widths significantly larger, or smaller, than others in a partition can
be put in a separate partition. This will result in a better utilization
of space, but it will have suboptimal diffusion sharing. If such a par-
titioning is not acceptable for performance reasons, this step may be

In this paper, we present a new algorithm to perform stack gen-
eration inlinear time. For a large class of circuits, our algorithm is
optimumwith respect to total diffusion area and a cost function

33rd Design Automation Conference [
Permission to make digital/hard copy of al or part of thiswork for personal or class-room useis granted without fee provided that copies are not made
or distributed for profit or commercia advantage, the copyright notice, thetitle of the publication and its date appear, and noticeis given that copyingis
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or afee.
DAC 96 - 06/96 Las Vegas, NV, USA 01996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

skipped.

In the fourth step, the stack generation algorithm (Section 4) M1 M3 M4 M2
operates on each circuit partition separately. We note that a pair o
phases before and after the stacking algorithm may handle speciz
- 2 - C (b) s
patterns required by some analog circuits: module interleaving (i.e., M1 M2
common-centroid or inter-digitated device pairs); devices with ra- A
tio constraints to obtain precise current ratios (e.g., current mirrors)

[6]; multi-fingered devices with proximity constraints [7]. _{ M3 <> M4 }‘ ML M3 M2 Ma

During stack generation, it is required that certain performance @ ©
specifications are considered and, if possible, met. The input to the
stack generation algorithm (Section 4) is a cost function based on -
criticality weightson circuit nodes angymmetry constrainisn the Fig. 1. Two symmetric transistor pairs (a) and their layout with
devices. In this section, we will briefly review how these parame- symmetric stacks. Stacks in (b) and (c) rxieror symmetricand
ters are obtained from performance specifications. Our approachperfect symmetriaespectively.
follows [8] and [9].

The process of translating high-level circuit performance spec- . .
ifications into bounds on low-level layout parameters is caited 4 Stack generation algorithm
straint generation This process is traditionally done manually by As introduced in [1], finding an Eulerian trail in a diffusion graph
circuit designers. Recently, techniques have been proposed to autcis equivalent to minimizing the diffusion area of series-parallel stat-
mate this process using sensitivity analysis [8]. ic CMOS circuits. Later [10] presented a simple linear time Euleri-

Constraint generation starts with small signal sensitivity analy- a0 trail finding algorithm for dynamic CMOS'CII’CUIIS consisting of
sis of performance functions at the nominal operating point. Perfor-Only one type of network (e.g., an nFET logic network). In our al-
mance constraints are defined as maximum allowed variations ofd0rithm, we use a similar algorithm for finding an Eulerian trail.
the performance functions around the nominal operating point. 1"€ main contributions of this algorithm are twofold:
These constraints can be mappedpémasitic capacitance con- 1. Performance We optimize a cost function that considers not
straintson certain nodes amdatching constrainten devices. The only area but also circuit performance — this was previously
parasitic capacitance constraints, together with bounds on estimat achieved in exponential time [6],
ed parasitic capacitances, can further be translatedrititzality
weighs, denotedv, on nodes. The tighter the constraints, the closer =* optimum. With symmetry constraints. it is still ootimum for a
the minimum allowed performance to the estimated nominal value, IaF; e cla.ss of cir():/uits y ' P
the higher the weights. A cost function evaluating a stacking solu- 'g C o)))
tion is introduced in [6] that minimizes the parasitic capacitance of ~ Given a circuit partition, our algorithm first generatesadi-
critical nodes. We will use the same cost function to guide our stackfied diffusion graph, Ghat represents the circuit partiti@incor-
generation algorithm. It is shown in Eq. (1) for the sake of com- porates the performance constraints in the form of criticality

3 Modeling performance constraints :I i

Generality Without any symmetry constraints, the algorithm is

pleteness. weights as defined in Section 3, as well as the symmetry constraints
among transistors. Next a trail cover®@is found that satisfies the
Cost(stackiny = ; w (diff) [k (diff) (1) symmetry constraints in the circuit. In the final step each trail in the
it trail cover is converted to a transistor stack for layout. The outline

Here, the summation is carried over all diffusion regions in the of our algorithm is given in Fig. 2.

stacksw(diff) denotes the criticality weight on the node that corre-

sponds taliff. k(diff) is 1 ifdiff is a merged diffusion in the stacking. procedurestack(circuit_partitionck)

Otherwise it is given bey/Cin; WhereCeyandCin (C,, = Ci\) 1 generate the modified diffusion gra@, fromckt
are the capacitances of an unmerged (external) and a merged (inte 2 trail_cover =sym_trail_cover(G)

nal) diffusion, respectively. Note that wheris 1, the cost function 3 convertirail_coverinto transistor stacks
minimizes only the total diffusion areais an effective way of pri- 4 return(transistor stacBs

oritizing critical nodes during stacking.
Matching constraints are translated into symmetry constraints

on devices and wiring and also to device proximity constraints. In Next we describe the modified diffusion graph and the sym-

order to match devices, our stack generation algorithm employsmetric trail cover finding step in detail and give an analysis of the
symmetry constraints on the devices of the circuit. The stacks ob-g|gorithm.

tained with a stack generation algorithm should be symmetric
around a symmetry axis with respect to the twin transistors in themaA The modified diffusion graph, G
(Fig. 1) [14]. Further matching can be enforced earlier in the parti- | o ¢\t he the circuit partition for which we wish to generate the

tioning step of our s_tacking strategy as in [6] as well as later duringtransistor stackskt can be represented with an undirected graph
placement and routing [4]15]. G’ (possibly with parallel edges) called simple diffusion graph

The next section describes in detail how the cost function in Eq. gach vertex it” corresponds to a diffusion node in the circuit, and
(1) is optimized and how the symmetry constraints are satisfied ineach edge 6" corresponds to a transistor (Fig. 3).

the stack generation algorithm.

Fig. 2. The stack generation algorithm.

Letv be a vertex its"; v is labeled withw(v) ands(v). w(v) de-
notes the criticality weight on the node that corresponds to wertex
s(v) denotes the symmetric twin of Lete be an edge i6"; eis
labeled withs(e) =e’, where €, €) is a symmetric edge paie)=e”

O s(e)=e. Note that a diffusion graph with symmetry constraints

must befully symmetricall the edges must have symmetric twins. an trail on it. The degree of a vertexdenotedi(v), is the number

Otherwise, the circuit must be partitioned further so that each par-of edges adjacent to it. It is well known in graph theory that a graph
tition is fully symmetric (Fig. 4 (a)). A pair of symmetric edges are is Eulerian if and only if it is connected and all vertices in the graph
calledcross-symmetridf they cross the symmetry axis. A vertexis have even degree [13]. Obviously in an Eulerian graph we can al-

calledself-symmetridf s(v) = v. A self symmetric vertex is on the
symmetry axis which cuts the graph into two halves (verfex

Fig. 4 (a)).
vl

e2

e3| v2

el
v3

e4
v4

e5

v5

Fig. 3. A circuit partition and its simple diffusion graph. Each
node in the circuitp, is mapped to a vertaxin the graph; each de-
vice, d, is mapped to an edge

First we introduce some terminology from graph theory that
will be used in the following sections.tAail on a graph is a set of
edges {g,€9,V1,€1,Vo, s 1 &-1, Vi) Whereg=(v;,vi;+1) is an edge
in the graph ane#g for all i#j [12]. We may use the shorthand
(Vo:V1.Vo,.... M) Or (€y,€1,8,...,6.1) to denote a trail. Note that an
edge in a trail can not appear more than once but a vertex can appe
at more than one position. Each such position is caliedranal of
the vertexyy andvg are called thend terminalsof the trail. The
trail is aclosedtrail, if vi=vy.

Vs

(@) (b)

Fig. 4. (a) A simple diffusion graph with symmetry constraints.

Note that pairs of edges with symmetry constraints are drawn sym-

metrically around the vertical symmetry axis. (b) The modified dif-
fusion graph obtained from (a). Gray lines are the super-edges.

A set of trailsT={t;}, is called aoverfor the graph ifle 0 G ,
i, stedt andedt [Oj#i Tis called aninimum trail cover
if the number of the trails ifi, or the cardinality off, | T|, is the

smallest among all possible set of trails. For example, for the graph

of Fig. 4 (a), two trailgvl,el,v3,e5,v7and(v5,e3,v3together with
their symmetric twingv2,e2,v4,e6,v7and (v6,e4,v4)cover the
whole graph. LetT; denote the set of these trails. Note that
Ty = 4. Joining the first and the third trails\af, their common
end terminal, we can reduce the cardinalityrpfo 3 which is the
minimum for this graph.

A closed trail is arEuleriantrail, if it touches all the edges in
the graph. A graph is callétllerianif there exists a closed Euleri-

ways find a trail cover; with cardinality 1, since there is an Eule-
rian trail on it. It is also easy to see that in a graph thatjagser-
tices with odd degree, the minimum trail cover has a cardinality of
Nygy’ 2 (Itis known thain,qgis always even).

Note that in general the simple diffusion graphis not Eule-
rian. Letnyyq denote the number of vertices with odd degreg’in
If nggg> 0, we add a vertex, calledsaper-vertexvg, toG” and we
make it Eulerian by adding a new edug ¥;), called asuper-edge
for each odd-degreeq. We setw(vg) to 0, since its criticality, by
definition, is zero. The graph obtained from the simple diffusion
graph,G’, by the addition ofl) the super-vertex ar@) the super-
edges for odd-degreed vertices is called miedified diffusion
graphand is denoted & (Fig. 4 (b)).

B Finding a symmetric trail cover

If there are no symmetry constraints, we can find an Eulerian trail,
te, in G, using a recursive Eulerian trail finding algorithm [13]. Let
te be (Vg Vq,Va,.... M Vs). If we delete the super-edgegdnwe obtain

a set of trailsT, that has a cardinality of,442. ThereforeTg is a
minimum trail cover foiG’, the simple diffusion graph.

However, when there are symmetry constraints, an arbitrary
Eulerian trail, in general, does not yield a feasible solution. Here,
we propose an algorithm which can be used to find a minimum trail
cover in the presence of symmetry constraints. Our symmetric trail
cover algorithm employs the same recursive algorithm for finding
an Eulerian trail with modifications to handle perfect and mirror
symmetry constraints. The outline of the algorithm is given in
Fig. 5.

The algorithmsym trail_cover() starts by selecting the ver-
tex, v, with the lowest criticality weight. Next it finds a set of trails,
cover_leff in Line 2 with the call to the recursive procedeue
er () (Fig. 6). Here we note that the first trailler) generates,
first_trail, hasvg at its end terminal; more on this in Section C. The
trail cover,cover_left includingfirst_trail, covers only half of the
edges in the modified diffusion graph, since at each iteration of
Line 10 ineuler) we not only delete the edge that is inserted in
the trail but also its symmetric twin.

proceduresym_trail_cover(G)

1 pickvg s.t. wi/g) < w(v;) for alliZ0

2 first_trail=euler(vg) //inserts open trails icover_left

3 insertfirst_trail in cover_left

4 remove the super-edges at the end terminals

5 join_trails (cover_lef}

6 if there are symmetry constraints

7 foreach traitr in cover_left

8 construct the symmetric trail

9 if tr andtr” have a common end terminal

10 jointr andtr” at the common end terminal

11 insert the result intoover_all

12 else

13 insert tr and tr” intgover_all

14 decompose all the trails by deleting the super-edges

15 return(cover_al)
Fig. 5. Finding a symmetric trail cover.

In Line 5 of sym fai cover , the procedure

join_trails() concatenates the open trailsciover_leftat their

end terminals if possible (Fig. 7). This step is required due to the ex-
istence of cross-symmetric edges in the modified diffusion graph.

recursive procedureuler(vertexvin)

) i (@
if divin) =0 // no edges

1 V5 V3 V7 V6 v4 V7 vi_ v3 V2 v4
2 return vin // trivial trail
3/l starting fronvin create a random tréi:
4 vtemp=vin
5 do
6 if d(vtemp = 0;
7 break; // open trail (b)
8 insertvtempinto tr
9 pick an edge omtemp e=(vtemp vneigh v5 V3 vi_ va_ v6 vi_v3 va _v2
10 deletee, s(e) if exists, fromG
11 vtemp=vneigh
12 while vtempz vin [/ iterate until a closed trail is found
13 lettr = (vin,v1,v2,...vK
ig if}ltr:/(zérnﬁp—:cilijrl]er(v;?)c,ﬁ;g:;(\érlgfuIer(v2),...,euler(vk) Fig. 8. (a) Perfect and (b) mirror symmetric trail covers;
16 return concatenation df2 andvin: (tr2, vin) Ta={(v5,v3,v7), (v6,v4,v7), (v1v3), (v2,vA)} .
17 else // open trail Tp={(v5,v3,v7,v4,v6), (v_l,v3), (v4,v2)and the corresponding
18 inserttr2 intot cover stacks for the graph of Fig. 4 (a).
19 return vin C Analysis of the algorithm
Fig. 6. Finding an Eulerian trail with symmetry constraints. Time-complexity: Thedowhie loop in Line 5-Line 12 of

euler) encounters each edge of the graph at most once, therefore

procedurgoin_trails (cover_left) it has complexityO(n), wheren denotes the number of edges. The

1 ifthere is only one trail in the list two foreach loops injoin_trails() operate on each trail only for

2 return // no pairs to join a constant number of steps. Hence the complex@yris, wherem

3 foreach traitr=(v1,...,vk)in cover_left denotes the number of trails. But simse= O(n),the complexity of

4 lettr=(a,...,.b) ~//aandb are end terminals join_trails() is O(n). It follows that the overall complexity of

5 inserttr in Iist(_a) andlist(b) the algorithm iO(n).

6 fore_a(_:h en_d t_err_nlnad - Optimality: If there are no symmetry constraints, it is easy

7 join trails inlist(x) pair-wise ak to see that the algorithm minimizes the cost function defined in Eq.

8 update effected list (1):euer) returns an Eulerian trail which is later decomposed by

9 return(cover_lef} deleting the super-edges (if any). Let us assume that the trail cover
Fig. 7. Joining open trails. hask trails after the decompositiork = max{ 1n0d[{3 . Also

note that every vertexin G must have at leatd(v)/ 2 terminals

in a trail covefT. First assuma&_,,>0 .If(v) is odd, therhas

Next, in Line 7-Line 13, symmetric twins of the trails in ! € 0(1(1 S 0d
d(v)/2+ 1 terminals in the trail cover. Otherwise it hd&/)/2

cover_leftare constructed. This is possible, since as a trail in s ! : _
cover_lefttr, was being generated énler) , the edges required terminals. In either case the number of terminals is equal to the low-
to construct its symmetric twirty’, were preserved by deleting ~€r-bound given by d(v)/27 . Now assumg,, = 0 . The previ-
them from the graph. This process can also be viewed as simulta®Us argument still holds for all vertices except the one at the end ter-
neously generating two trails that traverse the two halves of themMinals (Note thak = 1). But the vertex at the end terminal was
graph in a synchronous and symmetrical way. Line 8 can construcichosen to be the one with the lowest criticality weight, therefore the
either a mirror symmetric trail or a perfectly symmetric trail. In cost function is minimized and the stacking is optimum. The cost

Line 9-Line 10 the traitr and its symmetric twitr” are joined, if

function in Eq. (1) is also minimized for a class of circuits with

they have a common end terminal and if the operation does not vi-Symmetry constraints for which the corresponding modified diffu-

olate a perfect symmetry constraint. Fig. 8 shows an example.

As a consequence of deleting both of the edges in a symmetric(z)

pair,euler) may encounter a vertex with a zero degree while it is
trying to find a closed trail in thdowhie loop, Line 5-Line 12.
When such a vertex is reachedler) detects that the current
trail has to be an open trail. For an open teaky() first recurses

on the vertices of the open trail, as is the case with closed trails, bu
when the recursion terminates, it inserts the open trail in the trail

covercover_leftand returns the initial vertex as a trivial trail to the

previous recursion level (for more details and some examples set

[18]). Note that in an Eulerian graph without symmetry constraints
there is always a closed trail; no open trails are detecteduand
er) returns an Eulerian trail.

sion graph satisfies two conditions: (1) no cross-symmetric edges
number of self-symmetric vertices with degrees
d(v) = 2(2k+1), k=0 is less then 4. Given these conditions
the optimum can be found in linear time by adding a post-process-
ing step to the algorithm which recombines certain trails to reduce
the cardinality further. The proof is rather long and will be present-
ed in another paper. When the second condition is waived, the op-
timum can still be found via a similar post-processing step, but with
a penalty in the time-complexity of the algorithm. Currently we are
working on a sufficient condition for optimality in the general case.

It is also worth noting that we do not evaluate the cost function
given in Eq. (1) irsym_trail_cover() . After stacking, the perfor-
mance of the circuit can be evaluated using estimates on parasitic
diffusion capacitances and device matching, looking at the generat-
ed stacks [6]. If there is an unsatisfied performance constraint, then
the stack generation step indicates that the performance specifica-
tions were too tight and it is infeasible to meet them during the lay-
out phase; hence either the design or the specifications must to be
modified.

4 Results

The stack generation algorithm presented in this paper has been i
plemented in C++ on an IBM PowerPC 604 (133MHz) based work-
station running AIX 4.1. We have tested the algorithm on various
circuits from the literature.

Table 1 lists some of these circuits that we obtained from the
literature [4][15][6] and shows some results. For all of the circuits
the number of stacks is optimum and hence equal to the results oh
tained by [6]. Again note that the technique presented in [6] is enu-
merative and has exponential time complexity. We note that in the-
ory our algorithm can guarantee optimality for only some classes of
circuits. But still it could find the optimum results for all the circuits
that were available to us, since most practical circuits indeed fall
into the class for which our technique is proved to be optimum. Sen-
sitive circuit nodes are maximally merged, and estimated perfor-
mance degradation, as computed by Eq. (1), is equivalent to that ir
[6]. The run time is very low (less then 100ms per circuit). This
compares favorably to [6] which employs an exponential-time al-
gorithm; e.g., folComp3 our optimum stack generation algorithm

found a solution in less than 100msec while the technique in [6] re-Fig. 9.

ports 7.5sec, a difference of approximately two orders of magni-
tude'. For bigger circuits, higher savings can be expected.

Table 1.Stacking results.

Vdd
bl ﬂ]Mllz

.

circuit | Ref. | FOf | #of | #ofckt. | #of
devices| moduleg partitions | stacks

Opampl | [4] 10 22 > 7
Opamp2 | [6] 29 32 5 9
Opamp3 | [5] 1 30 3 3
Opamp4 | [4] 27 20 3 1
Opamp5 | [6] 25 36 9 0
AB 6] 15 29 6 9
Comp2 [4,6] 15 25 4 5
Comp3 | [6] 19 33 2 7
Mult [15] 12 76 5 3
Buffer [15] 10 53 2 2

Fig. 9 shows a multiplier circuit [15]. It is a typical analog cir-
cuit that was used as a benchmark in KOAN [4] as well as in other
constraint-driven layout research [15]. The stacking solution gener-
ated with our algorithm is shown in Fig. 10. The number of stacks
found is 3, which is the theoretical optimum. As a comparison, the
number of stacks found in the KOAN layout 57

Fig. 11 shows another analog cell, a comparator which is high-
ly sensitive to device mismatch and parasitic capacitance
[4][15][6][16]. The stacking generated by our algorithm is shown
in Fig. 12. Again, compared to KOAN, our algorithm found a better
stacking, with 3 fewer stacks.

1. Also note that in [6], an enumerative algorithm is utilized which can
find all optimum solutions whereas our technique finds only one.

| | (¢M113 M123
[[
11 MILL | 105 19 M121 192
M11) M124 I
Vda+ | Vi- | Vi+
[[
Vda- | ¢ M115 | E M124
[125 [
115
—a
b2 |~ lo+ | lo-
Iy m116 | Ly m126
Vss
TheMult circuit.
M115 M124
M113 M112
M111
M123 M122 M116
M112 M125 M114

Fig. 10. The optimum stacking generated fdult.

21 M22 M2l M2
I | | |
[11 [outl
.
out2
M26 Mm2! i>_.
| | clkl
| l | n
Vb1l
| I
inl.—{ }—.inZ
M9 M8
M1 | M2 :I II
Vbb—{ M4 }._
M7 clk2 M6
Vss

2. We note that this is not a fair comparison, since KOAN integrates stack Fig. 11. The Compcircuit.

generation with placement.

References

M1 M2z M26 M20 M25 [1] T. Uehara and W. M. vanCleemput, “Optimal Layout of
L\\A . CMOS Functional Arrays"|EEE Transactions on Computers,
p2: | [Il1] Vol. C-30, No. 5, May 1981, pp. 305-312.
M21 M23 [2] R.L. Maziasz, J.P. Hayekayout Minimization of CMOS Cells,
pl: Kluwer Academic Publishers, Boston/London, 1992.
M10 M7 M8 [3] S. Wimer, R.Y. Pinter, J.A. Feldman, “Optimal Chaining of
\T L ¢ ¢ CMOS Transistors in a Functional CellEEE Transactions
on Computer-Aided Desighl. CAD-6, September 1987, pp.
M M2 p4 795-801.
p3: q]] ? T T [4] 3. M. Cohn, D. J. Garrod, R. A. Rutenbar and L. R. Carley,
M9 M6 M1l “KOAN/ANAGRAM II: New Tools for Device-Level Analog
))) Placement and RoutinglEEE Journal of Solid-State Circuits,
Fig. 12. The optimum stacking generated @omp Vol. 26, No. 3, March 1991, pp. 330-342.

[5] E. Charbon, E. Malavasi, U. Choudhury, A. Casotto, A. San-
giovanni-Vincentelli, “A Constraint-Driven Placement Meth-
odology For Analog Integrated Circuits1lEEE Custom
Integrated Circuits Conferenc®ay 1992, pp. 28.2/1-4.

[6] E. Malavasi, D. Pandini, “Optimum CMOS Stack Generation

5 Conclusions

First-generation custom analog cell layout tools relied on simulta-
neous stacking, folding and placement of devices to achieve accept
able density and performance. The disadvantage of these approact . o -
es is the lack of any guarantees on the achievable circuit perfor- With Analog Constraints”JEEE Transactions on Computer-
mance, and (due to their annealing-based formulations) the Aided DesignVol. 14, No. 1, Jan. 1995, pp. 107-122. _
variability in layout solutions, run to run. Second-generation tools [7] M.J.M. Pelgrom et al., “Matching Properties of MOS Transis-
have focused on two-phase approaches, in which a partition of the ~ tors”, IEEE Journal of Solid-State Circuitspl. sc-24, October
devices into optimal stacks is performed first, and subsequent 1989, pp. 1433-1440.

placement manipulates a palette of alternative stacks. The advan[8] U. Choudhury and A. Sangiovanni-Vincentelli, “Automatic
tage is more predictable circuit performance, and these technique: Generation of Parasitic Constraints for Performance-Con-
can be fast for small circuits. But the runtime to generate all stack strained Physical Design of Analog Circuitt2EE Transac-
partitions can be extremely sensitive to circuit size due to the expo- tions on Computer-Aided Desighpl. 12, No. 2, February
nential algorithms at the core of these approaches. In this paper w1993, pp. 208-224.

introduced an effective stacking strategy that is fast enough to be[g] E. Charbon, E. Malavasi, A. Sangiovanni-Vincentelli, “Gener-
exploited in the inner loop of a device placer, yet still respects ana- ~ gjized Constraint Generation for Analog Circuit DesigPry-

log node criticality information. In comparison with the 2-D free- ceedings of the IEEE/ACM ICCANpv. 1993, pp. 408-414.
form stacking style of [4], our approach is faster and can find better[lo]s_ Chakravarty, X. He, S.S. Ravi, “On Optimizing nMOS and
results. In comparison with the branch-and-bound technique of [6] Dynamic CMOS Functional CeIIs"IEEE International Sym-

which enumerates all optimum solutions, our approach can find a : S .
3 :) - g, . osium on Circuits and Systenvs|. 3:, May 1990, pp. 1701-
single solution of equivalent cost, for most practical circuits, but in F1>70|411J. reut y Y PP

li -ti ith t to the circuit size. . -
inear-ime with respect fo te cireuft size [11]S. Chakravarty, X. He, S.S. Ravi, “Minimum Area Layout of

.Our I.ong term goal in this.work Is to integrate this gtacking al- Series-Parallel Transistor Networks is NP-Hat&EE Trans-
gorithm into a device placer in the style of [4], replacing random actions on CADVOI. 10, No. 7, July 1991.

search for good merges with directed search among local clusters . .

of devices. Instead of finding all stacking alternatiagsiori, we [12]‘_]'A' Bondy and .U'S‘R' Mgrtﬁraph Theory with Applica-
only stack those local sets of devices that the placer tetiagrst tions, Elsevier Science Publishing, New York, 1976.

to be stacked. This should yield improved analog cell layout tools, [13]C. H. Papadimitriou and K. Steiglit&ombinatorial Optimi-
and digital cell layout tools as well. Complex dynamic-logic CMOS ~ zation: Algorithms and Complexityrentice-Hall, Inc., Engle-
cells are increasingly analog in character, and we believe that s wood Cliffs, New Jersey 07632, 1982.

combination of aggressive search (for device placement and fold-[14]J. M. Cohn, “Automatic Device Placement for Analog Cells in

ing) coupling with simultaneous, dynamistacking proposed in KOAN?”", PhD dissertation, Carnegie Mellon University, Febru-
[17] (to optimally arrange local clusters of devices) is an attractive ary 1992.
strategy here. [15]B. Basaran, R. A. Rutenbar and L. R. Carley, “Latchup-Aware
Placement and Parasitic-Bounded Routing of Custom Analog
Acknowledgments Cells”, Proceedings of the IEEE/ACM International Confer-

We are grateful to Prof. Ron Bianchini and Pinar Keskinocak ence on Computer-Aided Desigipvember 1993, pp. 415-
(CMU) for helpful discussions on Eulerian trails. We thank Prof. 421.

Rick Carley (CMU) and Dr. John Cohn (IBM) for giving us some [16]E. Charbon, E. Malavasi, D. Pandini, A. Sangiovanni-Vincen-
of the circuits used in this paper. We thank Mehmet Aktuna for = telli, “Simultaneous Placement and Module Optimization of
fruitful discussions. Pinar Keskinocak and Aykut Dengi also helped Analog IC's”, Proceedings of the IEEE/ACM Design Automa-
to improve the presentation by reading an earlier draft of the paper. tion ConferenceJune 1994, pp. 31-35.

We would also like to acknowledge MPI, Germany for their LEDA 11718 Rasaran and R. A. Rutenbar, “Efficient Area Minimization
library which was of great assistance in prototyping with graph al- for Dynamic CMOS Circuits”jEIlEE Custom Integrated Cir-
gorithms and basic data structures. This work is supported in part cuits Conferenceylay 1996.

by the Intel Corporation and the Semiconductor Research Corpora: .
tign porat I . P [18] B. Basaran and R. A. Rutenbar, “An O(n) Algorithm for Tran-
' sistor Stacking with Performance Constraint®Research

Report No. CMUCAD-95-56Carnegie Mellon University,
1995.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

