Tutorial: Design of a Logic Synthesis System

Richard Rudell
Synopsys, Inc.
700 E. Middlefield Road
Mountain View, California 94043

Abstract

Logic synthesis systems are complex systems and al-
gorithmic research in synthesis has become highly spe-
cialized. This creates a gap where it is often not clear
how an advance in a particular algorithm translates
mto a better synthesis system. This tutorial starts by
describing a set of constraints which synthests algo-
rithms must satisfy to be useful. A small set of estab-
lished techniques are reviewed relative to these criteria
to understand their applicability and the potential for
further research in these areas.

1 Introduction

A Logic Synthesis System converts a descrip-
tion of a digital circuit into an interconnection of logic
gates (a gate-level net-list). A circuit description is
written in a hardware description language (HDL) such
as VHDL or Verilog. These languages support descrip-
tions at three basic levels:

e gate level: An explicit interconnection of gates
in a given technology is specified.

¢ register-transfer level: The location of the
memory elements is fixed by the designer in the
description, but the logic between memory ele-
ments 1s specified at a higher level using Boolean
and arithmetic equations, and programming lan-
guage flow constructs (e.g., if-then-else and func-
tions).

¢ behavorial level: An algorithm is described
without forcing a mapping onto states in the fi-
nal machine; the mapping of data variables in the
algorithm onto memory elements in the circuit is
left unspecified.

Logic synthesis systems accept descriptions in a hier-
archical mixture of these levels and produce a net-list
of gates in a target technology.

A logic synthesis system contains optimization al-
gorithms corresponding to each of these levels. Beha-
vorial optimization algorithms (e.g., scheduling) con-
vert a behavorial level description into an RTL descrip-
tion by choosing the states in which computations
are performed. RTL optimization algorithms (e.g., re-
source allocation) operate on the arithmetic portion of
the design to choose the locations of multiplexors and
the types of adders and multipliers. The output of RTL
optimization is a gate-level description in a generic

technology (e.g., AND, OR, and inverters). Logic opti-
mization algorithms (e.g., identifying common factors
and technology mapping) convert this generic logic de-
scription into a gate-level description in a target tech-
nology.

Optimization algorithms enable a logic synthesis
design methodology. Naive translation from HDL to
gates results in circuits which are too large and too
slow to be interesting. Relying only on obvious trans-
formations (e.g., deleting gates which have no fanout)
is not enough to make synthesis valuable to a designer.
A productivity improvement comes only from the ap-
plication of optimization algorithms which provide an
automatic tradeoff between many conflicting choices
to choose the best transformations to meet the design
goals.

Looking at recent CAD conference proceedings it
is clear that synthesis-related optimization algorithms
are an active area of research. It is also clear that
many of the solutions are becoming highly specialized
and, as a result, some are missing a global perspective
of how the algorithm fits into an overall system. The
goal of this tutorial is to take a step back and look at a
logic synthesis system and understand the constraints
that a synthesis design methodology places on the al-
gorithms. This will identify criteria which algorithms
need to address to be useful and also point out areas
which are interesting from a current research perspec-
tive.

All synthesis algorithms share a common set of re-
quirements. These are presented in Section 2. In Sec-
tion 3, a set of combinational logic optimization al-
gorithms are reviewed against these criteria to under-
stand better how the algorithms fit into a synthesis
system. Section 4 performs the same task on a set
of sequential optimization techniques. While the pri-
mary focus of the synthesis systems in this paper is
for asic (gate-array or standard cell) design, Section
5 addresses FPGA design to understand how the needs
of FPGA synthesis compare to ASIC design. Finally,
Section 6 summarizes the key points.

2 Synthesis Algorithm Requirements

2.1 Logical Correctness

A logic synthesis system has to produce correct cir-
cuits; i.e., circuits which are logically equivalent to the
source. It seems redundant to stress that a synthesis
algorithm should produce logically correct results, but
because of the complexity of the algorithms and their

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room useis granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or afee.

DAC 96 - 06/96 Las Vegas, NV, USA

01996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

interaction, verifying the correctness of synthesis is an
important problem.

Logic simulation remains the primary means to
verify the initial description and is often used after
synthesis to verify synthesis results. However, many
users are looking to formal verification techniques
(e.g., combinational circuit verification) to avoid ex-
tensive resimulation of the circuit. For this reason,
some design methodologies require that the synthesis
algorithms fit into a formal verification methodology;
1.e., transformations on the circuit are limited to those
that can be automatically and independently verified.

2.2 Design-Rule Correctness

A logic synthesis system has to produce circuits
which satisfy all design rules of the target technology
(e.g., hold times, maximum fanout, connection rules,
etc). One approach to ensure that a circuit meets a set
of design rules is to patch the circuit at the end of pro-
cessing so that all design rules are satisfied. Using this
approach, most algorithms ignore the design rules and
trust that some latter step will fix any problems which
are introduced. However, for some design rules, such
as a constraint on the maximum fanout of each gate in
the circuit, there is an interaction between satisfying
the design rule and the speed of the circuit. In this
case, the synthesis algorithms must directly consider
the design rules or optimization quality will suffer.

2.3 Quality: Area and Delay Tradeoff

The quality of the synthesized circuit is measured
by the area, speed and power of the circuit after phys-
ical design. The unambiguous optimization goal is a
circuit which meets its speed constraint and has the
smallest area (or smallest power).

From a design perspective, this is the way a a syn-
thesis system should be controlled; by changing only
the timing constraints, implementations with differ-
ent speed and area tradeoffs can be generated. This is
greatly preferred to algorithm-specific controls which
attempt to achieve the same goal in a less controlled
way (e.g., a prefer-delay parameter for a mapping al-
gorithm).

For these reasons, a synthesis algorithm must con-
sider area and speed tradeoffs and must do so in a
fashion which minimizes area after meeting the tar-
get speed. Rarely is the smallest or the fastest circuit
acceptable, even though these cost functions are the
targets of many papers on synthesis algorithms.

2.4 Delay Model Independence

It is generally accepted that static timing verifica-
tion with post-layout wiring parasitics inserted into a
gate-level timing model provides an accurate measure
of the performance of a design. However, there is less
agreement on the details of the timing model itself.
Simple RC linear models have given way to more com-
plex piecewise linear and nonlinear delay models in an
attempt for more accuracy. These models also depend
on a growing set of parameters such as the slope of in-
put waveforms at each gate. Pre-layout timing models
must approximate the wiring parasitics, and there is
no general agreement on the best way to predict these
downstream effects.

A synthesis algorithm has to consider that a de-
tailed sign-off timing verification is the final judge of
the circuit quality. If the algorithm uses knowledge
of a specific timing model (which may differ from the
sign-off timing model) or other approximations of the
sign-off timing model, the algorithm must be carefully
evaluated to understand what happens when the cir-
cuit is measured using the sign-off delay model.

As an example, consider measuring the delay of a
circuit by the number of levels of logic in a generic
technology. If an algorithm proposes a change which
reduces the number of levels of logic by a factor of
two, there 1s little doubt that a faster circuit will be
produced after technology mapping regardless of the
delay model used to measure the circuit.

However, to show a more subtle advantage (e.g., a
20% delay improvement), an algorithm cannot mea-
sure levels of logic or some other abstract measure of
delay; a comparison must be made on the delay as
measured on the design after mapping into a target
technology and measured with the sign-off timing ver-
ifier. This complicates research because many times
the conclusions are only as good as the back-end. The
conclusions of many papers are: given our system, this
was a good thing to do. It is often hard to understand
whether the results would be reproducible (or even
useful) in a different context.

Thus, another constraint on a synthesis algorithm
is that the algorithm be abstracted from the details of
the underlying timing models. At the very least, one
must be aware of the delay model assumptions which
are hardwired into the algorithm to understand the
impact of using a different sign-off delay model.

2.5 Scalable

Logic synthesis algorithms must be scalable in the
size of the circuit which can be processed in order to
keep up with the rapid growth in circuit sizes. While a
single run of a synthesis system dealt with only 1,000
gate equivalents in 1985, this number has grown to
10,000 in 1995, and will reach 100,000 or more by the
year 2000 to support the design of a multi-million gate
ASIC.

The constraint this places on the algorithms is
harder to quantify. Because of the Boolean nature of
many synthesis problems and a desire for ever-better
results, it is impossible to avoid nonlinear and even
exponential run-time algorithms (e.g., satisfiability).
However, performance of these algorithms needs to
degrade gracefully. For example, when using Binary
Decision Diagrams (BDD’s) [5] it is necessary to han-
dle the case where an operation cannot complete in
a graceful manner. Likewise, when using automatic
test pattern generation techniques, it is necessary to
allow for an aborted test after a controlled amount of
run-time.

When using nonlinear algorithms, the techniques
for automatic partitioning to control the run-time be-
come as important as the details of the algorithm it-
self. More costly algorithms must be evaluated care-
fully to understand whether advantages they show on
small circuits can be translated into larger circuits
when partitioning is used.

2.6 Hierarchical Design

As previously mentioned, an HDL description is a
hierarchical connection of designs. While some of the
hierarchy in the initial description may be discarded
during synthesis, maintaining a hierarchical descrip-
tion through synthesis is important. Hierarchy may
be used to control the complexity of logic synthesis,
by not forcing the synthesis system to optimize an en-
tire chip as one piece of logic. Also, external factors
such as physical design may require the hierarchy to
be preserved for the physical design system.

An important concept when dealing with hierarchy
in a synthesis system 1s the notion of characteriza-
tion. Consider the design TOP in Figure 1. Assume
that each of the subdesigns A, B, and C represent
the largest block sizes which can be given to a syn-
thesis system. Optimizing subdesign B requires that
timing specifications be placed on TOP so that the
timing environment of B can be captured automati-
cally. This timing environment includes capturing the
clock inputs and their frequencies plus clock-to-Q in-
formation for the inputs to B (e.g., which come from
memory elements in module A) and setup constraints
on the output of B (e.g., which feed memory elements
in module C). Once this is done, optimization of B
can be done in isolation and reinserted into TOP. If
the characterization is done correctly, improvements
during the optimization of B will directly translate
into improvements for the constraints as measured for
TOP.

Two problems arise with this paradigm, however,
and both arise for paths which start in module A and
terminate in module C.

The first is that the entire design starts as generic
logic. Because no subdesign has yet been mapped
into gates in the target technology, it is not possi-
ble to derive a characterization for module B. This
is of particular concern for optimizations which hap-
pen early in the flow such as behavioral optimizations
(e.g., scheduling) and RTL optimizations (e.g., opera-
tor sharing and selection).

The second problem is that there is freedom to
chose where along a path from A to C changes will
be made. This time-budgetting problem deals with as-
signing the degree of improvement needed within each
module in order to force the path to meet its con-
straints. In particular, should A be optimized before
or after B? Should the optimization of B attempt to
modify the path so there is no violation in its timing or
should 1t attempt to pick up only a smaller percentage
of improvement?

Sometimes an attempt is made to avoid these prob-
lems by defining them out of existence. For example,
one solution removes the time-budgetting problem by
stating that each subdesign be latch-bounded; i.e., ev-
ery input (or output) has a memory element so that no
timing paths cross module boundaries. A second solu-
tion forces the designer to do manual time-budgetting
for each piece of the design. These constraints are
then passed to the synthesis system. A third solution
requires that the synthesis algorithms handle the en-
tire circuit as one piece. This removes the problem by
stating that A, B, and C can always be optimized at

one time.

However, none of these solutions seems to be ac-
ceptable in general. Hence, a general problem which is
often overlooked is how the algorithms fit into a hierar-
chical design flow. For example, a tool which performs
automatic time budgetting might require information
from the synthesis algorithms to help it choose how
to order the modules and split the timing between the
modules.

2.7 Hierarchical Replacement

Another hierarchical consideration is the ability
to rewrite the HDL e.g., for module C of Figure 1
and replace just module C without requiring a re-
optimization of the hierarchical design. Optimization
algorithms are often required to satisfy a substitution
property which states that surrounding designs can
be changed without invalidating the optimization of
an embedded design.

This point can be made clear with an example.
Imagine that a redundancy removal algorithm is able
to remove all logic redundancies from B (in the con-
text of A and C). Once this has been done, it is no
longer possible to replace C with a new version which
changes its functionality (e.g., to fix a design bug).
To do so might render the previous optimization on
B invalid. In the context of so-called don’t-care opti-
mization, this implies that only a subset of the don’t-
cares of a design can be used to optimize that design;
in particular, don’t-cares which arise because of the
interconnection of designs cannot be used while pre-
serving this replacement principle.

3 Combinational Logic Optimization
In this section I review a sampling of logic optimiza-

tion techniques which are common in the literature

against the listed criteria on synthesis algorithms.

3.1 Two-level Optimization

Two-level sum-of-products logic optimization, as
exemplified by the Quine-McCluskey or Karnaugh
map techniques taught in basic digital design classes
[10], does not play a large role in multiple-level logic
synthesis. It is rarely desireable to reduce a piece of
multiple-level logic to two levels, apply two-level opti-
mization, and then factor the two-level logic back into
multiple-levels. The primary problem is the unpre-
dictability of both the run-time and the effect on area
and delay of this style of optimization.

3.2 Decomposition

Decomposition is the general problem of simplify-
ing combinational logic by identifying factors which
can be added to a circuit to reduce the logic in the
circuit. Various decomposition algorithms proceed by
choosing a factor, reexpressing the circuit using that
new factor, and iterating until no more useful factors
are found.

A cube factor [8] is a logic factor which is a simple
product of literals. For example, given:

' = ade+bdeh+ cde+ f
G = bgh+cg+dg+aef
H = aeg+be

the cube factor X = ae can simplify the equations to:

' = aed+bdeh+ cde + f
G = bgh+cg+dg+Xf
H = Xg+be

A kernel [4] is a sum-of-products logic factor. Con-
sidering the previous example, the kernel Y = bh + ¢
can further simplify the equations to:

F = (a+Y)de+ f
G = Y+dg+Xf
H = Xg+be

Cube and kernel factors correlate to less area in
the design but also have a strong impact on the de-
lay. Cube and kernel factors can reduce the delay by
reducing the fanout of gates, but this comes at the
cost of increasing the levels of logic. It is critical to
consider factoring algorithms which consider this area
and delay tradeoff, but few published algorithms have
dealt with this problem. Dealing with this tradeoff
and remaining delay-model independent 1s also diffi-
cult.

Cube and kernel factoring are called algebraic meth-
ods. Their strength is that they rely heavily on the
form of the original circuit to identify the factors,
and these factors can be identified efficiently even
in large circuits. Older Boolean factoring algorithms
(e.g., Ashenhurst [1] or Roth-Karp [14] decomposition)
have made a comeback recently with the application
of BDD’s as an implementation technique. While these
algorithms have the potential for much better opti-
mization, they have not clearly demonstrated better
results on a wide range of circuits, nor have they been
able to scale with increasing circuit complexity.

3.3 Iterative Improvement

A second class of techniques for optimizing a circuit
rely on iterative improvement. They take an initial cir-
cuit structure and make local modifications to reduce
the amount of logic or logic depth of the circuit.

The simplest form of these 1s combinational redun-
dancy removal. A combinational redundancy is a con-
nection in a circuit which, if removed, does not alter
the Boolean behavior of the combinational portion of
a circuit. Redundancy removal is the process of test-
ing each circuit connection and removing any which
are redundant thereby simplifying the circuit. This
is typically iterated until all connections have been
tested and none has been found redundant.

Automatic test pattern generation (ATPG) tech-
niques are used to test each connection and return
a status of either irredundant, redundant, or abort.
Although deriving a test for a single fault is a hard
problem, techniques have been developed which are
efficient and still result in very few aborted tests [16].

More complex forms of iterative improvement are
transduction [13, 12], rewiring[7, 6] and global flow[3].
Each of these attempts to optimize a circuit by first
adding redundant connections to some gates followed
by deleting (presumably a different set of) redundant

connections. While the basic process i1s well under-
stood, detailed approaches differ in how they decide
whether connections can be made and broken and in
how they decide where to modify the circuit.

There are two basic techniques for deciding whether
a redundant connection can be added or deleted. The
first relies on ATPG techniques. In this approach, a
connection is made if it can be proven redundant by
the test generator. Other connections are deleted if
they are found redundant. A second approach relies on
more global information, computed using a symbolic
data structure (e.g., BDD’s).

Iterative improvement techniques, in general, are
powerful. They use the full power of Boolean rela-
tionships to make what are sometimes nonobvious (at
least to a designer) changes to a circuit. They have the
potential for dramatic area reductions in many cases,
but this can come at a cost in delay, especially in the
case where a signal deep in the circuit is reused early
along a critical path. Similar to the decomposition al-
gorithms, these algorithms often operate on a generic
technology representation, so predicting their impact
on delay is difficult. While optimizing for area or delay
is hidden deeply in the heuristics which decide when
and were to move connections, it is fair to say that
techniques published so far for area / delay tradeoffs
are somewhat ad-hoc.

Techniques which rely on ATPG algorithms tend to
scale well with circuit size, at the cost of optimality
when a connection must be assumed testable when
the test generator aborts. BDD-based techniques can
be made scalable by partitioning large circuits into
smaller pieces, but again, this comes at a cost of opti-
mality.

3.4 Technology Mapping

Technology mapping is the subproblem of choos-
ing gates from the primitives in a given technology
to replace the generic logic. A common paradigm for
technology mapping relies on DAG-covering and fanout
optimization. DAG-covering chooses the gates within
the circuit and fanout optimization solves the problem
of distributing the signals between the gates.

3.4.1 DAG-Covering

The DAG-covering approach to technology mapping
first reduces the circuit to a simple form (e.g., two-
input NAND gates) and reduces the gates in the library
to the same form. Choosing the gates is then the prob-
lem of covering the NAND gates in the circuit by the
configurations of gates which are present in the library.
This approach is motivated by algorithms which can
produce optimum covers for the case when the circuit
to be covered is a simple tree.

Tree-mapping suffers from several problems accord-
ing to our criteria, even ignoring the common com-
plaint that cross-tree optimizations should be consid-
ered. The first is that the algorithms are linear only
for an area cost function. The best algorithms for an
area versus delay tradeoff on a single tree have pseudo-
polynomial time complexity which quickly becomes
expensive. Also, most algorithms for delay which have
been presented (e.g., [15]) need intimate knowledge of
the delay models to be successful.

Ad-hoc techniques, such as the rule-based approach
of Socrates[9] solve many of these problems, but they
have a tendency to get stuck in suboptimal local min-
ima. New algorithms for technology mapping are
clearly needed and they need to address these specific
shortcomings to be interesting.

3.4.2 Fanout Optimization

Fanout optimization is the problem of distributing
an output of a gate to its fanouts with minimum cost
[2]. Fanout optimization is not hard for for area opti-
mization, where the only problem is dealing with max-
imum fanout constraints. However, using trees of in-
verters and buffers it is possible to exploit two distinct
properties to speed up a circuit:

e increase the drive capability to drive a signal to
many destinations.

e isolate critical signals to reduce the load on the
critical path

The first applies in the case when all of the sig-
nals are needed at their destination at the same time.
The second case applies when a single signal is critical
and all others are noncritical. Fanout optimization be-
comes difficult, however, when many signals are near
critical. Solutions for fanout optimization also need
to handle both the average case of 3 fanouts per gate
as well as when the number of signals to drive may be
over 100.

3.5 Discrete Sizing

Discrete sizing is the logic synthesis equivalent of
transistor sizing. The assumption is that there are a
discrete set of sizes for each gate and the goal is to
select a size for each gate to optimize the cost func-
tion of minimum area under a delay constraint. In
the synthesis context there is a further assumption
that the details of the timing model are unknown to
the sizing algorithm. While this is a simple statement
of the problem, discrete sizing has not been the topic
of many research papers in synthesis. Transistor siz-
ing has been more popular, but transistor sizing algo-
rithms typically assume a continuous variable for the
size of each transistor and have detailed knowledge of
how the size of each transistor translates into its delay.
It is not clear how to apply these results to discrete
sizing.

4 Sequential Logic Optimization

Sequential optimizations are relatively new to syn-
thesis systems. A major barrier faced by all sequential
optimizations is the constraint of verifiability. Behav-
ioral synthesis, retiming, and other useful sequential
optimizations cannot be verified using the formal ver-
ification techniques available today. While many of
the individual steps can be verified (e.g., verifying a
retiming on a circuit is easy, if no other operations
have been performed), there is little hope for a com-
pletely independent functional verification analogous
to combinational circuit verification.

4.1 FSMs

Similar to two-level logic minimization, application
of traditional finite-state machine optimizations such
as state-assignment, state-minimization, and state-
machine decomposition play little role in logic syn-
thesis systems today. The problem is that these tech-
niques are based on two-level logic descriptions; this
limits the size of logic which can be processed and
forces the circuit to be partitioned before applying Fsm
techniques. Another problem with FSM optimization
is that it operates on an abstract level with little cor-
relation to the final area and speed of the final circuit.
As a result, it is not possible to make detailed area
versus speed tradeoffs.

4.2 Retiming

Retiming is a technique for repositioning the mem-
ory elements in a circuit while leaving the combina-
tional gates fixed to optimize the speed and area of the
circuit. Leiserson et al. [11] presented algorithms for
retiming, including the critical problem of area min-
imization (i.e., fewest number of memory elements)
under a delay constraint. Because retiming operates
directly on a multiple-level sequential circuit, has po-
tential for speed versus area tradeoffs, and is largely
delay-model independent, it satisfies many of the re-
quirements for a synthesis algorithm.

Retiming does suffer from its ability to scale to large
circuits. While optimal retiming for minimum area
can be solved in polynomial-time, the complexity is
O(V3) for a circuit with V gates. Recent results [17]
have shown that retiming is feasible for circuits with
up to 50,000 gates by exploiting the sparse nature of
typical circuit graphs. However, partitioning is re-
quired to retime circuits which are much larger than
this size.

5 FPGAs

This paper so far seems focused on ASIC design sys-
tems. However, all of the same constraints apply to
FPGA design systems, except that FPGA design sys-
tems hit the problems several years later.

Consider the idea of delay model independence.
Many papers on delay optimization for FPGA’s focus
on the number of levels of LUT’s as as a measure of
the circuit delay. But this model of delay is less accu-
rate when considering FPGA’s which have hard-wired
connections between LUT’s (e.g., Xilinx 4000 or Xilinx
5200 parts) or other hierarchical routing architectures
(e.g., Altera Flex 8000 parts). Also, the wire delay in
many FPGA’s is strongly dependent on the number of
fanout. As FPGA chip sizes become larger, the delay
models used in ASIC design start to look more appro-
priate. Hence, today’s delay-based FPGA optimization
algorithms are at risk of being obsoleted by the use of
more complex timing models for FPGA design.

Consider the constraints of scalability and hierar-
chical design. Most FPGA’s today have complexities
of at most 10,000 Asic-equivalent gates, meaning that
these problems do not exist. However, as FPGA’S ap-
proach the 100,000 gate level, the same complexity
issues hit FPGA synthesis systems. Time-budgetting
and hierarchical design methodologies will have to be

used, resulting in many of the same constraints faced
by Asic synthesis systems. Likewise, algorithms based
on techniques such as BDD’s and Boolean decomposi-
tion techniques will no longer be applicable without
partitioning.

6 Summary

A general theme in this paper is that while delay
optimization and area versus delay tradeoffs are the
most important aspect of synthesis algorithms, very
few published techniques do a good job at this trade-
off. The reasons are easy to see. Delay optimization,
especially in a delay-model independent fashion, is dif-
ficult to do, except in the last stages of optimization.
Many of the techniques that are used are ad-hoc and
do not fit into a nice theoretical framework.

A second motivation of this paper is to point out
that while the general framework for synthesis algo-
rithms is clear, there is still potential for more research
in many aspects of logic synthesis algorithms.

References

[1] R. Ashenhurst. The decomposition of switch-
ing functions. In Proceedings International Symp.
Theory of Switching, pages T4-116, April 1959.

[2] C. L. Berman, J. L. Carter, and K. F. Day. The
fanout problem: From theory to practice. In Ad-
vanced Research in VLSI, Proceedings of the De-
cennial Caltech Conference on VLSI pages 69-99.
MIT Press, 1989.

[3] L. Berman and L. Trevillyan. A global approach
to circuit size reduction. In Advanced Research in
VLSI, 5th MIT Conference, pages 203-214. MIT
Press, 1988.

[4] R. Brayton and C. McMullen. The decomposition
and factorization of boolean expressions. In Pro-
ceedings International Symposium on Circuits and

Systems (ISCAS-82), pages 49-54, 1982.

[5] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. 1EEE Trans. Comp., C-

35(8):677-691, August 1986.

[6] Shih-Chieh Chang and Mal-
gorzata Marek-Sadowska. Perturb and simplify:
Multi-level boolean network optimizer. In Proceed-
wngs International Conference on Computer-Aided

Design (ICCAD-94), November 1994.

[7] K.-T. Cheng and Luis A. Entrena. Multi-level logic
optimization by redundancy addition and removal.
In European Conf. on Design Automation (EDAC-
93), February 1993.

[8] D. Dietmeyer and Y. Su. Logic design automa-
tion of fan-in limited nand networks. IEEE Trans.

Comp., C-18(1):11-22, January 1969.

[9] D. Gregory, K. Bartlett, A. de Geus, and
G. Hachtel. Socrates: A system for automatically
synthesizing and optimizing combinational logic.
In Proceedings 23th Design Automation Confer-
ence (1986), pages 79-85, June 1986.

[10] F. Hill and G. Peterson. Introduction to Switching
Theory and Logical Design. John Wiley & Sons,
Inc., 3rd edition, 1981.

[11] C. E. Leiserson and J. B. Saxe. Optimizing Syn-
chronous Systems. In Journal of VLSI and Com-
puter Systems, pages 41-67, 1983.

[12] Y. Matsunaga and M. Fujita. Multi-level
logic optimization using binary decision dia-
grams. In Proceedings International Conference on
Computer-Aided Design (ICCAD-89), pages 556—
559, November 1989.

[13] S. Muroga, Y. Kambayashi, H. Lai, and
J. Culliney. The transduction method. IEEE Trans.
Comp., 38(10):1404-1424, October 1989.

[14] J. Roth and R. Karp. Minimization over boolean
graphs. 1BM J. Res. Develop., 6(2):227-238, April
1962.

[15] R. Rudell. Logic Synthesis for VLSI Design. PhD
thesis, University of California, Berkeley, 1989.

[16] M. Schulz, E. Trischler, and T. Sarfert. Socrates:
A highly efficient automatic test pattern genera-
tion system. IEEE Trans. Comp. Awded. Design,
CAD-7(1):126-137, January 1988.

[17] N. Shenoy and R. Rudell. Efficient implemen-
tation of retiming. In Proceedings International
Conference on Computer-Aided Design (ICCAD-
94), November 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

