
A Description Language for Design Process Management*

Peter R. Sutton and Stephen W. Director
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh PA 15213

Abstract
A language for defining design discipline characteristics is pro-
posed. Design discipline characteristics such as abstraction levels,
design object classifications and decompositions, design objec-
tives, and design methodologies can be defined in a simple
machine and human readable form. The language, DDDL, has led
to the development of a user interface for Minerva II, a design pro-
cess management tool, which, when configured with a design disci-
pline description, can be used to aid teams of designers in the
solution of complex multi-disciplinary design problems. DDDL
and user interface examples are presented.

1 Introduction
As the design problems that today’s electronic designers face
become ever more complex, and the time in which these designs
must be carried out becomes ever shorter, the need has emerged for
better design management services to aid designers in their task
[8]. Initial electronic design (CAD) frameworks provideddesign
data management in which design file formats, locations and ver-
sions were managed by the design system anddesign tool manage-
ment in which tools were provided with tool encapsulations [4].
More recent CAD framework systems, both commercial and
research systems (e.g. [9],[10] and [11]), have progressed to a
higher level of design management - that ofdesign flow manage-
ment or design methodology management [8] in which the
sequence of tasks a designer must carry out to solve a design prob-
lem are managed and possibly automated. These services, how-
ever, are no longer sufficient for today’s complex design processes
due to two main design trends.

One design trend is the move to carrying out design at higher lev-
els of abstraction. For example, digital systems once designed at
the gate level using schematics are now designed textually at the
RTL level of abstraction, or at the behavioral level of abstraction
using Hardware Description Languages (HDLs) such as Verilog
and VHDL. Limitations are arising though, because as device sizes
decrease and interconnect delays become more important, design
at higher levels of abstraction is becoming increasingly dependent
on performance characteristics only observable at lower levels of
abstraction. Thus, while design is simpler at the higher levels of
abstraction, difficulties arise because it is necessary to manage data
interactions between the levels of abstraction.

A second design trend is the move towards concurrent multi-disci-
plinary design so as to reduce design times and hence time-to-mar-

ket. Examples of this include hardware / software codesign, in
which the hardware and software parts of an electronic system are
designed concurrently; and circuit / process codesign, in which an
integrated circuit and its associated manufacturing process are
designed together. It is necessary to better manage design prob-
lems of this type, coordinating information between individual
designers and the different parts of the design.

To better aid designers in solving these more complex problems,
design management services themselves must move to a higher
level of abstraction. This level, known as thedesign process man-
agement level [1], provides support for, and control of, all aspects
of the solution of design problems including conceptual (or explor-
atory) design, problem decomposition, backtracking, constraint
propagation and management, and design history management. It
also encompasses support for existing design management ser-
vices provided at lower levels of abstraction, including data, tool,
flow and methodology management.

The provision of these design process management services
requires someknowledge of design discipline characteristics and
how they interact. Typically, much of this knowledge has been
kept in designers’ heads and on paper. As design processes become
more complex, it is becoming necessary for design process man-
agement services to be computer supported. In order to do this we
must capture the design discipline knowledge. We have developed
a language called DDDL (forDesignDisciplineDescriptionLan-
guage) to accomplish this task.

DDDL has grown out of the work by Jacome [5],[6] which, in pro-
posing a formal theory of design, established that design processes
can be described in terms of these characteristics. The Minerva
Design Process Manager [7] developed by Jacome, however, did
not provide a mechanism for capturing design discipline knowl-
edge and was not able to be configured for arbitrary design disci-
plines. DDDL was developed to overcome this deficiency.
Minerva II, which implements a DDDL parser, is easily configured
with design discipline information and can manage design prob-
lems in that discipline (or disciplines). DDDL has also allowed for
the realization of a more intuitive user interface in Minerva II. The
new user interface allows for simpler management of design prob-
lems and improves the efficiency of the design cycle.

Characteristics of design disciplines which can be described using
DDDL include:

• the abstraction levels relevant to a discipline;
• the types of design objects within a discipline and how these

design objects can be decomposed;
• the types of design problems solvable in a discipline and

how they can be decomposed;
• the design methodologies that exist for solving problems

within a design discipline; and
• the restrictions each design methodology imposes upon a

designer.
Before describing DDDL and Minerva II, it is useful to discuss
how our work relates to other work in this field. As stated above,

* This work is supported by the Semiconductor Research Corpora-
tion under contract # 96-DC-068.

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

design process management is a level of service above that pro-
vided by current commercial and research CAD frameworks.
These frameworks (e.g. [9], [10] and [11]) provide flow-based
execution management and are able to manage simple methodolo-
gies but do not provide the higher level management of decompo-
sition, backtracking, conceptual design and constraint propagation
that is essential for more efficient design cycles. The lower level
services provided by these systems are still important though, as it
is through these services that a design process manager is able to
manage tool executions and data.

To our knowledge, there are no existing languages for formally
describing the electronic design process at a high level. Previous
languages have been restricted to describing lower level details,
for example, the task specification language of Chiueh et al. [2],
which encapsulates tool details and provides for the sequencing of
tasks but, unlike DDDL, doesn’t describe the higher level details
of a design discipline. Dewey [3] developed structures for repre-
senting properties and constraints in a design domain (in this case
DSP filters) so as to support conceptual design. Again, information
about decompositions, possible problems and methodologies nec-
essary for managing the complete design process is missing.

The remainder of this paper is organized as follows. In Section 2
we define the terms that we use in this paper. In Section 3 we
present the details of the design discipline description language,
and in Section 4 describe the details of the user interface devel-
oped for the Minerva II Design Process Manager. Finally, in Sec-
tion 5, we draw some conclusions.

2 Terminology
To facilitate our discussion of DDDL, we first define the concepts
that are important in describing a design discipline. These defini-
tions are based on the design theory developed by Jacome [5],[6].

Design Discipline
A design discipline is a “field of design” encompassing all design
objects of some broad type. For example, “digital circuit design”
and “software design” are design disciplines. A design discipline
may be much broader than this though, encompassing several of
what may usually be considered design disciplines. For example,
the electronic system design discipline may encompass hardware
design - from digital to analog, from integrated circuit to printed
circuit board; and software design - from operating systems to
application programs. In the context of DDDL, we will restrict the
use of the termdesign discipline to describing the field of design
which encompasses all design fields of interest - in our case, elec-
tronic systems design.

Design Domain
A design domain is a design object classification or type. For
example, “Hardware System” and “Processor” are design
domains. Design objects in a given design domain are character-
ized by having certain types ofproperties. For example, design
objects in the “Processor” design domain may have the properties
“instruction set”, “addressing modes”, “timing specifications” and
“unit cost”. The design domains in a design discipline can be
arranged in adesign domain hierarchy, where the top level design
domain corresponds to the design discipline itself, and lower level
design domains inherit the properties of the higher levels. For
example, design objects in the design domain “Digital Signal Pro-
cessor” may have all of the properties of the “Processor” design
domain, along with the additional properties “FFT speed” and
“Maximum sample rate”. We say that the design domain “Digital
Signal Processor” is aspecialization or subtype of the design
domain “Processor”. Fig. 1 shows a (partial) design domain hierar-
chy for the “Electronic System” design discipline. “Electronic Sys-
tem” (which is the top level design domain) has the specializations

“Hardware System” and “Software System”. Note that it is possi-
ble for a design domain to be a specialization of more than one
design domain, for example, in Fig. 1 the design domain “Hard-
ware / Software System” specializes both the “Hardware System”
and “Software System” design domains, meaning that it has all the
properties of both hardware systems and software systems.

Design Objective
A design objective is a design function to be carried out. For exam-
ple, “Design”, “Synthesize”, “Verify”, and “Optimize” are all
design objectives. Design objectives are context dependent. That
is, the design domain, target abstraction level and starting point all
impact the meaning of a particular objective. This will become
clearer below in our discussion of a design problem.

Design Problem
A design problem can be specified in terms of a design objective
for a target design domain at a target abstraction level for some
given input properties. Thetarget design domain is the design
object type to be created (or operated on), and thetarget abstrac-
tion level is the abstraction level at which we wish to represent our
final design object. An example of a design problem is: “Design a
hardware system at the layout level having a given behavioral
description (at the behavioral level of abstraction), using a particu-
lar 0.5µm CMOS process and having a required area no larger than
1cm2”. In this example, the design objective is “design”, the target
design domain is “hardware system”, the target abstraction level is
“layout” and the input properties are the behavioral description,
the fabrication process, and the required area.

Design Decompositions
Design problem decomposition is the act of breaking up a design
problem into smaller, easier-to-solve problems. Design problem
decomposition can take one of two forms - design domain decom-
position or design objective decomposition.Design domain
decomposition is the breaking up of the design object into sub-
objects with the same design objective being applied to each. For
example, the design problem “design a hardware system” can be
decomposed into the sub-problems “design a processor system”
and “design a memory system”.Design objective decomposition
involves breaking up the design goal into sub-goals which apply to
the same whole design object. For example, the design problem
“design a hardware system” could be decomposed into the sub-
problems “specify a hardware system”, “synthesize a hardware
system” and “verify a hardware system”.

When decomposing a problem,design constraints are often gener-
ated. Design constraints relate the different parts of a design
object. For example, when decomposing a hardware system into a

Fig. 1. An example (partial) design domain hierarchy for the
“Electronic System” design discipline.

Electronic
System

Hardware
System

Processor Hardware /
Software
System

Software
System

Digital Signal
Processor

Increasing
Specialization

Memory

Image
Processing

System

ProgramOperating
System

processor system and a memory system, several constraints may
be generated. One constraint might apply to the interface between
the two parts, ensuring that the two sub-systems will work
together. Another constraint might relate the area of the two parts
to that of the whole, ensuring that the restriction on the overall
hardware system’s area is not unknowingly violated.

Design Methodology
A design methodology is a specific method, approach and/or set of
rules to be followed when solving a given design problem. For
example, it may take the form of rules concerning the order of per-
forming certain design tasks, how problems are to be decomposed,
or, which particular tools are to be used for a certain task. Typi-
cally a company or group will specify a methodology for designers
to follow so as to ensure consistent design results.

3 DDDL - A Design Discipline Description
Language

In order to better manage the design process, a design process
management system must have some knowledge of the design dis-
cipline characteristics described above and how they interact. In
order to capture this knowledge, we have developed a language
called DDDL.

DDDL can be used to describe all of the concepts defined above.
Specifically, the language can describe abstraction levels; design
domains and their specializations, properties and decompositions;
design objectives and their input properties, output properties and
decompositions; constraints; and design methodologies. We now
consider each of these in turn.

3.1 Abstraction Levels
A design discipline may have many levels of abstraction. For
example, the digital circuit design discipline often has behavioral,
RTL, gate (or logical), transistor and layout levels of abstraction.
Not all design objects in the discipline need to be characterized at
all levels of abstraction, thus, a memory circuit may only be repre-
sented at the transistor and layout levels of abstraction, but not at
higher levels. In fact, it may be impossible to characterize some
design objects at some levels of abstraction. This is the case for the
electronic system design discipline. This discipline covers both
hardware design as well as software design, so software objects
can not be represented at any of the abstraction levels for hardware
and hardware objects can not be represented at any of the software
abstraction levels. Abstraction levels in DDDL are specified with a
simple declaration as in this example1 for the electronic system
design discipline depicted in Fig. 1:

ABSTRACTION LEVELS { “Behavior”, “RTL”,
“Gate”, “Transistor”, “Layout”, “Source
code”, “Object code”, “Binary” };

3.2 Design Domains
Design domain declarations specify the various characteristics of
design domains: defining the abstraction levels for the design
domain including the ordering of the abstraction levels; listing
which other design domains the domain specializes (or inherits
properties from); and, listing the properties specific to the design
domain. The following is an example design domain declaration
using DDDL:

DOMAIN “Hardware System” {
IS A SPECIALIZATION OF “Electronic System”;
HAS ABSTRACTION LEVELS {

“Behavior”, “RTL”, “Gate”, “Transistor”,
“Layout”

1. Note that in all code examples, indenting is for clarity only
and an ellipsis indicates omitted detail.

};
HAS PROPERTY “Cost” {

AT ABSTRACTION LEVELS all {
REAL, UNITS “$”, RANGE (“Cost”>0)

};
};
HAS PROPERTY “Behavioral Description” {

AT ABSTRACTION LEVEL “Behavior” {
DESCRIPTION IN LANGUAGE “Verilog”

};
AT ABSTRACTION LEVEL “RTL” {

DESCRIPTION IN LANGUAGE “RTL” OR
“Verilog”

};
...

};
HAS PROPERTY “Structural Description” {

AT ABSTRACTION LEVEL “Layout” {
DESCRIPTION IN LANGUAGE “Magic file”,

“CIF” OR “GDS II”
};

};
...

};

The example specifies that the design domain “Hardware System”
specializes the “Electronic System” design domain, has the given
abstraction levels (listed in decreasing order of abstraction), and
has several properties.

Abstraction levels need not be specified for a design domain, in
which case, the design domain inherits the abstraction levels of the
design domain it specializes from (or, in the case it specializes
more than one design domain, the intersection of the abstraction
levels for each design domain it specializes). It is also possible to
specify abstraction levels in addition to those that are inherited,
rather than specifying levels absolutely.

Design domain properties can be one of several types: integer, real,
string, boolean, option or description. Option properties are like
enumerated types and may be restricted to a choice of one value
from a set, or the choice of a subset of values. Description proper-
ties are for specifying longer textual or graphical information.
Most of the property types require additional, possibly optional,
information to be specified. Integer and real types can optionally
have some units and a range limitation specified. String types can
have a unit specification if desired. Option properties require a list
of the possible options to be specified and whether one or many
can be selected. Description properties require a list of the possible
description languages to be specified.

Properties may be restricted to certain abstraction levels and may
have different types or details at different abstraction levels.

3.3 Design Domain Decompositions
Many types of design objects can undergo design domain decom-
position, indeed it is possible that a design object may have several
possible decompositions. Design domain decompositions are spec-
ified within domain declarations as shown in this example:

DOMAIN “Hardware System” {
...
HAS DECOMPOSITION {

2+ “Hardware System”
};
HAS DECOMPOSITION CPU+Memory {

1+ “Processor”, “Memory”, “Interconnect”,
1+ “Logic Block”

};
};

Each decomposition sub-statement specifies the number of design
objects of each of the decomposition design domains. This number

may be an absolute specification (the default is 1) or a range, for
example, “1+” meaning one or more, or “1-5” meaning one to five
inclusive. Design objects may decompose into others of the same
type or domain as shown in the first decomposition specification
above. Decompositions are optionally named (e.g.CPU+Memory)
for use in methodology definitions. This name is only used within
the DDDL file.

3.4 Design Objectives
As stated above, design objectives need to be specified within the
context of a target design domain and abstraction level, and some
input properties. In addition to these characteristics, a design
objective declaration specifies the output properties of the design
objective and how the design objective may be decomposed. A
design objective name (such as “Design”), a target design domain
name (such as “Electronic System”), a target abstraction level
(such as “Behavior”) and a given set of input properties must
uniquely determine the output properties and the available decom-
positions. It is possible that the set of input properties may be
empty; this corresponds to starting a problem from scratch (e.g.
some design and specification problems). At least one output prop-
erty must be specified, even if it is just a boolean value as may be
the case with a verification design objective. The following is an
example of a partial design objective declaration in DDDL:

OBJECTIVE “Design” {
APPLIES TO DOMAIN “Electronic System”

AT TARGET ABSTRACTION LEVEL “Behavior”
WITH INPUT PROPERTIES none {

HAS OUTPUT PROPERTIES “Behavioral
Description”, “Behavior verified”;

HAS DECOMPOSITION partial_design {
“Specify”, “Verify”

};
HAS DECOMPOSITION complete_design {

“Specify”, “Verify”, “Optimize”
};

};
APPLIES TO DOMAIN “Software System”
...

};

As in domain decomposition specifications, the objective decom-
positions specified in the objective declaration may be given a
name (e.g.complete_design) for later use in a methodology
declaration.

3.5 Constraints
Constraints are declared to relate properties of various design
objects. Multiple design objects come into existence only during
design domain decompositions, so, it is within DDDL design
domain decomposition specifications that constraints are declared.
The following is an example DDDL constraint specification relat-
ing design object areas and delays across a design domain decom-
position:

DOMAIN “Hardware System” {
...
HAS DECOMPOSITION CPU+Memory {

1+ “Processor”, “Memory”,
“Interconnect”, 1+ “Logic Block”

}
WITH CONSTRAINT (“Area” = SUM(ALL)),
WITH CONSTRAINT (“Delay” = MAX(ALL))

;
... };

The first constraint specifies that the “Area” property of the hard-
ware system is equal to the sum of the “Area” properties of the
component parts. The second constraint specifies that the “Delay”
property of the hardware system is equal to the largest “Delay”
property among the component parts. More complicated constraint

definitions are possible, but space precludes us from giving further
details.

3.6 Design Methodologies
DDDL allows several types of methodology specifications. The
following may be specified for a given methodology:

• the design problems the methodology is available for;
• the particular design domain decompositions which are to be

used;
• the particular design objective decompositions which are to

be used;
• the default design options (e.g. fabrication technology); and
• the tools which must be used (if available) for certain tasks.

A methodology declaration in DDDL specifies all of the above.
The following is an example declaration:

METHODOLOGY “Company X’s methodology” {
APPLIES TO PROBLEM “Design”

DOMAIN “Hardware system”
WITH TARGET ABSTRACTION LEVELS {

“Layout”, “Transistor”
};

REQUIRES “Hardware System” DOMAIN
DECOMPOSITION CPU+Memory;

REQUIRES “Design” OBJECTIVE DECOMPOSITION
complete_design;

HAS DEFAULT OPTION “CMOS” FOR PROPERTY
“Fabrication style” OF DOMAIN
“Integrated circuit”;

HAS DEFAULT LANGUAGE “Verilog” FOR PROPERTY
“Behavioral description” OF DOMAIN
“Hardware system” AT ABSTRACTION LEVEL
“Behavior”;

REQUIRES TOOL “HSpice” FOR OBJECTIVE
“Simulate” DOMAIN “Integrated circuit”
AT ABSTRACTION LEVEL “Transistor”;

...
};

4 A Design Process Management User Interface
The development of DDDL has led to the development of Minerva
II, a new version of the Minerva Design Process Manager [7] with
a completely revised user interface. Specifically, problem defini-
tion, selection, backtracking and decomposition are now handled
in a more intuitive way. In this section, we illustrate, through user
interface screen-shots, how Minerva II, configured with a DDDL
design discipline description is able to manage a design process.

It is important to note that Minerva II operates at thedesign pro-
cess level - a level of abstraction above that of today’s CAD frame-
works. Minerva II, however, can use the executive and data
management services of most existing CAD frameworks. This is
accomplished through a “framework encapsulation” interface
enabling Minerva II to use the services which the executive pro-
vides. A prototype framework encapsulation of the Hercules Task
Manager [9] has been implemented. We forego a discussion of this
type of encapsulation so as to concentrate on the designer’s view
of design process management.

4.1 Design Problem Definition
Designers using Minerva II are led through the problem solving
cycle shown in Fig. 2. This figure illustrates the case in which sev-
eral design problems can be considered concurrently.

The first step of the problem solving cycle, calledproblem defini-
tion, involves the selection of a target design domain and a design
objective. This is achieved through a problem definition window
as shown in Fig. 3. On the left side of the window, the hierarchy of
design domains declared for the design discipline is shown. This

hierarchy is directly derived from the DDDL description used to
configure Minerva II. On the right side of the window is a listing
of all the design objectives defined for the design discipline. The
problem definition window is constructed in such a way that if a
design domain is selected first, only the design objectives compati-
ble with that design domain become available for selection by the
designer. Alternatively, if a design objective is selected first, only
the design domains compatible with that design objective are made
available for selection by the designer. Once a design domain and
design objective have been selected, the target abstraction level
may be specified (as shown in Fig. 4) or, by default, chosen to be
the lowest abstraction level for that design domain/design objec-
tive combination. It is also possible for the designer to specify a
design methodology to follow. If a design methodology is speci-

Problem Selection

Fig. 2. Minerva II’s problem solving cycle. The dashed line
indicates that several design problems may be being solved
concurrently.

Problem Definition

Alternatives Exploration

Design Plan Generation

Design Plan Validation

Design Plan Execution

Execution Validation

Problem
Solving
Steps

Alternatives Exploration

Design Plan Generation

Design Plan Validation

Design Plan Execution

Execution Validation

Fig. 3. Problem definition. A design domain and design objective
must be selected in order to define a design problem. In this
example, the design domain “Hardware system” and design
objective “Design” have been selected.

Fig. 4. Problem definition - abstraction level selection. A target
abstraction level may be specified for the given design domain
and design objective. Only those abstraction levels at which the
design objective is defined for the design domain may be selected.

fied, any restrictions contained within the methodology will be
enforced by the system during the problem solving process.

4.2 Problem Selection
Minerva II’s problem status and selection window, shown in Fig.
5, is used to select a problem to solve (or to join a solution process
in progress). All active problems are displayed and sub-problems
of any given problem can optionally be displayed. Adjacent to
each problem description is the current status of that problem.
Problems can either be in progress, that is, in one of the five prob-
lem solving stages shown in Fig. 2, ready to be addressed, solved,
or waiting for the solution of some other problem - either a sub-
problem or a sibling problem (a different sub-problem of the same
parent). Any problem that is ready to be addressed can be selected
for solution and any problem whose solution is in progress can be
continued. Multiple problems (or sub-problems) can be addressed
concurrently (by the same or different users) if desired.

4.3 Problem Solving
After problem selection an alternatives exploration step is under-
taken. During this step the designer explores possible trade-offs for
the design problem at hand and specifies any restrictions on the
problem (e.g. maximum power and area). Once this step is fin-
ished, design plan generation occurs. It is during this step that the
framework executive system is queried as to which tools are avail-
able to directly solve the design problem under consideration. If
appropriate tools are available, then Minerva II tries to validate the
design plan by querying the designer about which of the generated
design plans are acceptable. If any are acceptable, Minerva II
instructs the framework executive system to execute one of the
alternative plans and, when finished, presents the result(s) to the
designer for validation. If at any time an impasse occurs (for exam-
ple, no tools are available to solve the design problem directly, or
the user rejects the generated design plans or execution result),
Minerva II facilitates either decomposition of the design problem
into design sub-problems and starts the design problem selection/
design problem solution cycle again; or backtracking to an earlier
design state. We discuss each of these in the next two sections.

4.4 Problem Decomposition
Design problem decomposition can be achieved either through
design domain decomposition or design objective decomposition.
When opting to decompose, the user is shown all available decom-
positions in a window as shown in Fig. 6, and may choose any one.
Possible decompositions are determined from the DDDL design
discipline description that is used to configure Minerva II, with the
choice being limited if a methodology was specified during design
problem definition. When a design domain decomposition is cho-
sen, the sub-problems created appear in the Minerva II problem

Fig. 5. Minerva II’s Problem Status and Selection Window. All
active design problems (and their sub-problems) in the system are
shown.

status and selection window. Sub-problems created through a
design domain decomposition will all be ready to be addressed. If
a design objective decomposition is chosen, the sub-problems
must be solved in the order specified in the design objective
decomposition declaration. Only the first sub-problem will be
ready to be addressed, the others will be waiting on the solution of
sibling problems.

When a design domain decomposition is chosen, an implicit
recomposition sub-problem is created also. This sub-problem is
able to be addressed when all of the other sub-problems have been
solved.

4.5 Backtracking
When an impasse occurs (or at any time if desired), the designer
may backtrack to a previous design state. When backtracking, the
designer will choose a problem to backtrack to, as shown in Fig. 7.
Any design problem in the hierarchy above the current design
problem may be backtracked to - in which case the system returns
to that design problem and makes it ready to be addressed again. If
the current design problem is chosen to backtrack to, the designer
may return to any previous problem solving step for that design
problem (e.g. alternatives exploration).

4.6 DDDL Advantages and Limitations
Advanced design process management, as provided by design pro-
cess managers like Minerva II, has several advantages over tradi-
tional approaches. Working at the design process level, designers
are able to focus on the design problems being solved, rather than
on low level tool and data manipulations. Interactions between
designers working in different disciplines (e.g. hardware and soft-
ware design) can be managed. Consistency constraints can be
monitored so that inconsistencies can be detected earlier and back-
tracking commenced sooner. Both backtracking and problem
decomposition can be managed. All of these features can lead to
shorter design cycles.

There are few limitations to providing these extra services. One
problem which may arise is incompleteness in the design disci-

Fig. 6. An example problem decomposition selection window. The
designer may choose one of the available decompositions for the
current problem.

Fig. 7. Example problem backtracking selection window. The
designer may choose a problem to backtrack to.

pline description, for example, in the case where a new type of
artifact is being designed. In this case, the designer may have to
consider the artifact at a higher level in the design domain hierar-
chy (e.g. as a hardware system instead of the specific system type),
so the design process management system may not be able to assist
the designer with all aspects of the design problem solution. Some
useful services, such as decomposition and backtracking manage-
ment may still be available, however.

5 Conclusions
We have presented DDDL, a language for describing design disci-
pline characteristics such as abstraction levels, design object clas-
sifications or design domains, design domain properties and
decompositions, design objectives and their decompositions, con-
straints, and, methodologies. DDDL allows the capture of design
discipline knowledge into a simple human and machine under-
standable form. The description, once captured, can be used by
design process management software to help designers manage the
solution of their design problems. Support can be provided for
managing constraints, backtracking and problem decomposition
among other things. As design problems become more complex,
these capabilities will be increasingly important for the success of
electronic design processes. We have also illustrated how the Min-
erva II Design Process Manager, with an improved user interface,
can be used to manage the problem solving process. Although
DDDL was developed as a textual language, graphical representa-
tion of many of the concepts is possible and indeed helpful. A
graphical editor is currently under development to allow the sim-
pler creation of design discipline descriptions.

References
[1] J. B. Brockman, T. F. Cobourn, M. F. Jacome, and S. W. Director,

“The Odyssey CAD Framework,”IEEE DATC Newsletter on Design
Automation, Spring 1992.

[2] T. F. Chiueh, R. H. Katz, and V. D. King, “Managing the VLSI
Design Process,” inProceedings of Computer-Aided Cooperative
Product Development, MIT-JSME Workshop, pp. 183-199, Nov.
1989.

[3] A. M. Dewey and S. W. Director, “Yoda: A Framework for the Con-
ceptual Design VLSI Systems,” inProceedings of 1989 IEEE Inter-
national Conference on Computer-Aided Design (ICCAD), pp. 380-
383, Nov. 1989.

[4] D. S. Harrison, A. R. Newton, R. L. Spickelmier, and T. J. Barnes,
“Electronic CAD Frameworks,”Proceedings of the IEEE, vol. 78,
no. 2, pp. 393-417, Feb. 1990.

[5] M. F. Jacome,Design Process Planning and Management for CAD
Frameworks. Ph.D. Thesis, Carnegie Mellon University, Department
of Electrical and Computer Engineering (Report CMUCAD-93-65),
Nov. 1993.

[6] M. F. Jacome and S. W. Director, “A formal basis for design process
planning and management,” inProceedings of 1994 IEEE Interna-
tional Conference on Computer Aided Design(ICCAD), pp. 516-
521, Nov. 1994.

[7] M. F. Jacome and S. W. Director, “Design process management for
CAD frameworks,” inProceedings of 29th ACM/IEEE Design Auto-
mation Conference, pp 500-505, June 1992.

[8] S. Kleinfeldt, M. Guiney, J. K. Miller, and M. Barnes, “Design Meth-
odology Management,”Proceedings of the IEEE, vol. 82, no. 2, pp.
231-250, Feb. 1994.

[9] P. R. Sutton, J. B. Brockman, and S. W. Director, “Design Manage-
ment Using Dynamically Defined Flows,” inProceedings of the
ACM/IEEE Design Automation Conference, pp. 648-653, June 1993.

[10] K. O. ten Bosch, P. Bingley, and P. van der Wolf, “Design Flow
Management in the NELSIS CAD Framework,” inProceedings of
28th ACM/IEEE Design Automation Conference, pp. 711-716, June
1991.

[11] P. van den Hamer and M. A. Treffers, “A data flow based architec-
ture for CAD Frameworks,” inProceedings of 1990 IEEE Interna-
tional Conference on Computer-Aided Design(ICCAD), pp. 482-
485, Nov. 1990.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

