
Efficient Communication in a Design Environment*

Idalina Videira+, Paulo Veríssimo++, Helena Sarmento+

INESC - Instituto de Engenharia de Sistemas e Computadores

Rua Alves Redol, 9, 1000 Lisboa, Portugal

Abstract

This paper presents a new communication service. The novelty of
the work resides in the distributed architecture adopted which is
based on communication agents in every tool and in every host of
the design environment. The importance of the work is demon-
strated by the results achieved: improved performance, reduced
network traffic and fault-tolerance to host and network failures.

1 Introduction
Current Design Systems are composed of an increasing number of
very specialised tools, supported by a software infrastructure pro-
viding another large set of tools and services, with all of these
components distributed over a network. To achieve the interopera-
bility needed in such an environment, the Communication Service
plays a fundamental role.

Three key aspects have to be considered in a Communication
Service for the achievement of good tool interoperability support.
Firstly the performance, because it has a large influence on the
overall performance of Design Systems. Then, thecompleteness of
the communication mechanisms offered, which is essential to
facilitate the task of the tool developer/integrator. Finally, the
dependability, which is gaining importance as Design Systems
become more complex and distributed. For dependability, at least
continuous availability should be provided, in order to prevent
tools from becoming isolated. Also, security authentication mech-
anisms are needed to protect data from being accessed by non-
authorised users. Until now these aspects have not been considered
in the communication services used in EDA.

In this paper a new communication service, addressing the aspects
referred to above, is presented. This service offers three basic com-
munication mechanisms: efficient point-to-point data exchange,
remote data access with different degrees of location transparency
and multicast of events within Design Sessions and Design Teams.

The novelty and the importance of the work presented resides
mainly in the approach followed and in the results achieved. Hav-
ing dependability and performance as driving goals, a distributed
architecture was adopted, with communication agents in every
host and in every tool of the environment. The group orientation
paradigm was followed, with the environment structured in groups
where multicast communication is used.

As will be demonstrated later on, the advantages of the approach
followed over current centralised solutions are: a significant
improvement in performance, a reduction in network traffic, and
fault-tolerance to host and network failures.

In this paper we start by analysing currently available communica-
tion technologies. Then, we describe the communication mecha-
nisms necessary in a Design Environment. We present the
Communication Service developed and the results achieved so far.
Finally, we draw some conclusions and describe future work.

2 Communication technologies
Conventional communication technologies include message pass-
ing and remote procedure calls (RPC). The evolution of distributed
systems gave raise to other communication paradigms, like multi-
cast and group communication. The following is a short overview
of relevant available communication technologies. In [21] a more
detailed description can be found.

RPC has been a very popular technique for building distributed
systems, because it makes a remote procedure call look like an
ordinary local call. Several RPC implementations are currently
available. Some are widely used, such as the ONC RPC [16] from
Sun and DCE RPC [12] from the Open Software Foundation,
based on the previous NCS RPC [5] from HP/Apollo.

Though, the simplicity of the RPC programming model is
achieved at the expense of flexibility: by definition a remote proce-
dure call is a blocking and asymmetric operation. Flexibility can
be achieved with messaging systems, mainly with those providing
low level interfaces. Since programming at low level is hard and
requires a deep knowledge of the underlying protocols, some new
messaging systems [18], [25], [20] have been developed, offering
higher level interfaces without losing too much of the flexibility
provided by lower levels. The main advantage of using messaging
systems is the possibility of building highly concurrent systems in
a relatively easy way, having better control over the information
exchange and flow than with RPC. Nevertheless, for purely block-
ing calls, RPC technology is still easier to use than messaging sys-
tems.

In an attempt to overcome the limitations of the RPC model, sev-
eral features have been added to RPC systems, such as the usage of
threads packages for simulating non-blocking calls [12] or the pos-
sibility of calling multiple instances of a procedure in parallel [19].
However, in our opinion, these features contradict the RPC model.

* This work was partially supported by European Commission Esprit Pro-
gramme under Project JESSI-COMMON-FRAME (#7364) and by
JNICT under Project STRDA/C/TIT/78/9.

+ Also affiliated with Instituto Superior Técnico, Technical University of
Lisbon, Portugal.

++ Also affiliated with Faculdade de Ciências, University of Lisbon, Portu-
gal.

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

Other communication mechanisms based on models addressing
more naturally distributed applications’ needs should be used/
developed.

One of the most popular paradigms used to build distributed sys-
tems is the “object-orientation”. Management of distributed objects
and communication mechanisms to support them, are now emerg-
ing technologies. Those mechanisms are mainly based on object
brokers or traders that forward requests sent by an object to the
appropriate providers. The Common Object Request Broker Archi-
tecture (CORBA) [2] from the Object Management Group (OMG)
is the best known of these communication architectures. However,
the communication model used in CORBA is nothing more than a
generalisation of the remote procedure call paradigm.

The technologies seen so far only permit point-to-point communi-
cation and invocation of procedures/methods on remote processes/
objects, which may not be adequate in all situations. For instance,
in a group of cooperating tools, where state information about a
shared resource needs to be passed to all tools, it is necessary to
have mechanisms providing one-to-many communication (multi-
cast). Also, to build fault-tolerant systems, when replication tech-
niques are used, many-to-many communication mechanisms
between groups of component replicas are needed.

In Electronic and Software Design environments the need for mul-
ticast communication led to the concept of “multicast message
server”, using the policy of “sending to whom it might concern”.
For that purpose, a centralised server is used, through which all
messages are routed. The message server keeps a record of inter-
ests, previously registered by tools, and delivers the received mes-
sages according to tools’ interests. For CASE environments and
based on this concept, several commercial products are available,
such as ToolTalk from SunSoft, Broadcast Messaging Service from
HP and Multicast Messaging Service from DEC. In the EDA area,
CAD Framework Initiative (CFI) is recommending an Inter-Tool
Communication Service [4] also based on the multicast message
server concept. This concept can also be found, at the commercial
level1, in Cadence Communications Manager [1] (from the former
Valid Logic), which is part of Cadence Design Framework II.

ToolTalk [7] is the most important of the products using the multi-
cast message server approach because it is recommended both as a
COSE (Common Operating Software Environment) and CFI
standard. In spite of this, we believe that it is not the definitive
solution for communication in distributed Design Environments: it
does not provide all the required mechanisms2, which are
described in section 3, its performance is poor and it is not depend-
able. Although, the main ToolTalk limitation is due to its imple-
mentation, which is based on an RPC package. Building a
multicast messaging system on top of an RPC, which is imple-
mented on top of messages, would obviously result in an inefficient
product.

In the distributed systems world, the concept of group orientation
has lately been receiving great attention. Following this concept,
distributed systems are structured in groups of cooperating tools.
This type of organisation raises problems, such as maintaining con-
nectivity, managing group membership, doing reliable multi-par-
ticipant communication, etc. ISIS [8] is one of the most important

1. Other commercial design frameworks and systems were investigated
(such as Mentor Graphics, Synopsis and Viewlogic) and no particular
inter-tool communication system is referred. Either files or, specially in
simulation backplanes, point-to-point communication are currently used.

2. See page 5 of [3] for a description of the kinds of problems ToolTalk
does not solve.

works using the group orientation paradigm. It provides mecha-
nisms to form and manage process groups and to build group
based software. As the objective of ISIS is to help building tightly
coupled distributed systems, the stress was mainly on dependabil-
ity and less on performance. Consequently, the performance
obtained is not good. For instance, multicasting a message to a
group with one member has performance similar to an RPC call
[8].

Considering the relative importance of the standardisation bodies
and the foreseen impact of their recommendations, the most rele-
vant standardisation activities in the area of Communication Serv-
ices are the ones being carried out by OSF, OMG and COSE3.
Therefore, the relevant standards are, respectively DCE, CORBA
and ToolTalk, being each of them solutions to different types of
communication requirements.

3 Communication requirements in a
Design Environment
In a Design Environment (as in other distributed environments)
several communication mechanisms are required to serve the spe-
cific needs of the components of the environment:

• A point-to-point mechanism with high throughput and/or low
latency for closely cooperating tools. A possible scenario
where this mechanism is needed is a group of cooperating sim-
ulators. These tools are highly inter-dependent and require a
very efficient mechanism to allow synchronisation and share
of results. The communication should be private because, nor-
mally, a group of simulators behaves conceptually as a single
entity.

• A mechanism providing location transparent access to data, for
loosely coupled tools. To make tools independent from each
other, this mechanism should allow them to exchange informa-
tion without needing to know who owns it or where it is
located. A possible scenario is the request of data (e.g., a cell’s
structure) by a simulator. Data can be provided, for instance,
by a schematic editor, a design database or a synthesis tool.
The communication mechanism should be able to find data and
to deliver it to the simulator.

• A multicast mechanism to publish information about important
events. It should be able to multicast events not only to the set
of tools of the Design Session, but also to Design Teams, or to
the whole environment, if required. This mechanism can be
used to advertise the completion of certain design tasks, or
database updates. This kind of information can be useful to
other tools being executed in the same Design Session, to other
members of the same Design Team, or even to other teams.

Currently, there is no single communication service simultane-
ously fulfilling these requirements. Therefore, a tool developer
needs to be familiar with several communication services in order
to integrate his tools and to make them interoperate with the envi-
ronment. In particular in the EDA area, where tool developers are
more concerned with their own CAD algorithms than with net-
working details, it is important to provide auniform andcomplete
solution to the communication requirements.

As designers are always concerned with shortening the design
time, and as the design process implies of a considerable amount
of inter-tool communication,performance of the communication
mechanisms used is of utmost importance.

3. We left CFI out of this list because, in this area, CFI is following COSE.

Furthermore, as the operability of the Design Environment is
increasingly relying on the communication between its compo-
nents, it is necessary to have adependable communication service.
At least, this service should present continuous availability. Also,
authentication mechanisms are needed in order to protect data from
being accessed by non-authorised users. Until now these aspects
have not been addressed in the EDA area.

4 The Message Switcher
This section presents the communication service developed, start-
ing by describing the conceptual architecture and then presenting
the implementation aspects.

4.1 Conceptual architecture
A Design System consists of groups of tightly coupled tools work-
ing together with loosely coupled tools. However, it can be consid-
ered a loosely coupled system, viewing a group of tightly coupled
tools as a single entity.

As “sending messages to whom it might concern” is a good princi-
ple to achieve the tool independence required in loosely coupled
distributed systems, this principle was adopted in the architecture
of our communication service. This architecture is based on an
abstract entity, designated byMessage Switcher(MS) [22], which
acts as a virtual resource provider for requests, through a Request/
Response Service, and as a filter for notifications, through a Notifi-
cation Service. The MS also provides efficient point-to-point com-
munication mechanisms to fulfil the needs of tightly coupled tools.

The Notification Service has basically the functionality of the CFI
ITC Message Server, as it is able to forward messages to tools,
based on message contents and on tools previously registered inter-
ests. A Tool Information Centre (TIC) is used to keep information
about tools, such as status, communication end-points and list of
message interests. The TIC can be loaded statically (reading files)
or dynamically (receiving information from tools). Providing static
tool registration allows the Message Switcher to start the execution
of a tool in reaction to an event. Although it is typically the Session
Manager that starts tools, the Message Switcher can do it, if such a
manager does not exist.

The Request/Response (R/R) Service provides the mechanisms by
which tools make requests and receive responses in a transparent
manner. It uses a Provider Information Centre (PIC) to store and
retrieve the location of remotely callable routines or data (objects).
Location transparency is permitted but not enforced. Therefore,
this service allows clients to specify (or not) providers for their
requests, or to characterise the desired types of providers. The PIC
can also be statically or dynamically loaded. Static loading allows
the Message Switcher to choose a provider that is not running to
serve a particular request.

The Message Switcher uses a Message Logger to record messages,
which can be used, for instance, to update new tools. A garbage
collector is used for removal of unneeded messages.

We have seen how the Message Switcher uses the policy of “send-
ing to whom it might concern”. However, this policy is not always
adequate as the flexibility introduced is achieved at the expense of
efficiency. Closely cooperating tools, which obviously have a deep
knowledge of each other, and frequently exchange large amounts
of information, need very efficient communication mechanisms
and have no need for a policy promoting tool independence. This is
the case, for instance, of two cooperating simulators. To provide an
efficient solution the Message Switcher is able to establish and
maintain point-to-point connections.

Being able to control all services/data in the environment, the
Message Switcher can also be used to control the access to those
services/data using security authentication mechanisms.

With the conceptual architecture presented, the Message Switcher
is able to provide the required mechanisms referred in section 3.
The following section describes the implementation, where per-
formance and dependability requirements were addressed.

4.2 Implementation
Mainly for fault-tolerance and performance reasons, we decided to
adopt a distributed solution in the implementation of the Message
Switcher. As so, the communication service is distributed by two
types of entities: an agent in every host of the Design Environment
- theHost Agent (MSHost), and an agent linked with each tool -
theTool Agent (MSTool) (Figure 1.)4.

Figure 1. The Message Switcher agents.

The group orientation paradigm is followed. Several groups can be
established, such as the Design Session group, the Design Team
group or the Design Environment group. Multicast communication
is used within groups. Most messages are sent within the scope of
Design Sessions. However, messages from a tool in a Design Ses-
sion under a given user ID, can be multicast to any group to which
the user belongs. Assignment of users to groups (others than
Design Sessions, which is automatically done) is done by the sys-
tem administrator or project manager.

Host Agents are responsible for forwarding the notifications
received within a multicast group to the interested local tools, for
finding adequate providers for requests and for forwarding
requests and responses. Each Host Agent only serves and main-
tains information about tools running in its host. This policy makes
the Message Switcher invulnerable to host and network failures: a
host may become isolated but its running tools can continue to
communicate with each other; other Host Agents do not need any
information residing in the isolated Host Agent to proceed. If,
instead of isolated, the host had crashed, communication between
the tools running in the remaining hosts would not be affected.

The information kept in the Host Agent’s TIC about a particular
tool is replicated in the Tool Agent. This strategy allows that:

4. This architecture may resemble the one used in the old NCS Location
Broker [5], which anyway used an extra entity managing information
about all the resources in the environment. However, the functionality
provided by this old product was merely of a location broker, which was
supposed to be used in conjunction with the NCS RPC.

MSHost

Tool A
MSTool

Host 1

Network
Design Session Group ID1

Design Session Group ID2

Tool C
MSTool

Tool B
MSTool

MSHost

Tool D
MSTool

Host 2

Tool A
MSTool

Tool B
MSTool

• When the Host Agent suffers a process crash failure and is
restarted, the Tool Agents can supply it the information about
tools, remaining the tools unaware of the failure.

• Messages the sending tool also receives are delivered immedi-
ately by the Tool Agent.

The Tool Agent provides the application interface to send notifica-
tions and requests to multicast groups, and to establish and main-
tain point-to-point communication channels. The Tool Agent and
its local Host Agent5 have a direct connection6, which is used for:

• announcing joins and leaves from a Design Session by tools;

• registering/unregistering interests by tools;

• advertising exportable data or routines by tools;

• publishing communication end-points for accepting point-to-
point communication, as well as the protocols served by tools;

• sending all messages to tools by local Host Agents;

• acknowledging reception of messages to tools by local Host
Agents in the low level protocol.

Host Agents are thetrue group members. Tool Agentscan send
multicast messages butcan not receive them. Messages only arrive
to the Tool Agent via the local connection with its Host Agent
(after filtering), or from point-to-point connections.

Figure 1. shows the path followed by a notification. In step (1) the
notification is sent by Tool Agent of Tool A to the multicast
address of the Design Session Group and is received by all Host
Agents in that group. Notification forwarding to the interested
tools is then donein parallel by those Host Agents - step (2).

Figure 2. Notifications path.

To deal with requests, and when a provider is not specified, a nego-
tiation occurs between Host Agents in order to find the best pro-
vider. When a provider is found, its local Host Agent forwards it
the request. The reply is later multicast to the group, and, can be
seen by other tools. When a reply does not arrive within a certain
time interval the requester is notified by its local Host Agent.

Tools able to serve point-to-point connections advertise to MS
their communication end-points and protocols served. A tool
requiring to establish a private connection asks MS for the end-
point of the communication partner. The MS behaves in this case
as a name server. Then, tools communicate privately using the MS
Tool Agent interface. Point-to-point communication is based on

5. The “local Host Agent” is the Host Agent residing in the same host as the
tool being referred.

6. Using Unix IPC.

MSHost

Tool A
MSTool

Host 1

Network

Tool C
MSTool

Tool B
MSTool

MSHost

Tool D
MSTool

Host 2

Tool A
MSTool

Tool B
MSTool

(1)
(2)

(2)

SPOOK [18], a communication mechanism built on top of TCP/IP
and Unix IPC.

This implementation of the Message Switcher is inherently fault-
tolerant to network failures, because there is an agent in every host
capable of working isolated. Also, host failures are not a problem,
since a Host Agent only serves tools in its host. Therefore, it is
only necessary to mask process failures of the Host Agent, which
is very easily achieved.

Current status

Multicast communication was implemented with IP Multicasting
[10] through the 4.3BSD socket interface. Since the delivery of
multicast datagrams is not reliable (as in unicast IP datagrams) we
implemented a reliable protocol [23] on top of it. This protocol,
implemented at the process level, includes: 1) sequences numbers
to detect lost, duplicated and out of order messages; 2) retransmis-
sion and message reordering; 3) window based flow control. The
highest quality of service level provided is source ordered delivery.

The Message Switcher is written in C++. The Notification and the
Request/Response Services correspond in total to around 9000
lines of source code. The CFI ITC interface specification [4] was
implemented on top of the Message Switcher in order to allow its
integration in the JESSI-COMMON-FRAME framework7 [15].
This interface corresponds to 1100 lines of source code. The size
of the Tool Agent class library with the CFI interface is 95 Kbytes.

5 Evaluation
In order to evaluate the performance of the Message Switcher, a
series of tests were done to each of the communication mecha-
nisms offered. All tests were conducted on SUN SPARC IPX
workstations with SunOS 4.1.3 on a lightly loaded 10 Mbit/s
Ethernet.

Notification Service

To allow a comparison with published ToolTalk performance val-
ues [6], similar test methods were adopted. In each test, a tool
sends 5000 notifications of 200 bytes. All tools run in the same
machine and each tool has two registered interests. The callback
routine to be called at message arrival is a dummy routine. Notifi-
cations are sent within a Design Session.

Table 1. shows the elapsed time between the sending of a notifica-
tion and its arrival to all receivers, as a function of the number of

7. This framework uses the CFI ITC interface.

receiver
 tools

Message Switcher ToolTalk

elapsed
time
(ms)

performance
degradation

(%)

elapsed
 time
(ms)

performance
degradation

(%)

Self 0.6 -- -- --

1 4.8 -- 19.4 --

2 6.2 29 30.8 59

3 7.2 50 41.6 114

4 8.2 71 53.2 174

Table 1. Comparison of Message Switcher and ToolTalk
performance.

receivers, with both the MS and ToolTalk. The different results are
mainly due to the different underlying mechanisms used by MS
and ToolTalk. The multicast mechanism of MS leads to a much
better performance than the RPC used by ToolTalk, as expected.

Table 1. also shows the performance degradation when increasing
the number of receiver tools. Values express the degradation
obtained always with respect to the case of one receiver tool. As
expected, less degradation exists with the Message Switcher
because for each notification only one message is sent to the net8

whereas ToolTalk sends a number of messages equal to the number
of receiver tools plus one.

Table 2. compares the performance of the Message Switcher proto-
col layers. Row 1 shows the time required for sending a message of
200 bytes directly using IP multicast. Tests of the Unix IPC mecha-
nism showed that it takes 0.6 milliseconds to transmit a message of
200 bytes between two processes. If the same process sends mes-
sages ton tools then the total time is aboutn × 0.6 milliseconds9.
Row 2 shows the total time taken by the underlying communica-
tion mechanisms used during a notification. Row 3 shows the per-
formance of the previous version of the Message Switcher, without
the reliability layer (results published in [22]). Row 4 shows the
performance of the current version with the reliable protocol [23].

Subtracting the values of row 2 from row 3 we obtain the time
taken by the Message Switcher filtering and forwarding operations,
which is about 0.6 ms. As we can see, this value is independent of
the number of receiver tools. This means that the increase in
machine load when the number of receiver tools increases is the
main cause for performance degradation.

Subtracting the values of row 3 from row 4 allow us to evaluate the
cost of introducing reliability. In case of one receiver tool the over-
head obtained is 26% and this value decreases as the number of
receivers increases, being only 12% with four receivers.

When tools (sender and receivers) reside each in a different host
the sending of a notification takes only 3 ms, regardless the number
of receivers. This test demonstrates the claim that delivery time in
one host is independent of the number of receivers in other hosts.

Comparing with other reliable multicast protocols (such as [9],
[11], [17]) the figure of 3 ms is excellent. To our knowledge only
protocols implemented at the kernel level (such as [13], [24])
exhibit better performance.

Request/Response Service

Tests done to the Request/Response Service showed an average
latency10 of 9 ms (with 200 bytes requests in a SPARC IPX),

8. Delivery to the tools is done through a local (Unix IPC) connection and
does not go to the net.

9. Actually, it is a bit less because optimisations can be done when using
the Unixselectmechanism.

Protocol layers
(time in ms)

1 tool 2 tools 3 tools 4 tools

1 - IP mcast 2.6 3.2 3.6 4.4

2 - IP mcast + Unix IPC 3.2 4.4 5.4 6.8

3 - MS without reliability 3.8 5.0 6.0 7.3

4 - MS with reliability 4.8 6.2 7.2 8.2

Table 2. Performance of the Message Switcher protocol layers.

which a much smaller value than the one obtained, for instance,
with the DEC implementation of CORBA - 644 ms [14] (in a
SPARCstation 10). With MS, serving a request means sending two
IP multicast messages, two Unix IPC messages and the negotiation
messages exchanged among Host Agents. The time taken by the
transport mechanisms to perform these operations, in the absence
of negotiation messages, is two times 3.2 ms11 which makes 6.4
ms. Therefore, 2.6 ms are spent by the Message Switcher in the
reliability layer and in filtering and forwarding operations. When
requester and replier reside in different hosts the performance
measured is approximately the same, because the time taken by
negotiation messages is compensated for by the lower load of the
machines.

We could expect that a request/reply in these conditions would
take a time equivalent to twice the time taken by a notification.
Actually, it takes a bit less because there is one less filtering opera-
tion and also because optimisations are done with the I/O multi-
plexer mechanism that result in lower idle times.

Point-to-Point Communication

The point-point communication mechanism presents a latency of 3
ms and a throughput of 500 Kbyte/s for 1 Kbyte messages and 450
Kbyte/s for 10 Kbyte messages. For tools running on the same
machine a throughput of 720 Kbyte/s is obtained for 10 Kbyte
messages. Using TCP directly under the same conditions we
obtain a throughput of 700 Kbyte/s for 1Kbyte messages and
650Kbyte/s for 10 Kbyte messages.

6 Conclusions and future work
In this paper a new communication service using a distributed
architecture is presented, which offers considerable advantages
over the current centralised solutions:

• A great reduction in network traffic: each multicast message is
sent only once to the net and arrives at every Host Agent in the
Design Session.

• A great improvement in performance, due to network traffic
reduction and to the fact that message filtering and forwarding
is a distributed task, performed locally in each Host Agent.

• Achievement of fault-tolerance to host and network failures.

Experimental results confirm the superior performance of our
approach over others.

With the CFI ITC interface the Message Switcher is part of the
JESSI-COMMON-FRAME (JCF) framework last version12. The
software was also transferred to ICL and it is being considered as a
possible solution for the communication between ICL CAD tools.

As future work, we intend, firstly, to improve the flow control
algorithm by reducing the imposed idle times, in order to reduce
the overhead introduced. Then, we intend to further develop the
Message Switcher. Better support for groups, such as mechanisms
for group definition and management will be addressed. The order
requirements in the delivery of multicast messages will be further
analysed and mechanisms to enforce the required order will be
developed. Furthermore, we intend to improve the service in gen-
eral, by introducing new features, such as integration of a load bal-

10. The elapsed time since the request is issued until the reply is received
by the requester tool.

11. Value taken from Table 2. in the case of one receiver tool.

12. As the second phase of JESSI-COMMON-FRAME project was not
approved the last version of the framework did not result in a product.

ancer to the request/reply mechanism, configuration mechanisms,
message priorities and support for communication at the user level.

References

[1] Cadence Communications Manager Reference Manual 2.0,
Cadence Design Systems, December 1993.

[2] The Common Object Request Broker: Architecture and Speci-
fication, OMG and X/Open, December 1991.

[3] Designing and Writing a ToolTalk Procedural Protocol - A
White Paper, Sunsoft Inc., June 1992.

[4] Inter-Tool Communication Programming Interface, Version
1.0.0-112592, CFI Release 1.0, January 1992.

[5] Network Computing System (NCS) Reference, Apollo Compu-
ter Inc., 1987.

[6] Results published in CFI mailing list “cfi-itc@cfi.org”, June
1993, and USENET newsgroup “alt.sys.tooltalk” FAQ,
1993.

[7] The ToolTalk Service - a SunSoft White Paper, Sunsoft Inc.,
June 1991.

[8] K. Birman, R. Renesse,Reliable Distributed Computing with
the ISIS Toolkit, IEEE Computer Society Press, 1994.

[9] J. Chang, N. Maxemchuk, “Reliable Broadcast Protocols”,
ACM Transactions on Computer Systems, Vol. 2, No. 3,
August 1984.

[10] S. Deering,Host Extensions for IP Multicasting, RFC 1112,
August 1989.

[11] D. Dolev, S. Kramer, D. Malki, “Early Delivery Totally
Ordered Multicast in Asynchronous Environments”,23rd
Annual International Symposium on Fault-Tolerant Comput-
ing (FTCS), France, June 1993.

[12] B. Johnson,A Distributed Computing Environment Frame-
work: An OSF Perspective, Technical Report DEV-DCE-
TP6-1, OSF, January 1992.

[13] M. Kaashoek et al, “An efficient Reliable Broadcast Proto-
col”, Operating Systems Review, Vol. 23, No. 4, October
1989.

[14] F. Kuhl, W. Neal and H. Cohen, “Object Request Broker:
Foundation for Distributed Simulation”,Software - Practice
and Experience, Vol. 24, No. 12, December 1994.

[15] B. Steinmüller, “The JESSI-COMMON-FRAME Project - A
Project Overview”, Proc. of the 3rd Int. IFIP Workshop on
Electronic Design Automation Frameworks, March 1992.

[16] Sun Microsystems, “RPC: Remote Procedure Call Specifica-
tion” (RFC 1057),Internet Network Working Group Request
for Comments, NIC, 1988.

[17] T. Montgomery,Design Implementation, and Verification of
the Reliable Multicast Protocol, MSC Thesis, West Virginia
University, 1994.

[18] P. Santos, H. Sarmento and L. Vidigal, “Ghost-Spook: user
interface and process management in the PACE framework”,
Proc. of the European Design Automation Conference,
March 1990.

[19] M. Satyanarayanan and E. Siegel, “Parallel Communication
in a Large Distributed Environment”,IEEE Transactions on
Computers, Vol. 39, No. 3, March 1990.

[20] D. Schmidt, “An object-oriented interface to IPC services”,

The C++ Report, November-December 1992.

[21] I. Videira, Report on the analysis of various communication
services, ESPRIT 7364, JCF, Deliverable D1.ITC-1,
November 1992.

[22] I. Videira, P. Veríssimo and H. Sarmento, “Communication in
a Distributed Environment”,Proc. of the 4th Int. IFIP Work-
shop on Electronic Design Automation Frameworks,
December 1994.

[23] I. Videira,Reliable Multicast Communication with IP Multi-
castin, Internal Report, INESC, September 1995.

[24] A. Weaver, “The Xpress Transfer Protocol”,Computer Com-
munications, Vol.17, No. 1, January 1994.

[25] M. Zelenick, “A portable, network-transparent communica-
tion system for message-based applications”,Proc. of the
6th International Conference on Distributed Computing Sys-
tems, 1986.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

