
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Synthesis of Hazard-free Customized CMOS Complex-Gate Networks Under
Multiple-Input Changes

Prabhakar Kudvay Ganesh Gopalakrishnanz Hans Jacobson Steven M. Nowickx

IBM T.J. Watson Research Center Department of Computer Science Department of Computer Science
Yorktown Heights University of Utah Columbia University

Abstract

This paper addresses the problem of realizing hazard-free single-
output Boolean functions through a network of customized com-
plex CMOS gates tailored to a given asynchronouscontroller spec-
ification. A customized CMOS gate network can either be a single
CMOS gate or a multilevel network of CMOS gates. It is shown
that hazard-free requirements for such networks are less restric-
tive than for simple gate networks. Analysis and efficient synthesis
methods to generate such networks under a multiple-input change
assumption (MIC) will be presented.

1 Introduction

This paper addresses the problem of realizing single-output
Boolean functions through a network of customized CMOS gates
for asynchronous controllers. A customized CMOS gate network
can be either a single CMOS gate or a multilevel network of CMOS
gates, where each CMOS gate is tailored to give the most efficient
implementation for a given specification. This differs from the ap-
proach where one chooses standard gates from a library (such as
AND-OR, MUX, AOI, etc.) to implement the required Boolean
function in a hazard-free manner [7, 12, 5]. Techniques will
be presented to synthesize such networks without hazards, under
multiple-input change (MIC) transitions.

Customized CMOS gate implementations have been success-
fully used to design a large number of burst-mode asynchronous
controllers [3, 13]. However, previous methods do not present
systematic models and synthesis algorithms to take advantage of
the particular hazard properties of these circuits. There are several
reasons for considering customized CMOS complex-gate based
circuits. As VLSI feature size decreases and wire delays be-
come significant, customized CMOS complex-gates can provide
more efficient controller implementations compared to standard-
cell place and route tools. Also, the recent availability of better
layout synthesis techniques that can automatically generate layouts
for arbitrary transistor networks makes customized complex-gate
based controllers a more viable alternative. Finally, we provide

yThis research was done when the first author was a graduate student at the Uni-
versity of Utah and was supported in part by University of Utah Research Fellowship.

zSupported in part by NSF Award MIP 9215878
xThis research was supported by an NSF CAREER Award MIP-9501880 and by

an Alfred P. Sloan Research Fellowship.

methods to derive complex-gate networks which relax some of
the synthesis constraints needed for hazard-free simple-gate im-
plementations.

Currently, there are two main approaches to deriving hazard-
free logic gate networks for asynchronous circuits. The first is a
function region approach. In this method, one tries to find a hazard-
free network for a single output Boolean function by taking into
account the on-set and the off-set of the function, with respect to a
specified set of multiple-input changes. The second approach deals
with finding the excitation regions of the function. In this method,
the regions of the Boolean space where the output is enabled
to change are identified as “set” and “reset” functions. These
functions are implemented and are used to control the switching
of a state holding element such as a C-element or RS latch.

Various techniques for hazard-free logic minimization have
been proposed for the function region approach. An exact hazard-
free two-level logic minimization algorithm, based on a modified
Quine-McCluskey method, is given in [7]. Hazard non-increasing
transformations and algorithms for multilevel optimization of gate-
level logic have been given in [4, 14]. A BDD-based method [5]
which targets multilevel multiplexor-based networks has been de-
veloped. Technology-mapping techniques to perform hazard-non-
increasing mapping of two level AND-OR networks into com-
plex gate networks from a standard cell library have been given
in [12]. Other technology mapping techniques have implemented
Boolean functions as single gate hazard-free CMOS complex gate
circuits [13, 3]. However, no systematic procedure to derive such
CMOS gates has beenoutlined, which includes precise hazard-free
requirements for these gates.

For the class of methods that use the excitation regions, single
CMOS complex-gate circuits, called Generalized C elements [6],
have been used as target implementations. These techniques usu-
ally rely on the use of state holding elements on the output of the
gate.

The contribution of this paper is to address the problem of deriv-
ing hazard-free customized CMOS realizations for asynchronous
controllers under multiple-input changes, using the function re-
gion approach. This problem is encountered during the synthesis
of burst-mode circuits [8, 15] and is a general problem in asyn-
chronous synthesis. In particular, we present a style of CMOS
gate design, called SOP/SOP form, that reduces the constraints in
hazard-free synthesis of single CMOS complex gates. Second, we
present a generalization of this technique to multilevel networks.
This technique allows efficient solutions to a large class of asyn-
chronous specifications. These techniques allow designers the
flexibility to perform hazard-free mapping tailored to customized
complex-gates, instead of being confined to a standard library.

In Section 2, we will introduce some basic terminology. Sec-
tion 3 describes a technique to derive single CMOS complex gates.
We will present techniques that address multilevel synthesis of
such complex gate circuits in Section 4. Section 5 will provide
conclusions and the open problems.

2 Terminology

In this section, we first present definitions relating to pass tran-
sistor and CMOS logic gates. We will then briefly describe some
terminology on hazards.

2.1 Pass Transistor Networks

A model for pass transistor logic has been developed in [9, 10, 11,
12]. We describe and extend the model presented in these works
for single CMOS gates.

Definition 1 A pass transistor is a MOS transistor operated as
a switch, where the transistor drain (source) is connected to the
signal to be passed along, the transistor gate is connected to the
control input, and the output signal is taken from the transistor
source (drain).

At this point, we do not distinguish between a single N-type
or P-type MOS transistor and a pass "gate" composed of comple-
mentary pair of transistors connected by complementary control
variables.

Definition 2 A pass network is an interconnection of pass tran-
sistors which realizes a particular switching functionf(X), where
X = fx1; x2; : : : ; xng is the set of inputs to the function.

Definition 3 A branch of a pass network implementing the
switching function f(X) is a series connection of pass transis-
tors where the drain or source of the transistor at one end of
the series is connected to an input source selected from the set
f0; 1; xi; x

0
ig.

Definition 4 A pass variable is an input to a branch of the pass
network. A pass variable may be chosen from the setf0; 1; xi; x0

ig.

Definition 5 A control variable is an input to the gate of a tran-
sistor in the pass network. When the control variable has a value
equivalent to a logic "1", the transistor conducts.

Definition 6 A pass implicant is a Boolean switching function
which denotes the function of a branch of a pass network, and
includes information about both the pass variable and the switch-
ing function. A pass implicant is denoted Ci[Pi], where Ci is a
product term composed of control variables which control the pass
transistors in that branch, and Pi is the pass variable which will
get passed to the output if the product term is true.

A pass implicant is similar to an implicant in Boolean algebra,
except that instead of passing a constant "1" if the implicant is true,
the value of the pass variable is passed if the implicant is true.

Definition 7 A pass function, Fp : Bn
! f0; 1; Zg is a sum of

pass implicants.

Definition 8 A CMOS gate consists of a P transistor pass net-
work with only one pass variable "1" and an N transistor pass
network with only one pass variable "0". The outputs of the two
networks are connected together to form the output of the CMOS
gate. For a CMOS gate which is to implement a function F , the
P pass network implements the pass function F and the N pass
network implements the pass function F .

2.2 Hazards

There are two basic classes of combinational hazards: function
and logic hazards. Function hazards are a property of the logic
function, whereas logic hazards are purely a property of the imple-
mentation. Within the class of logic hazards, there are single-input
change (SIC) hazards and multiple-input-change (MIC) hazards.
Additionally, each class of hazards (function and logic) includes
both static and dynamic hazards. Further definitions and details
regarding hazard modeling can be found in [14]. In this paper
we will consider MIC logic hazards, i.e., we will assume that the
given Boolean function free of function hazards for each specified
input change.

3 Hazard-free Single CMOS gates

CMOS complex gate networks can be implemented in many dif-
ferent ways. The standard technique to implement the functions
F andF is to obtain a sum of products for one pass network (p or
n) and the dual of this network then becomes the complementary
product of sums network.

We will present a more interesting realization in terms of haz-
ard behavior, where both F and F are implemented as sum of
products networks, referred to as an SOP/SOP form of complex
gates. An example SOP/SOP complex gate implementation is
shown in Figure 1. Function F is implemented using p-channel
stacks, and Function F is implemented using n-channel stacks.

The delay model assumed in this work is that of unbounded
gate and wire delays, as in previous approaches [2, 7, 5, 4].
This is a conservative model, which assumes that inputs in an
MIC transition can arrive at any time and in any order, and that
gates and wires have unknown delay. However, our model is
limited by one timing constraint: on the time period for which the
capacitance on a CMOS gate output holds its charge when there
is no conducting path to power or ground rails through the p or
n transistor networks (only leakage occurs). This time period is
assumed to be much larger than the duration of any static hazard.
This requirement is quite reasonable, since the time is related to the
maximum difference in arrival of a variable and its complement
to different stacks in the gate.

3.1 SOP/SOP Realization

We will first examine the hazard behavior of the SOP/SOP form
of realization for CMOS complex gates. In order to do this, we
will examine both SIC and MIC static and dynamic transitions on
a case-by-case basis.

Case 1: Static Transitions. For static transitions a SOP/SOP
complex gate circuit is hazard-free at the output. Both SIC and
MIC static hazards occur when a given static transition causes
a change from one cube of the cover to another, causing a brief
period when the transistor network is not conducting. ConsiderF
andF to be on-set and off-set covers respectively implemented as
p and n transistor networks in a complex gate. It has been shown
in [14] that a sum-of-products implementation of the on-set F
does not have any 0 ! 0 hazards.1 Similarly, F does not have
any 1 ! 1 hazards. This means that in a sum of products form,
a static transition over function F is always outside the cover of
F and vice versa. As a result, for a SOP/SOP form of complex
gates, even if the transistor network of F has a static hazard (that
is, a brief moment when no p stack is conducting), the transistor

1Note that, throughout this paper, we assume that no product contains both a
variable and its complement, otherwise additional hazards are possible [14].

x

b’ a

VDD

VSS

b’

c

a

c’

c’ c

ON-set cube

OFF-set cube

00 01 11 10

0

1

x ab

c

B

A

t

Figure 1: K-map and static hazard-free SOP/SOP complex gate

network of F remains off (that is, no n stack will conduct during
the transition). Therefore, the output capacitance of a SOP/SOP
complex gate holds its current charge for the duration of a static
hazard (we have no conducting path to either power or ground),
and the hazard is not seen at the output.

As an example, consider the Karnaugh map and complex-gate
implementation in Figure 1. Transition t, from abc : 011 ! 010,
is a static 1 ! 1 transition. The on-set is implemented in the p-
transistor pass network, using cubes A = bc0 and B = a0c. This
cover is hazardous for a simple-gate AND-OR network. During
transition t, the AND-gate forB goes low and the AND-gate forA
goes high. If the AND-gate forA is slower than the AND-gate for
B, the OR-gate output will glitch. In contrast, the single complex-
gate network is hazard-free. Although the p-transistor stacks for
A and B can briefly be off at the same time (when c goes low), no
n-transistor pass network will conduct during the transition. As a
result, the output will hold its current charge. Therefore, there is
no need to avoid static hazards during synthesis of F and F .

Case 2: Dynamic Transitions. For the case of SIC transi-
tions, it has been shown in [14] that a dynamic SIC hazard cannot
occur (assuming no product contains both a variable and its com-
plement). Since F and F are in two-level AND-OR form, no
hazards will occur in the complex-gate output in this case. For the
case of MIC transitions, though, we will have to make the p and
n pass networks hazard-free for dynamic transitions. Otherwise,
even in the SOP/SOP form, both the p network and the n network
may have dynamic hazards, creating a hazard at the output of the
complex gate.

3.2 Algorithm For SOP/SOP Realizations

Our hazard-free algorithm for SOP/SOP complex-gate realiza-
tions is similar to an existing algorithm for hazard-free two-level
simple-gate networks [7]. The key difference is that our new algo-
rithm uses fewer constraints: we can ignore hazards due to static
transitions in the SOP/SOP realization.

We first summarize the Make-sets algorithm given in [7], which
is the first step in the hazard-free two-level minimization of AND-
OR simple-gate implementations. We then present a modified
version, Complex-Make-sets, to handle complex-gate circuits. Fi-
nally, we describe the remaining steps which are common to both
the two-level algorithm and the complex-gate algorithm. Make-
sets is first in a series of three steps in exact hazard-free two-level
logic minimization. This algorithm finds the required set cubes
(req-set), the off-set cubes and the privileged set (priv-set) cubes.
The required set contains the required cubes of the function, for
the given MIC transitions. Each 1 ! 1 static transition, and the
maximal on-set cubes during a dynamic transition, are required
cubes. To insure no static hazards for a given 1 ! 1 transition, its
required cube must be contained in some implicant in the cover. To
insure no static hazard for each static sub-transition in a dynamic

1 ! 0 or 0 ! 1 transition (i.e., the portion of the transition where
the output remains at 1 ! 1), each maximal on-set cube must be
contained in some implicant of the cover. These constraints in-
sure that the output will not glitch during a given static transition.
(Further details are provided in [7].)

The priv-set is the set of privileged cubes, corresponding to
the 1 ! 0 and 0 ! 1 transition cubes. Each dynamic transition is
regarded as a privileged cube, with a specified start point. These
cubes are used to prevent dynamic hazards. In particular, no
implicant in the cover may intersect a privileged cube unless it
includes the start point of the privileged cube. If an implicant
intersects a privileged cube but does not contain its start point, it
has an illegal intersection, and may not be included in the cover.
Intuitively, such an implicant may turn on, then off, during a
dynamic transition, resulting in an output glitch. These conditions
are justified in detail in [7].

Implicants which have no illegal intersections are called dy-
namic hazard-free implicants (DHF-implicants). Only DHF-
implicants may be included in a hazard-free cover. “Maximal”
DHF-implicants, which cannot be expanded further, are called
dynamic hazard-free prime implicants (DHFPI). In our modi-
fied algorithm Complex-Make-sets, we follow the same steps as
Make-sets, but with one key difference: we do not generate re-
quired cubes for 1 ! 1 static transitions. The reason is that, for
complex-gate realizations, there are no static 1 ! 1 hazard-free
requirements. Instead, to insure that the on-set of the function is
still covered, we simply add the on-set minterms (not cubes) into
the required set which are not already present in the required set.
In summary, the required set generated by Complex-Make-sets
consists of (i) all the required cubes associated with dynamic tran-
sitions, and (ii) the on-set minterms that are not already covered
by other required cubes.

The steps after the generation of sets are common to both the
complex-gate algorithm and two-level algorithm, and are summa-
rized below. First derive the DHF prime implicants based on the
req- and off-sets as well as the privileged cubes. A unate cover-
ing problem is then formulated: the problem is to cover all the
required cubes by a minimum set of dhf-prime implicants. If all
of the required cubes cannot be covered by the dhf implicants, a
solution does not exist.

Note that the unate covering problem in our complex-gate algo-
rithm is less restrictive: required cubes for static 1 ! 1 transitions
need not be covered. In fact, there are problems which have no
2-level hazard-free solution, but where a complex-gate solution
exists. For instance, the example used in [7] to demonstrate the
absence of a solution for hazard-free AND-OR implementation,
has a solution in the SOP/SOP form of complex-gate implemen-
tation.

To determine the practical applicability of the SOP/SOP form
of complex gates, circuits from the state machine benchmarks [15]
were used for a comparison. We applied both the CMOS complex-
gate method and the two-level simple-gate methods, and used the
Cadence schematic entry system and the LAS [1] layout syn-
theziser. Results are shown in Table 1 in the form of critical path
delays under same input slopes and output load.

As expected,we found that the complex gate circuits performed
better in some cases and were slower in others. The performance
of the complex gates is dependent on the height of the transis-
tor stacks. As the height of the stack increases the complex-
gate implementation performance decrease. This prompted us to
investigate the problem of using SOP/SOP form for multilevel
complex-gate circuits.

Circuit Name Output C. Gate Std.Gate
chu-ad-opt dr 1.1 ns 1.5 ns

lr 1.75 1.4
van-bek-ad-opt dr 0.9 1.3

zr 0.92 1.34
lr 1.2 0.93

sendr-done DoneS 1.3 1.36
sbuf-read-ctl Ack 1.3 1.36

RamRdSbuf 0.97 1.53
q42 a4 0.94 1.56

r2 1.32 1.61

Table 1: Complex-gate Versus Standard Gate Implementations

4 Multi-level Implementations

4.1 Background and Overview

Several approaches have been used for multilevel hazard-free logic
synthesis.

In [2], a technique was presented to derive single-output mul-
tilevel AND-OR gate implementations. The algorithm assumes
a fully-specified function and attempts to eliminate hazards even
for unspecified transitions, leading to inefficient implementations.
Our method takes a similar approach but removes hazards only for
a given set of transitions.

A method using BDDs that target multilevel multiplexer based
circuits is presented in [5]. The multiplexers in this method are
assumedto be hazard-free. Work in [12] targets multilevel hazard-
free circuits, starting from a hazard-free two-level circuit. In this
method a hazard-free two-level function is decomposed into base
functions using De Morgan’s theorem and associative laws and
then partitioned into cones which are mapped to library elements
based on associated hazards. This work could be extended to use
customized complex gates instead. However, since it is based on
an already existing AND-OR function, it cannot take advantage of
the static hazard robust behavior of the SOP/SOP form and thus
cannot give solutions to a larger class of problems.

We will therefore present a new technique which is an ex-
tension of work in [2], but which deals with the special hazard
requirements of SOP/SOP complex-gates. The procedure is pre-
sented in two steps. First, we will give a model for the multilevel
complex gates we target. We will then outline our decomposition
algorithm.

4.2 CMOS Multilevel Networks

 SOP/SOP
complex gate

Figure 2: Multilevel SOP/SOP complex gates

The procedure outlined in the rest of this section, assumes that
each gate is implemented in the SOP/SOP form discussed in the

last section. A multilevel network of CMOS complex gates is
defined as a single output network of multiple levels of complex
gates, where the control variable for each transistor of the p and
n pass networks is either an input literal or the output of another
CMOS complex gate.

Consider the goal of implementing a Boolean function under
a given set of MIC transitions as a single complex gate. Consider
the p pass network to be implemented (the arguments for the n
network are symmetric). We attempt to derive the SOP form (se-
ries/parallel) network with only input literals as control variables
to the transistors. If such a solution cannot be found, we attempt to
find a solution where some of the transistors have control variables
which are the output of separately implemented complex gates in
the SOP/SOP form. This procedure yields alternating levels of
AND and OR gates starting from the output and recursively de-
rives implementations for smaller functions until input literals are
reached, as can be seen in Figure 2. For synthesis of such multi-
level circuits, one must keep in mind that the target complex gates
do not require static hazard covers; therefore, we still take advan-
tage of the static hazard-free nature of the SOP/SOP form. We
will use this model to derive our complex gates taking the p pass
network and n pass network separately. Note, though, that hazards
now may occur due to the interaction of separate complex-gates
in the network. These issues are addressed below.

00 01 11 10

0

1

x ab

c

(b) Reduced problem to derive POS

a’
b
a
b’
a’
c

zzz00

x

b’
c
b
c’

b
a
b
c
a’
c

(d) Circuit for x derived by 3D

x

b+c

a’+c’

a’

b’

c’

a

b

c

b’

a

VDD

VSS

(c) Complex gate implementation

ON−set cube

OFF−set cube

00 01 11 10

0

1

x ab

c

A

B

t1

t2

(a) Karnaugh map for output x

Figure 3: Multilevel SOP/SOP complex gate example

We will illustrate the method with the example shown in Fig-
ure 3. Consider the problem of generating a hazard-free single
output function for the output x of a burst mode state machine
represented by the Karnaugh map in Figure 3(a). In this case, x
is a simple combinational function, which must be implemented
without logic hazards. Specified input transitions are given in the
figure. The required cubes for dynamic transition t1 are bc0 (“A”)
and a0b, and the required cubes for dynamic transition t2 are a0c
(“B”) and a0b.

This covering problem has no hazard-free two-level solution.
Each required cube must be covered by some dhf-prime implicant.
Required cube “A” is covered only by itself (bc0), which illegally
intersects dynamic transition t2. Similarly, required cube “B” is
covered only by itself (a0c), which illegally intersects dynamic
transition t1. Therefore, no dhf-prime exists to cover “A” and
“B”.

Burst-mode sequential synthesis tools [8, 15] avoids this prob-

lem at an earlier point in synthesis: during state minimization. By
using careful constraints on state merger, these methods produce
Boolean functions for which a hazard-free solution exists. That is,
a feedback variable would be added, making the circuit sequential
rather than combinational.

We now attempt to derive multilevel combinational logic for
the output x. First we derive all required cubes and dynamic
hazard-free prime implicants (DHFPI). The DHFPIs are a0b and
ab0 for the on-set. All other implicants have illegal intersections.
The two required cubes that cannot be covered in the on-set are
bc0 (“A”) and a0c (“B”). The DHFPIs for the off-set are a0b0c0 and
abc. The cubes (for both on and off-set) that can be covered are
now implemented as a SOP/SOP complex gate.

We will now try to derive a product of sums implementation
of the union of the uncovered cubes in the on-set. The reduced
problem for this is shown in Figure 3(b). A hazard-free cover for
this on-set is (b+c)(a0+c0). This POS cover is connected to the
SOP/SOP complex gate by a series p stack of transistors as can
be seen in Figure 3(c). Since DHFPI a0b is already covered by
this hazard-free cover we can remove it from the final cover for x.
(b+c) and (a0+c0) are separately implemented as complex gates.
Note that the static hazard for transition abc:101 ! 001 does not
manifest in the SOP/SOP multilevel implementation. Also, no
state variable is needed.

Figure 3(d) shows the result as generated by the 3D [15] syn-
thesis tool, which uses hfmin [7] to produce a hazard-free two-level
AND-OR gate implementation. A state variable has been added
to eliminate the hazard problem in this case.

An algorithm for deriving multilevel complex gates is given
in Figure 4. The top level algorithm is Derive CMOS Multi,
which calls the recursive procedure Derive Multi and then de-
rives complex gate implementations from the cover returned by
Derive Multi. The function Derive Multi is first discussed.
Initially it is assumed that one attempts a two-level sum of prod-
ucts solution. Since we are dealing with alternating levels of sum
of products and product of sums implementations, our algorithm
works slightly differently for each of the levels. We derive the
sum of products and the product of sums alternately. Therefore
the algorithm first starts with trying to find a sum of product so-
lution. In the absence of static hazards, such a solution may not
exist when a required cube(s) for one dynamic transition is a (are)
stray cube(s) for another. We will refer to such cubes as conflict-
ing cubes. Sets of conflicting cubes are formed. For example
if required cubes A and B are conflicting and similarly B and C,
the set (A;B;C) is considered the maximal set of conflicting re-
quired cubes. For each maximal set of conflicting required cubes,
it attempts a product of sums solution, and then again recursively
for the remaining cubes attempts a sum of products and so on.
Since we have an algorithm targeted to find the minimal sum of
products implementation, we also convert the problem of finding
the product of sums for a function F to the problem of finding the
sum of products for F and then using De Morgan’s law (which has
been shown to be hazard-preserving) [14] to obtain F . The inputs
to the algorithm are: the level (indicating whether it is a sum of
products or product of sums problem), the set of input transitions,
the on-set of the function for which a hazard-free implementation
is to be derived.

4.3 Algorithm

We will now describe all the steps outlined in the algorithm. Step
1 is to derive the req, off and priv sets as described in the last
section using algorithm Complex-make-sets if one is targeting
the sum of products (say for the first level or any odd numbered

level); otherwise, the algorithm Make-sets is used. DHF prime
implicants are then derived in Step 2. The set of DHF prime
implicants is called DHFPI. The set of required cubes due to static
transitions if any (in even levels) are recorded as rsetstatic. In
Step 3, the covering problem is attempted. The required cubes that
remain not covered by the DHFPI are noted, we will call this set
rsetu. Note that the only required cubes that remain not covered
by the DHFPIs are due to conflicting dynamic hazard transitions
during a sum of products minimization problem, i.e., a required
cube of one transition becomes a stray cube of one or more other
dynamic transitions and vice versa. In the case of a product of
sums implementations, the remaining required cubes could also
be due to a static hazard requirement as well as due to conflicting
dynamic transitions.

Derive Multi(Level, Set T of input Transitions, On-set)
Step 1. if Level = odd

Complex-make-sets(T, On-set)
else
Make-sets (T, On-set)

Step 2. Derive DHFPI set, req cubes rset, rsetstatic
Step 3. Cover = MinCover(DHFPI; rset)

if Cover return Cover

Step 4. For (rsetu = req cubes not covered by DHFPI)
if (any rsetstatic 2 rsetu) goto 6
rsetiu = set of conflicting cubes in rsetu
For each rsetiu

on-set (oniu) = [minterms in rsetiu
if (oni

u
already attempted) goto 6

if Level = odd
if (ciu = Derive Multi(Level+1, T , off-set(oniu)))
Cover = Cover [ApplyDeMorgan(ciu)

else goto 6
else
if (ci

u
= Derive Multi(Level+1, T, off-set(oni

u
)))

Cover = Cover [ci
u

else goto 6
Step 5. If any DHFPIj 2 DHFPI is covered by a oniu

DHFPI = DHFPI � DHFPIj ;
Cover = Cover [MinCover(DHFPI; rset � rsetu);

return Cover;
Step 6. No solution. return NIL
end
Derive CMOS Multi(Set T of input Transitions, On-set)
if (Cover = Derive Multi(1, T, On-set))

Partition each AND-OR level starting from output.
Derive complex gates for partitions

else
return NIL

end

Figure 4: Algorithm

In Step 4 we find the set rsetiu of all cubes from rsetu that
conflict. The goal then is to derive an implementation for this
on-set which is hazard-free for the original set of input transitions.
If we are trying to solve the problem for the first level (AND-OR),
it is clear that a sum-of-products implementation of rsetiu will not
solve the problem. Instead a hazard-free product of sums imple-
mentation of this on-set is attempted. Note that in the algorithm
the method to derive this dual implementation is a recursive call.
In order to derive a products of sum implementation for an on-set
G, the recursive call attempts to derive a sum of products imple-
mentation for the off-set G and then uses DeMorgan’s law on G
to obtain the product of sums implementation. A sum of products

problem can be minimized ignoring static transitions since every
sum of products function is implemented within a single SOP/SOP
CMOS gate. Therefore the product of sums problem (even levels)
will use Make-sets in step 1, whereas the sum of products will use
Complex-Make-sets in step 1. In Step 5, all DHFPI’s at that level
that are covered by the new cubes are removed. Step 6 indicates
cases where there are no multilevel solutions of this form.

The functionDerive CMOS Multi is the top level function
that derives the cover (if there is one) using Derive Multi and
then partitions each AND-OR level starting from the output. A
hazard-free complex gate is then derived for each partition, which
may require further application of function Derive Multi.

We have synthesized many examples using this technique.
Layouts have been obtained using the Cadence synthesis tools.
For these examples, our method obtained a hazard-free combina-
tional logic solution whereas the 3D tool [15] (using hfmin [7])
often had to add several state variables just in order to prevent
logic hazards. Results for cases where occuring hazards require a
multilevel solution for the SOP/SOP complex gate form are given
in Table 2. The area required for a hazard-free cover is shown in
the area columns and the number of state variables that had to be
added to get a solution in the two-level standard gate implemen-
tation is shown in the statevar column. The average delay from
input event to output response under same input slopes and output
load is shown in the delay columns.

Due to the reduced hazard constraints during synthesis, we
have obtained encouraging results from our experiments. In our
experiments, the area required to get a two-level solution greatly
exceeds that of our SOP/SOP complex gate implementation. Half
of this area is typically used for added state variables. However,
even when the area for these is not included, the complex gate
implementation use significantly less area in all examples. A
comparison of input-output latency was also made. Due to fewer
transistors and the ability to size the transistors very accurately to
comply with the size of the output load, we are able to get perfor-
mance gains of over 50% in many cases. For these examples all
complex gate implementations were combinational. These combi-
national circuits provide an advantage compared to the sequential
circuits produced by the 3D method with respect to fundamental
mode delay.

Name S.Gate C.Gate S.Gate C.Gate S.Gate
statevar area area delay delay

bus tr 2 271 1107 0.30 0.55
run dp 1 360 1218 0.38 1.35
si stack 1 177 312 0.20 0.32
sm stat 2 187 1181 0.31 0.74
sm dyn 2 222 1109 0.23 0.59
l cov 2 173 824 0.21 0.58

comp dp 2 395 1162 0.39 0.70

Table 2: Multilevel Complex-gate versus Standard Gate

5 Conclusions

In this paper,we have presenteda technique to synthesizea hazard-
free network of customized CMOS complex gates. We have pre-
sented a summary of properties and synthesis algorithms for a
style of single customized CMOS gate and multilevel CMOS gate
networks. The work was motivated by the fact that customized

CMOS complex gates could provide flexibility of design, perfor-
mance and area improvement and solutions to larger classes of
problems in hazard-free asynchronous controller synthesis. Dur-
ing the analysis, we have also shown that certain combinational
functions which have no solution in the two-level AND-OR im-
plementation form have a solution in our CMOS gate method.
Also, our method provided combinational logic solutions in some
cases where the two-level method could produce a solution only
by adding state variables.

Acknowledgment: The authors would like to thank Al Davis
for many helpful discussions.

References

[1] Custom layout/Virtuoso LAS user’s manual, cadence design sys-
tems, inc., 1992.

[2] BREDESON, J. G. Synthesis of multiple input-change hazard-free
combinational switching circuits without feedback. Int. Journal
Electronics 39, 6 (1975), 615–624.

[3] DAVIS, A., COATES, B., AND STEVENS, K. The Post Office Experi-
ence: Designing a Large Asynchronous Chip. In Proceedings of the
26th Annual Hawaiian InternationalConferenceon System Sciences,
Volume 1 (Jan. 1993), T. Mudge, V. Milutinovic, and L. Hunter, Eds.,
pp. 409–418.

[4] KUNG, D. Hazard-non-increasinggate level optimization algorithms.
In International Conference on Computer Aided Design (ICCAD),
Santa Clara (Nov. 1992).

[5] LIN, B., AND DEVADAS, S. Synthesis of hazard-free multi-level im-
plementations under multiple-input changes from binary decision
diagrams. In Proc. International Conf. Computer-Aided Design (IC-
CAD) (Nov. 1994).

[6] MARTIN, A. J. Programming in VLSI: From communicating
processes to delay-insensitive circuits. In UT Year of Programming
Institute on Concurrent Programming (1989), e. C.A.R. Hoare, Ed.,
Addison-Wesley.

[7] NOWICK, S., AND DILL, D. L. Exact two-level minimization of
hazard-free logic with multiple-input changes. IEEE Transactions
on Computer-Aided Design 14, 8 (Aug. 1995), 986–997.

[8] NOWICK, S. M., AND DILL, D. L. Automatic synthesis of locally-
clocked asynchronous state machines. In Proc. International Conf.
Computer-Aided Design (ICCAD) (Nov. 1991), IEEE Computer So-
ciety Press, pp. 318–321.

[9] PEDRON, C., AND STAUFFER, A. Analysis and synthesis of combina-
tional pass transistor circuits. IEEE Transactions on CAD/CAS 6, 5
(1988), 727–750.

[10] RADHAKRISHNAN, D., WHITAKER, S., AND MAKI, G. Formal design
procedures for pass transistor switching circuits. IEEE Journal of
Solid State Circuits 20, 2 (1985), 531–536.

[11] SASI, S., AND RADHAKRISHNAN, D. Hazards in cmos circuits. Int.
Journal Electronics 68, 6 (1990), 967–990.

[12] SIEGEL, P. Automatic technologymapping for asynchronousdesigns.
Tech. rep., Ph.D Thesis, Computer Systems Laboratory, Stanford
University, 1993.

[13] STEVENS, K. Ph.d thesis. Tech. rep., Computer Systems Dept,
University of Calgary, 1994.

[14] UNGER, S. H. Asynchronous Sequential Switching Circuits. Wiley-
Interscience, 1969.

[15] YUN, K. Y. Synthesis of asynchronouscontrollers for heterogeneous
systems. PhD thesis, Stanford University, Aug. 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

