Espresso-HF: A Heuristic Hazard-Free Minimizer for Two-Level Logic'

Michael Theobald

Steven M. Nowick

Tao Wu

Department of Computer Science
Columbia University
New York, NY 10027

Abstract — We present a new heuristic algorithm for hazard-free
minimization of two-level logic. On nearly all examples, the algo-
rithm finds an exactly minimum-cost cover. It also solves several
problems which have not been previously solved using existing ex-
act minimizers. We believe thisis the first heuristic method based
on Espressoto solvethe general hazard-freetwo-level minimization
problem, for multiple-input change transitions.

1 INTRODUCTION

Asynchronous design has been the focus of much recent research
activity. A number of methods have been developed for the design
of hazard-free controllers [5, 2, 6, 13]. These methods have been
applied to several large and redlistic design examples, including a
low-power infrared communicationschip [3], asecond-level cache-
controller [7], and an implementation of a SCSI controller [12].

An important aspect of these methodsis the development of op-
timized CAD tools. In synchronous design, the development and
implementation of CAD packages has been critical to the success
of modern automated digital design. In asynchronousdesign, much
progress has been made, including tools for: exact hazard-free
two-level logic minimization [9], optimal state assignment [2] and
synthesis-for-testability [8]. However, these tools have been lim-
ited in handling large-scale designs. In particular, while the exact
hazard-free minimization algorithm hasbeen effective on small- and
medium-sized examples, it has been unableto produce solutionsfor
several large design problems [2].

In this paper, we present an algorithm to solve the heuristic
hazard-free two-level logic minimization problem. The method is
heuristic solely in terms of the cardinality of solution. In all cases,
it guaranteesahazard-free solution. It also implements both single-
output and multi-output minimization. The algorithm is based on
Espresso [10, 1], but with a number of significant modificationsto
handle hazard-free constraints. The algorithm, called Espresso-HF,
also employs anew and much more efficient algorithm to check for
existence of a solution, without generating all prime implicants.

Our prototype can solve all examples that we have available so
far, and ailmost always obtains an exactly minimum cover. It also
solves several exampleswhich have not been solved before.

The paper is organized as follows. Section 2 gives background
on circuit models, hazards and hazard-free minimization. Section
3 describes the Espresso-HF algorithm. Section 4 describes an
algorithm to determine if a hazard-free solution exists. Section 5
presents experimental results, and Section 6 gives conclusions.

*This work was supported by NSF under Grant no. M1P-9308810 and
by an Alfred P. Sloan Research Fellowship.

2 BACKGROUND
Thematerial of this sectionfocuseson hazardsand hazard-freelogic
minimization, andistakenfrom[2] and[9]. For simplicity, wefocus
on single-output functions. A generalization of these definitionsto
multi-output functions is straightforward, and is described in [2].
Our heuristic minimizer handles multi-output functions.

2.1 Circuit Model

This paper considers combinational circuits having arbitrary finite
gate and wire delays (unbounded wire delay model [9]). A pure
delay model is assumed aswell (see[11]).

2.2 Multiple-Input Changes

Definition 2.1 Let A and B be two minterms. The transition
cube, [A, B], from A to B has start point A and end point B,
and contains all minterms that can be reached during a transition
from A to B. Moreformally, if A and B aredescribed by products,
with i-th literals A; and B;, respectively, then thei-th literal for the
product of ¢ = [A, B] isthe Boolean function A4; + B;. Aninput
transition or multiple-input changefrom input state (minterm) A
to B isdescribed by transition cube[A, B].

A multiple-input change specifieswhat variables change value and
what the corresponding starting and ending values are. Input vari-
ables are assumed to change simultaneously. (Equivalently, since
inputs may be skewed arbitrarily by wire delays, inputs can be as-
sumed to changemonotonically in any order and at any time.) Once
a multiple-input change occurs, no further input changes may oc-
cur until the circuit has stabilized. In this paper, we consider only
transitions where f is fully defined; thet is, for every X € [A, B],
f(X) €{0,1}.

2.3 Function Hazards

A function f which does not change monotonically during an input
transition is said to have afunction hazardin the transition.
Definition 2.2 A function f containsa static function hazard for
the input transition from A to C if and only if: (1) f(A4) = f(C),
and (2) thereexists someinput state B € [A, C] suchthat f(A) #
f(B).

Definition 2.3 A function f contains a dynamic function hazard
for the input transition from A to D if and only if: (1) f(A) #
f(D); and (2) there exist a pair of input states, B and C, such
that (a) B € [A,D]and C € [B, D], and (b)f(B) = f(D) and
F(4) = f(O).

If atransition hasafunction hazard, no implementation of the func-
tion is guaranteed to avoid a glitch during the transition, assuming
arbitrary gate and wire delays[9, 11]. Therefore, we consider only
transitions which are free of function hazards.

24 Logic Hazards

If f isfree of function hazards for atransition from input A to B,
an implementation may still have hazards due to possible delaysin
the logic realization.

Definition 2.4 A circuit implementing function f contains a static
(dynamic) logic hazard for the input transition from minterm A
to minterm B if and only if: (1) f(A) = f(B) (f(A) # f(B)),
and (2) for some assignment of delays, the circuit's output is not
monotonic during the transition interval.

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room use is granted without fee provided that copies are not made

or distributed for profit or commercia advantage, the copyright notice, the title of the publication'and its date e t
servers or to redistribute to lists, requires prior specific permssion and/or a fee.

by permission of ACM, Inc. To copy otherwise, to republi
i v, UBA AC

pear, and notice is given that copying is

, t0 post on
AC 96 - 06/96 Las Vegas, N J1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

That is, a static logic hazard occurs if f(A) = f(B) = 1 (0),
but the circuit’s output makes an unexpected1 — 0 — 1 (0 —
1 — 0) transition. A dynamic logic hazard occursif f(A) = 1
and f(B) = 0(f(A) = 0and f(B) = 1), but the circuit’s output
makes an unexpectedl — 0 — 1 — 00 — 1 — 0 — 1)
transition.

2.5 Conditionsfor a Hazard-Free Transition

We now describe conditionsto ensurethat a sum-of-productsimple-
mentation, F', ishazard-freefor agiveninput transition [9]. Assume
that [A, B] isthetransition cube corresponding to afunction-hazard-
freetransition from input state A to B for afunction f.
Lemma25 If f hasa 0 — O transition in cube [A, B], then the
implementation is free of logic hazardsfor the input changefrom A
to B.

Lemma2.6 If f hasa 1 — 1 transition in cube [A, B], then the
implementation is free of logic hazardsfor the input changefrom A
to B if andonly if [A, B]iscontainedin some cubeof cover F (i.e,
some product must hold its value at 1 throughout the transition).
The conditions for the 0 — 1 and 1 — 0 cases are symmetric.
Without loss of generality, we consider only a1 — O transition,
where f(A)=1and f(B)=0.!

Lemma2.7 If f hasa 1 — O transition in cube [A, B], then the
implementation is free of logic hazards for the input change from
A to B if and only if every cube ¢ € F intersecting [A, B] also
contains A (i.e.,, no product may glitch in the middle of a 1 —0
transition).

Lemma28 If f hasa 1 — O transition from input state A to
B which is hazard-freein the implementation, then, for every input
state X € [A, B]wheref(X) = 1, thetransition subcube[A, X]is
containedin some cube of cover F (i.e., every1 — 1 sub-transition
must be free of logic hazards).

2.6 Required and Privileged Cubes

The cube [A, B] in Lemma 2.6 and the maximal subcubes [A, X]
in Lemma 2.8 are called required cubes. Each required cube must
be contained in some cube of cover F' to ensure a hazard-free
implementation. More formally:

Definition 2.9 Given a function f, and a set, T', of specified
function-hazard-freeinput transitions of f, everycube[A4, B] € T
correspondingto a 1 — 1 transition, and every maximal subcube
[A, X] C [A, B]wherefisland[A, B] € T'isal — Otransition,
iscalled arequired cube.

Lemma 2.7 constrains the cubes which may be included in a cover
F. Each 1 — 0 transition cube is called a privileged cube, since
no cube ¢ in the cover may intersect it unless ¢ contains its start
point. If acube intersects a privileged cube but doesnot contain its
start point, it illegally inter sectsthe privileged cube and may not be
included in the cover. More formally:

Definition 2.10 Given a function f, and a set, T, of specified
function-hazard-freeinput transitions of f, everycube[A4, B] € T
correspondingto a1l — Otransitionis called a privileged cube.

2.7 Hazard-FreeCovers

A hazard-free cover of function f is acover of f whose AND-OR
implementation is hazard-free for a given set, T', of specified input
transitions. (It is assumed below that the function is defined for all
specified transitions; the function is undefined for all other input
states.)

Theorem 2.11 (Hazard-Free Covering) A sum-of-products F' is
a hazard-free cover for function f for the set T' of specified input
transitionsif and only if:

(a.) No cubeof F intersectsthe OFF-set of f;

(b.) Each required cube of f is contained in some cube of F'; and
(c.) No cubeof F' intersectsany privileged cubeillegally.

1A 0 — 1 transition from A to B has the same hazardsasal — 0
transition from B to A.

(a) req—set cubes

cd 00 01

00| &
priv— |

cube—lé /j;ﬂ’?f
0 A
K
S

11(

(c) Minimal hazard—free cover (5 products)

1]
T

0

Z
B
&

B

Figure 1: Hazard-Free Minimization Example

Theorem 2.11(a) and (c) determine theimplicantswhich may appear
in a hazard-free cover of a function f, called dynamic-hazard-free
(dhf-) implicants.

Definition 2.12 A dhf-implicant is an implicant which does not
intersect any privileged cube of f illegally. Adhf-primeimplicant
isa dhf-implicant containedin no other dhf-implicant. Anessential
dhf-prime implicant is a dhf-prime implicant which contains a
required cube contained in no other dhf-primeimplicant.

Theorem 2.11(b) determinesthe covering requirement for a hazard-
free cover of f: everyrequired cube of f must be covered, that is,
contained in some cube of the cover. Thus, the two-level hazard-
free logic minimization problem isto find a minimum cost cover
of a function using only dhf-prime implicants where every required
cubeis covered.

In general, the covering conditions of Theorem 2.11 may not
be satisfiable for an arbitrary Boolean function and set of transi-
tions [11, 9]. This case occurs if conditions (b) and (c) cannot be
satisfied simultaneously.

A hazard-free minimization exampleis shown in Figure 1.

2.8 Exact Hazard-Free Minimization Algorithm

A single-output exact hazard-free minimizer has been developed by
Nowick and Dill [9]. It has recently been extended to hazard-free
multi-valued minimization by Fuhrer, Lin and Nowick [2]. The
latter method uses Espresso to generate all prime implicants, then
transforms them into dhf-prime implicants, and finally employs
Espresso’s MINCOV to solve the resulting covering problem.

3 HEURISTIC HAZARD-FREE MINIMIZATION

3.1 Overview
The goal of heuristic hazard-free minimization is to find an optimal
(but not necessarily exactly minimum) solution to the hazard-free
covering problem. The basic minimization strategy of Espresso-HF
for hazard-free minimization is similar to the one used by Espresso-
1. However, we use additional constraintsto ensurethat theresulting
cover ishazard-free, and the algorithms havesignificant differences.

One important distinction is in the use of unate recursive
paradigm in Espresso-ll, i.e. to decompose operations recursively
leading to efficiently solvable sub-operations on unate functions.

(d) Minimal non-hazard—free cover (4 products)

Espresso-HF(f,T)
@ = generate_set_of _required-cubes(f, T)
P = generate_set_of _privileged-cubes(f,T)
S = generate_set_of _start-points(f,T)
R = OFF-set(f)
Q7 = {supercubegny(q)la € Q}
If “undefined” € Q@ then no solution is possible; exit
Minimize Q/ with respect to single cube containment
F=qf
(F, E) = expand_and_compute_essential s(F")
Removeall cubesfrom Q/ that are already coveredby E
F=F-FE
F =irredundant(F)

do
¢2 = |F|
do
¢1=|F|
F = reduce(F)
F = expand(F')
F = irredundant(F")
while (|F'| < ¢1)
17 = last_gasp(F")
while (|F| < ¢2)
F=FUFE

F = make_dhf_prime(F)
Figure 2: The Espresso-HF algorithm.

To the best knowledge of the authors, this paradigm cannot be ap-
plied directly to hazard-free minimization. We therefore follow the
basic steps of Espresso-11, modified to incorporate hazard-free con-
straints, but without the use of unate recursive algorithms. Because
of the constraints and granularity of the hazard-free minimization
problem, high-quality results are still obtained even for large exam-
ples.

In this section, we describe the basic steps of the algorithm,
concentrating on the new constraints that must be incorporated to
guarantee a cover to be hazard-free. Asin Espresso, the size of the
cover is never increased in size. In addition, after an initial phase,
the cover alwaysrepresentsavalid solution, i.e. acover of f that is
also hazard-free. Pseudocodeis shown in Figure 2.

Thefirst step of Espresso-HF isto read in PLA files specifying
a Boolean function, f, and a set of specified function-hazard-free
transitions, T'. Theseinputs are used to generate the set of required
cubes @, the set of privileged cubes P and their start points.S, and
the off-set R. Generation of these setsisimmediate from the earlier
lemmas (see also [9]).2

Unlike Espresso, the given initial specification) does not in
general represent a solution: while @ is a cover of f, it is not
necessarily hazard-free. Therefore, processing beginsby expanding
each required cubeinto theuniquely defined minimum dhf-implicant
covering it.

Thenext stepisto identify essential dhf-implicants usingamodi-
fied EXPAND step. This algorithm usesanovel approach to identi-
fying equivalenceclassesof implicants, each of whichistreated asa
singleimplicant. Essential implicants, aswell asall required cubes
covered by them, are then removed from F' and Q7. respectively,
resulting in asmaller problem to be solved by the main loop. Before
the main loop, the current cover is also made irredundant.

Next, asin Espresso, Espresso-HF appliesthethree operators RE-
DUCE, EXPAND, and IRREDUNDANT to the current cover until
no further improvement in the size of the cover is possible. Since
the result may be a local minimum, the operator LAST_GASP is
then applied to find a better solution using a different method. EX-
PAND uses new hazard-free notions of essential parts and feasible
expansion. The other steps differ from Espresso aswell.

At the end, there is an additional step to make the resulting
implicants dhf-prime, since it is desirable to obtain a cover that

2The algorithm does not need an explicit cover for the don't-care set
because the operations use the off-set to check if acubeis valid.

consists of dhf-prime implicants. The motivation for this step will
be made clear in the sequel.

3.2 Dhf-Canonicalization of Initial Cover

In Espresso, theinitial cover of afunctionisprovided by its ON-set,
FON ., Thiscoverisaseed solution,whichisiteratively improved by
the algorithm. By analogy, in Espresso-HF, the initial cover is pro-
vided by the set of required cubes, @. However, unlike Espresso, our
initial specification doesnot in general represent a solution: though
Q@ isacover, it isnot necessarily hazard-free. Therefore, processing
begins by expanding each required cube into the uniquely defined
minimum dhf-implicant containing it. This expansion represents a
canonicalization step, transforming a potentially hazardous initial
cover Q into a hazard-freeinitial cover Q.

Example. Consider the function f in the Karnaugh map of Fig-
ure 3. A set T of specified multiple-input transitions is indicated
by arrows. There are two 1 — O transitions, each corresponding
to a privileged cube: pl = a’c’ (start point pl.:re = a’bc’d’) and
p2 = ad (start point p2s:-+ = abc’d). Theinitial cover is given
by the set @ of required cubes: {a’c'd’, a’bc’, ac’, ac'd, abd,
bed, bed'}. This cover is hazardous. In particular, consider the
required cuber = bcd, corresponding to the 1 — 1 transition from
abed = 0111 to 1111. Required cube r illegally intersects privi-
leged cube p2, sinceit intersects p2 but does not contain p2.;,¢. To
avoid illegal intersection, » must be expanded to the smallest cube
which also contains p2.,:: 'Y = supercube({r, p2s:art}). How-
ever, this new cube r'Y = bd now illegally intersects privileged
cube p1, since it does not contain ple.:. Therefore, cube r'Y in
turn must be expanded to thesmallest cube containing pls:,e: 72 =
supercube({r'Y, pl.:4,:}). Theresulting expanded cube, r(? = b,
has noillegal intersections and is therefore a dhf-implicant. O

In this example, 7? is a hazard-free expansion of r, called a
canonical required cube; it can therefore replace r in the initial
cover. (Note that such a canonicalization is feasible if and only if
the hazard-free covering problem has a solution; see Section 4.)

Thus, aninitial set of required cubesis replaced by aset @7 of
canonical required cubes (after having been minimized with respect
to single cube containment). @ isavalid hazard-free cover of the
function to be minimized, and is used as an initial cover for the
minimization process. In fact, Q' has asecond role aswell: it is
used to simplify the covering problem. In particular, @/ definesa
new covering problem: each cubeof @7 (not Q) must be contained
in some dhf-implicant. It is straightforward to show that the two
covering problems are equivalent: if a dhf-implicant p contains a
required cube r in @@, p must also contain the canonical required
cubeof r in @' if not, p would not be adhf-implicant.

In the aboveexample, any dhf-implicant which containsrequired
cube r = bed must also contain canonical required cube 72 = b.
Therefore, the hazard-free minimization problem is unchanged, but
canonical required cubes are used. An advantage of using Q7 is
that it may have smaller size than @, i.e. being a more efficient
representation of the problem. Also, since the cubes in @/ are
in general larger than the corresponding onesin @, the EXPAND
operation may be sped up.

In sum, the set of canonical required cubes @7 replaces the set
of required cubes @ as both (i) the initial cover, and (ii) the set of
objectsto be covered. Henceforth, the term “set of required cubes’
will be used to refer to set Q7.

We formalize the notion of canonicalization below.

Definition 3.1 Let f be a Boolean function, 7" be a set of func-
tion hazard-free transitions, and C' be a set of implicants. The
dhf-supercube of C with respect to function f and transitions 7',
indicated as supercubell;; ' (C), isthe smallest dhf-implicant con-
taining the cubesof C.

Thesuperscript (f, T') isomitted when it isclear fromthe context.
supercubeqn s (C) is computed by the simple algorithm shown in

10 cd 00 01 11 10

o1} o1t

11 11

10 10

0 00 1 1
1 o i i /1\\. 1
v ‘3 -
1 m \1] 0
T I H
' 10| RS

1 i1 1 0 0

Figure 3: Canonicalization Example

supercubegp, f (gét of cubes C = {cy,..., cn})
r = supercube({c1,...,cn})
while (r intersects any privileged cubep; illegally)
r = supercube({r, s; }) where s; is the start point of p;
if r intersects the off-set then return “undefined” else return »

Figure 6: Supercubeany computation

Expand_cube(cube a, reg-set Q7 , priv-set P, cover-set F, off-set R)
Fo=F—a
Qu =@
Ra = R
free_entries =complement_pos_cube_notation(a)
while (F,, # ©)
update(a, free_entries, Fa, Qa, Pa, Ra)
Fo=Ace Fa|supercubedhf ({a,c}) isdefined }
Let ¢;, bethe best candidatein F,
a= supercubedhf ({a,cu})
while (Qq #
update(a fTee entries, Fo,Qa, Pa, Ra)
Qa = {c € Qa |supercubedhf({a c}) isdefined }
Let ¢, bethe best candidatein Q)

a = supercubegn({a,cp})

Figure 7: Expand (for a cube a)

Figure 6.

The canonical required cube of a required cube r can now be
defined as the dhf-supercubeof the set C' = {r}. The computation
of dhf-supercubesfor larger setswill be needed to implement some
of the operators presented in the sequel.

3.3 Expand

In Espresso, the goal of EXPAND is to enlarge each implicant in
turn into a prime implicant. As an implicant is expanded, it may
contain other implicants which can be removed, hence the cover
cardinality is reduced. If the current implicant cannot be expanded
to contain another implicant completely, then, as a secondary goal,
the implicant is expanded to overlap as many other implicants of
the current cover as possible.

In Espresso-HF, the primary goal is similar: to expand a dhf-
implicant to contain as many other dhf-implicants aspossible. How-
ever, EXPAND in Espresso-HF has two major differences. Unlike
Espresso, expansion in some literal (i.e., “raising of entries’) may
imply that other expansionsbe performed. That is, raising of entries
is a binate problem, not a unate problem. Furthermore, Espresso-
HF's EXPAND uses a different strategy for its secondary goal. By
the Hazard-Free Covering Theorem, each required cube needs to
be contained in some cube of the cover. Therefore, as a secondary
goal, animplicant is expanded to contain as many required cubesas
possible.

We now describe the implementation of EXPAND in Espresso-
HF. Pseudocode for the expansion of a single cube is shown in
Figure 7.

Figure 4: Essential Example

Figure 5: Existence Example

3.3.1 Determination of Essential Partsand Update of Local Sets
As in Espresso, a free list is maintained, to accelerate the expan-
sion [10]. The free entries consist of al entries of the current
implicant, in positional cube notation [4], which are still candidates
to be raised to 1. Initially, a free entry is assigned a 1 (0) if the
current implicant « hasa 0 (1) in the corresponding position. An
overexpanded cube is defined as the cube « where all free entries
have been raised simultaneously.

Anessential partisonewhich can never, or always, beraised[10].
Our definition of “essential parts” is different from Espresso, since
a hazard-free cover must be maintained.

First, determine which entries can never be raised and remove
them from free. Thisis achieved by searching for any cubein the
off-set R that has distance 1 from «, using the same approach asin
Espresso.

Next, determine which parts can always be raised, raise them
and remove them from free. This step differs from Espresso. In
Espresso, a part can always be raised if it is 0 in all cubes of the
OFF-set, R. That is, it is guaranteed that the expanded cube will
never intersect the OFF-set. In contrast, in Espresso-HF, we must
ensure that an implicant is also hazard-free: it cannot intersect the
OFF-set, nor can it illegally intersect a privileged cube. Unlike in
Espresso, thisis achieved by searching for any columnthat hasonly
Osin R AND whereeach1in P impliesthat the corresponding start
point is covered by a.

Example. Figure 1(a) indicates the set of required cubes,
which forms an initial hazard-free cover. Consider the cube bed
(11010101, in positional cube notation). As in Espresso, the 0-
entries for literals &’ and d' can never be raised, since the cube
would intersect the OFF-set. However, after updating the free list,
Espresso indicates that literal ¢’ can always be raised, since the
resulting cube will never intersect the OFF-set. In contrast, in
Espresso-HF, raising ¢’ results in an illegal intersection with privi-
leged cube a’c’, soit cannot “aways be raised”. O

Since the hazard-free minimization is somewhat more con-
strained, the expansion of a cube « can be accelerated by the fol-
lowing new operations on the local sets. P,, R, Q.. These sets
are associated with cube «, and are updated as expansion proceeds.
(1) Remove privileged cubesfrom P where the corresponding start
point is already covered by « (since no further checking is required
for illegal intersection). (2) Move privileged cubes to the local
off-set R, if the overexpanded cube does not include the corre-
sponding start points (since « can never be expanded to include
these start points, and therefore must avoid intersection with the
cubes entirely). (3) Move privileged cubes to the local off-set
where supercubeaqns({@, start point}) intersects the off-set (« can
never be expanded to include these start points, and therefore must
avoid intersection with the cubes entirely).

3.3.2 Detection of Feasibly Covered Cubes of F'

In Espresso, a cube d in F is feasibly covered by a if
supercube({a,d}) (the smallest cube containing both « and d) is
an implicant. In Espresso-HF, this definition needs to be modified
to insure hazard-freecovering.

Definition 3.2 A cube d in F' is dhf-feasibly covered by « if
supercubeqns({a,d}) isdefined.

This definition insures that the resulting cube is (i) an implicant
(does not intersect OFF-set), and (ii) is also a dhf-implicant (does
not intersect any privileged cube illegally). This definition canon-
icalizes the resulting supercube to produce a dhf-implicant. That
is, supercubeqns({a,d}) may properly contain supercube({a,d}),
since the former may be expanded through a series of implications
in order to reach the minimum dhf-implicant which contains both
a and d. Using this definition, the following is an algorithm to find
dhf-feasibly covered cubesof F'.

While there are cubesin F' that are dhf-feasibly covered, iterate
the following:

Replace a by supercubeans({a, d}), where d is a dhf-feasibly
covered cube such that the resulting cube will cover as many cubes
of the cover as possible. Covered cubesare then removed, reducing
the cover cardinality. Determine essential parts and update local
sets (see above).

3.3.3 Detection of Feasibly Covered Cubesof @

We continueto expandcubea evenif it cannot cover any more cubes
of F'. Thisismotivated by the Hazard-Free Covering Theorem, that
states that each required cube needs to be contained in some cube
of the cover. Therefore, as a secondary goal, a cube « is expanded
to contain as many required cubes as possible. The strategy used
in this sub-step is similar to the one used in the preceding one, i.e.
while thereare cubesin @/ that are dhf-feasi bly covered, iterate the
following:

Replace a by supercubeany({a, r}), where r is a dhf-feasibly
covered required cube such that the resulting cube will cover as
many required cubesnot already containedin « aspossible. Covered
required cubes are then removed. Determine essential parts and
update local sets (see above).

3.3.4 Constraints on Hazard-Free Expansion

In Espresso, an implicant is expanded until no further expansionis
possible, i.e. when the implicant is prime. Two steps are used: (i)
expansion to overlap a maximum number of cubesstill covered by
the overexpanded cube; and (ii) raising of entriesto find the largest
prime implicant covering the cube.

In Espresso-HF, however, we do not implement these remaining
EXPAND steps, based on the following observation. The result of
our EXPAND steps guaranteesthat adhf-implicant can never befur-
ther expanded to contain additional required cubes. Therefore, by
the Hazard-Free Covering Theorem, no additional objects (required
cubes) can be covered through further expansion. In contrast, in
Espresso, further expansion steps may result in covering additional
ON-set minterms. Because of this distinction, the benefits of fur-
ther expansion are mitigated. Therefore, in general, our algorithm
does not transform dhf-implicantsinto dhf-prime implicants. Since
expansionto dhf-primes is important for literal reduction and testa-
bility, it isincluded as afinal post-processing step: make-dhf-prime
(seeFigure 2).

3.4 Essentials

Essential prime implicants are prime implicants that need to be in-
cludedin any cover of primeimplicants. Therefore, it isdesirableto
identify them as soon as possible making the resulting problem size
smaller. On the one hand, we know of no efficient solution for iden-
tifying the essential dhf-primes using the unate recursion paradigm
as in Espresso. On the other hand, the hazard-free minimization
problem is constrained by the notion of covering of required cubes,
allowing a powerful method to classify essentials as equivalence
classes.

Example. Consider Figure 4. The required cube, r = bcd,
is covered by precisely two dhf-prime implicants: pl = bd and
p2 = cd. Neither pl nor p2 is an essential dhf-prime, since r is
covered by both. And yet, clearly, either p1 or p2 (not both) must

be included in any cover of dhf-primes. If we assume the standard
cost function of cover cardinality, p1 and p2 are of equal cost. O

Our EXPAND method supportsthe notion of equivalence classes,
since implicants are not expanded beyond the required cubeswhich
they cover. In the above example, r would not be expanded further,
since no feasible required cubes can be found. Cube r therefore
represents an essential equivalence class corresponding to the set
{bd, cd} of dhf-primes. It should be removed from the cover. Us-
ing this strategy, which is applicable since the number of required
cubes is usually not large, the problem size can often be reduced
dramatically (see Section 5).

Espresso computes essentials after an initial expand and irredun-
dant. In contrast, Espresso-HF computes essentials as part of a
modified expand step. The algorithm is outlined as follows:

The algorithm startswith the initial hazard-free cover, @/, of re-
quired cubes. One seed cubeisselected and expanded greedily using
EXPAND, to adhf-implicant p. Thisimplicant is characterized by
the set, @*, of required cubeswhich it contains. Dhf-implicant p is
called an essential equivalence classif it contains some required
cube, ¢’ , which cannot be expanded to any other equivalenceclass.
To check if ¢/ can be expanded to a different equivalence class,
a simple pairwise check is used: for each required cube s’ not
covered by p, determine if supercubeans ({¢’, s7}) isfeasiblefor
some s/ . If no feasible expansion exists for ¢7, it is called a dis-
tinguished required cube, and therefore p is essential. Otherwise,
the process is repeated for every required cube ¢ in QF. When
an essential p is identified, all required cubes covered by p are re-
moved, and the covering problem is updated. Thisstep canresultin
“secondary essential” equivalence classes. The procedure iterates
until all essentials are identified.

3.5 Reduce

The goal of the REDUCE operator isto set up acover that is likely
to be made smaller by the following EXPAND step. To achieve
this, each cubec in acover F' ismaximally reducedin turn to acube
¢, such that the resulting set of cubes, { F' — ¢} U ¢ is till acover.

Espresso usesthe unate recursive paradigm to maximally reduce
each cube. Since Espresso-HF is a required cube covering algo-
rithm, there is no obvious way to use this paradigm. Fortunately,
the hazard-free problem is more constrained, making it possible to
use an efficient enumerative approach based on required cubes.

Our REDUCE algorithm is as follows. For each required cube
¢ € @7, it computes the number of cubes in the current cover
F that contain ¢7. The algorithm then reduces each cube ¢ in the
cover in order. A reduced cube is defined by the set of required
cubeswhich ¢ uniquely covers. Using the supercubeqn ¢ Operator,
this set is transformed into the maximally-reduced dhf-implicant ¢.
We then update the number of cubes in the current cover F' that
cover each ¢/, and similarly reduce the remaining cubesin F, in
order.

3.6 Irredundant

Espresso uses the unate recursive paradigm to find an irredundant
cover. However, there is no obvious way to employ this paradigm,
sincea“redundant cover” (accordingto covering of minterms) may
in fact be irredundant with respect to covering of required cubes.

Therefore, asin REDUCE, our approach is required-cube based.
Considering the Hazard-Free Covering Theorem, it is straightfor-
ward that IRREDUNDANT can be reduced to a covering problem
of the cubesin Q7 by the cubesin F'. That is, the problem reduces
to aminimum-covering problem of (i) required cubes, using (ii) dhf-
implicants in the current cover. In practice, the number of required
cubes and cover cubes usually make the covering problem man-
ageable. Espresso’s MINCOV can be used to solve this covering
problem exactly, or heuristically (using its heuristic option).

3.7 Last Gasp

The inner loop may lead to a suboptimal local minimum. LAST
GASPthen usesa different approach attempting to reducethe cover
size. In Espresso, each cube ¢ € F' isreduced to the smallest cube
containing all minterms not covered by any other cube of F. In
contrast, Espresso-HF computes, for each ¢ € F', the smallest dhf-
implicant containing all required cubesthat are not covered by any
other cubein F'. Using thisnotion, the remaining stepsare identical
to the approach used in Espresso.

3.8 Makedhf-prime

The cover being constructed so far does not necessarily consist of
dhf-primes. It isusually desirableto expand each cube of the cover
to make it dhf-prime as a last step. This can be achieved by a
modified expand step. The following greedy algorithm will expand
an implicant ¢ to a dhf-prime: While dhf-feasible, raise a single
entry of c.

4 EXISTENCE
For certain Boolean functions and setsof transitions, no hazard-free
cover exists. The exact hazard-free minimization method [9] isable
to decide if a solution exists only after generating all dhf-prime
implicants. A solution does not exist if and only if the dhf-prime
implicant table includes at least one required cube not covered by
any dhf-prime implicant.

Since the generation of all primes may very well beinfeasible for
even medium-sized examples, it is necessary to find an alternative
approach. We present a new theorem for the existence of a solution
leading directly to a simple algorithm.

Theorem 4.1 A solution of the hazard-free minimization problem
existsiff supercubeany(q) isdefined for all required cubesg.
The proof isimmediate from the discussionin Section 3.2.

Example. Consider Figure 5. To check for existence, we com-
pute supercubeqn ¢ (¢) for each required cube . Except for abd, it
holdsthat ¢ = supercubeany(g) since no privileged cubeis inter-
sected illegally. To compute supercubeqns(abd), note that priv-
ileged cube c is intersected illegally, i.e. supercubeqn(abd) =
supercubeqny(bd). Since bd now intersects privileged cube a’c’,
we get supercubeqn¢(abd) = supercubeqny(b) leading directly
to the fact that supercubeqns(abd) does not exist because b in-
tersects the off-set. Thus, there is no hazard-free cover for this
example. O

5 EXPERIMENTAL RESULTS

A prototype version of the Espresso-HF algorithm was run on sev-
eral benchmark circuits on a SPARC 10 workstation, as shown in
Figure 8. Theresults for the exact columns were obtained by run-
ning the exact hazard-free minimizer by Fuhrer/Lin/Nowick [2].
This method uses Espresso to generate all prime implicants, then
transforms them into dhf-prime implicants, and finally employs
MINCOV to solve the resulting unate covering problem. Each of
the algorithms used in the three stepsiscritical, i.e. hasaworst-case
run-time that is exponential.

Three of the fifteen examples could not be solved by the exact
minimizer (in the allotted time of 40 hours). For stetson-pl the
generation of al prime implicants was not possible. For cache-
ctrl, the exact minimizer was unable to transform the set of prime
implicants into the set of dhf-prime implicants. For pscsi-pscsi, the
resulting covering table was too large. This shows that the exact
algorithm is not useful for large examplesin general since al three
steps can fail.

The heuristic minimizer Espresso-HF was able to solve all ex-
amples. For all but one example that could be solved by the exact
minimizer, Espresso-HF finds the optimal solution. It is worth
pointing out that many exampleswere very positively influenced by
our notion of essentials. Quite afew examplescan be minimized by
just the essential step, resulting in a guaranteed minimal solution.

[exact[FLN] [Espresso-HF |
name ilo [#p # time | #e #c time |
cache-ctrl | 20723 * * * 50 105 2136.87
dram-ctrl 9/8 15 22 015 |22 22 0.24
pe-send-ifc | 12710 154 27 148 | 27 27 0.86
pscSi-ircv 87 20 12— 007 |1z 12 0.06
pscsi-isend | 11710 204 23 043 | 23 23 0.39
pscsi-pscs | 16/11 | 65060 ~ * 55 78 7052
pscsi-tsend | 11710 190 22 041 |22 22 0.48
pscsi-ts-bm | 17711 188 23 046 | 23 23 0.54
sd-control | 18/22 | 1718 34 4085 | 23 36 15.05
sscs-is-bm | 10/9 87 22 020 | 22 22 0.49
sscsi-tr.-bm | 10/9 113 24022 |21 24 0.54
sscsi-ts-bm | 11710 93 20 025 [20 20 041
stetson-pI | 32733 * * * 34 62 24733
stefson-p2 | 1822 | 1574 37 3429 | 26 37 15.85
stefson-p3 6/4 10 7 0.05 7 7 0.02

Figure 8: Comparison of exact and heuristic minimization (#p -
number of dhf-prime implicants, #c - number of cubes, #e - number
of essential equivalence classes, time - run-time in minutes)

The detection of essentialsis crucial for speed and size. Espresso-
HF currently exists only as a prototype. Run-times are expected to
improve significantly by careful implementation.

6 CONCLUSIONS

To the best knowledge of the authors, the presented algorithm
Espresso-HF isthe first heuristic method based on Espresso to solve
the hazard-free minimization problem for multiple-input changes.

Our prototype can solve all examples that we have available so
far, and almost always obtains an absolute minimum-size cover.
This includes examples that have not been solved before.

Espresso-HF overcomes the three bottlenecks of the exact
method—prime implicant generation, transformation of prime im-
plicants to dhf-prime implicants, and solution of the covering
problem—each of which being solved by an algorithm with ex-
ponential worst-case behavior.

Espresso-HF also employs a hew and much more efficient algo-
rithm to check for existencewithout generating all primeimplicants.

REFERENCES

[1] RK. Braytonet al. Logic Minimization Algorithmsfor VLS Synthesis. Kluwer
Academic, 1984.

[2] R. Fuhrer, B. Lin, and SM. Nowick. Symbolic hazard-free minimization and
encoding of asynchronousfinite state machines. In1CCAD-1995.

[3] A.Marshall, B. Coates, and P. Siegel. The design of an asynchronouscommuni-
cationschip. Design and Test, June 1994.

[4] G.DeMicheli, R. K. Brayton, A. Sangiovanni-Vincentelli. Optimal state assign-
ment for finite state machines. |IEEE TCAD, CAD-4(3):269-285, July 1985.

[5] S.M. Nowick and D.L. Dill. Synthesis of asynchronous state machinesusing a
local clock. In 1CCD-1991.

[6] S.M. Nowick and B. Coates. Automated design of high-performance unclocked
state machines. In |CCD-1994.

[71 S.M. Nowick, M.E. Dean, D.L. Dill, and M. Horowitz. The design of a high-
performancecache controller: acase study in asynchronoussynthesis. InHICSS-
1993.

[8] S.M. Nowick, N.K. Jha, and F. Cheng. Synthesis of asynchronous circuits for
stuck-at and robust path delay fault testability. In VLS Design 1995.

[9] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-freelogic
with multiple-input changes. IEEE TCAD, CAD-14(8):986-997, August 1995.

[10] R.Rudell andA. SangiovanniVincentelli. Multiplevalued minimizationfor PLA
optimization. |EEE TCAD, CAD-6(5):727-750, September 1987.

[11] SH. Unger. Asynchronous Sequential Switching Circuits. New York: Wiley-
Interscience, 1969.

[12] K. Yunand D.L. Dill. A high-performance asynchronous SCSI controller. In
ICCD-1995.

[13] K. Yun, D.L. Dill, and SM. Nowick. Synthesis of 3D asynchronous state ma-
chines. InICCD-1992.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

