
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Espresso-HF: A Heuristic Hazard-Free Minimizer for Two-Level Logic�

Michael Theobald Steven M. Nowick Tao Wu

Department of Computer Science
Columbia University

New York, NY 10027

Abstract — We present a new heuristic algorithm for hazard-free
minimization of two-level logic. On nearly all examples, the algo-
rithm finds an exactly minimum-cost cover. It also solves several
problems which have not been previously solved using existing ex-
act minimizers. We believe this is the first heuristic method based
on Espresso to solve the general hazard-free two-level minimization
problem, for multiple-input change transitions.

1 INTRODUCTION

Asynchronous design has been the focus of much recent research
activity. A number of methods have been developed for the design
of hazard-free controllers [5, 2, 6, 13]. These methods have been
applied to several large and realistic design examples, including a
low-power infrared communications chip [3], a second-level cache-
controller [7], and an implementation of a SCSI controller [12].

An important aspect of these methods is the development of op-
timized CAD tools. In synchronous design, the development and
implementation of CAD packages has been critical to the success
of modern automated digital design. In asynchronous design, much
progress has been made, including tools for: exact hazard-free
two-level logic minimization [9], optimal state assignment [2] and
synthesis-for-testability [8]. However, these tools have been lim-
ited in handling large-scale designs. In particular, while the exact
hazard-free minimization algorithm has been effective on small- and
medium-sized examples, it has been unable to produce solutions for
several large design problems [2].

In this paper, we present an algorithm to solve the heuristic
hazard-free two-level logic minimization problem. The method is
heuristic solely in terms of the cardinality of solution. In all cases,
it guarantees a hazard-free solution. It also implements both single-
output and multi-output minimization. The algorithm is based on
Espresso [10, 1], but with a number of significant modifications to
handle hazard-free constraints. The algorithm, called Espresso-HF,
also employs a new and much more efficient algorithm to check for
existence of a solution, without generating all prime implicants.

Our prototype can solve all examples that we have available so
far, and almost always obtains an exactly minimum cover. It also
solves several examples which have not been solved before.

The paper is organized as follows. Section 2 gives background
on circuit models, hazards and hazard-free minimization. Section
3 describes the Espresso-HF algorithm. Section 4 describes an
algorithm to determine if a hazard-free solution exists. Section 5
presents experimental results, and Section 6 gives conclusions.

�This work was supported by NSF under Grant no. MIP-9308810 and
by an Alfred P. Sloan Research Fellowship.

2 BACKGROUND

The material of this section focuses on hazards and hazard-free logic
minimization, and is taken from [2] and [9]. For simplicity, we focus
on single-output functions. A generalization of these definitions to
multi-output functions is straightforward, and is described in [2].
Our heuristic minimizer handles multi-output functions.

2.1 Circuit Model
This paper considers combinational circuits having arbitrary finite
gate and wire delays (unbounded wire delay model [9]). A pure
delay model is assumed as well (see [11]).

2.2 Multiple-Input Changes
Definition 2.1 Let A and B be two minterms. The transition
cube, [A;B], from A to B has start point A and end point B,
and contains all minterms that can be reached during a transition
fromA to B. More formally, if A andB are described by products,
with i-th literalsAi and Bi, respectively, then the i-th literal for the
product of t = [A;B] is the Boolean function Ai + Bi . An input
transition or multiple-input change from input state (minterm) A
to B is described by transition cube [A;B].
A multiple-input change specifies what variables change value and
what the corresponding starting and ending values are. Input vari-
ables are assumed to change simultaneously. (Equivalently, since
inputs may be skewed arbitrarily by wire delays, inputs can be as-
sumed to change monotonically in any order and at any time.) Once
a multiple-input change occurs, no further input changes may oc-
cur until the circuit has stabilized. In this paper, we consider only
transitions where f is fully defined; that is, for every X 2 [A;B],
f(X) 2 f0; 1g.

2.3 Function Hazards
A function f which does not change monotonically during an input
transition is said to have a function hazard in the transition.
Definition 2.2 A function f contains a static function hazard for
the input transition from A to C if and only if: (1) f(A) = f(C),
and (2) there exists some input state B 2 [A;C] such that f(A) 6=
f(B).

Definition 2.3 A function f contains a dynamic function hazard
for the input transition from A to D if and only if: (1) f(A) 6=
f(D); and (2) there exist a pair of input states, B and C , such
that (a) B 2 [A;D] and C 2 [B;D], and (b)f(B) = f(D) and
f(A) = f(C).
If a transition has a function hazard, no implementation of the func-
tion is guaranteed to avoid a glitch during the transition, assuming
arbitrary gate and wire delays [9, 11]. Therefore, we consider only
transitions which are free of function hazards.

2.4 Logic Hazards
If f is free of function hazards for a transition from input A to B,
an implementation may still have hazards due to possible delays in
the logic realization.
Definition 2.4 A circuit implementing function f contains a static
(dynamic) logic hazard for the input transition from minterm A

to minterm B if and only if: (1) f(A) = f(B) (f(A) 6= f(B)),
and (2) for some assignment of delays, the circuit’s output is not
monotonic during the transition interval.

That is, a static logic hazard occurs if f(A) = f(B) = 1 (0),
but the circuit’s output makes an unexpected 1 ! 0 ! 1 (0 !
1 ! 0) transition. A dynamic logic hazard occurs if f(A) = 1
and f(B) = 0 (f(A) = 0 and f(B) = 1), but the circuit’s output
makes an unexpected 1 ! 0 ! 1 ! 0 (0 ! 1 ! 0 ! 1)
transition.

2.5 Conditions for a Hazard-Free Transition
We now describe conditions to ensure that a sum-of-products imple-
mentation,F , is hazard-free for a given input transition [9]. Assume
that [A;B] is the transition cube corresponding to a function-hazard-
free transition from input state A to B for a function f .
Lemma 2.5 If f has a 0 ! 0 transition in cube [A;B], then the
implementation is free of logic hazards for the input change fromA

to B.
Lemma 2.6 If f has a 1 ! 1 transition in cube [A;B], then the
implementation is free of logic hazards for the input change fromA
to B if and only if [A;B] is contained in some cube of coverF (i.e.,
some product must hold its value at 1 throughout the transition).
The conditions for the 0 ! 1 and 1 ! 0 cases are symmetric.
Without loss of generality, we consider only a 1 ! 0 transition,
where f (A)=1 and f (B)=0.1

Lemma 2.7 If f has a 1 ! 0 transition in cube [A;B], then the
implementation is free of logic hazards for the input change from
A to B if and only if every cube c 2 F intersecting [A;B] also
contains A (i.e., no product may glitch in the middle of a 1 !0
transition).
Lemma 2.8 If f has a 1 ! 0 transition from input state A to
B which is hazard-free in the implementation, then, for every input
stateX 2 [A;B]wheref(X) = 1, the transition subcube [A;X] is
contained in some cube of coverF (i.e., every 1 ! 1 sub-transition
must be free of logic hazards).

2.6 Required and Privileged Cubes
The cube [A;B] in Lemma 2.6 and the maximal subcubes [A;X]
in Lemma 2.8 are called required cubes. Each required cube must
be contained in some cube of cover F to ensure a hazard-free
implementation. More formally:
Definition 2.9 Given a function f , and a set, T , of specified
function-hazard-free input transitions of f , every cube [A;B] 2 T

corresponding to a 1 ! 1 transition, and every maximal subcube
[A;X] � [A;B]wheref is 1 and [A;B] 2 T is a 1 ! 0 transition,
is called a required cube.
Lemma 2.7 constrains the cubes which may be included in a cover
F . Each 1 ! 0 transition cube is called a privileged cube, since
no cube c in the cover may intersect it unless c contains its start
point. If a cube intersects a privileged cube but does not contain its
start point, it illegally intersects the privileged cube and may not be
included in the cover. More formally:
Definition 2.10 Given a function f , and a set, T , of specified
function-hazard-free input transitions of f , every cube [A;B] 2 T
corresponding to a 1 ! 0 transition is called a privileged cube.

2.7 Hazard-Free Covers
A hazard-free cover of function f is a cover of f whose AND-OR
implementation is hazard-free for a given set, T , of specified input
transitions. (It is assumed below that the function is defined for all
specified transitions; the function is undefined for all other input
states.)
Theorem 2.11 (Hazard-Free Covering) A sum-of-products F is
a hazard-free cover for function f for the set T of specified input
transitions if and only if:
(a.) No cube of F intersects the OFF-set of f ;
(b.) Each required cube of f is contained in some cube of F ; and
(c.) No cube of F intersects any privileged cube illegally.

1A 0 ! 1 transition from A to B has the same hazards as a 1 ! 0
transition from B to A.

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

(a) req−set cubes

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

(b) priv−set cubes

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

(c) Minimal hazard−free cover (5 products)

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

priv−
 cube−1

(d) Minimal non−hazard−free cover (4 products)

Figure 1: Hazard-Free Minimization Example

Theorem 2.11(a) and (c) determine the implicants which may appear
in a hazard-free cover of a function f , called dynamic-hazard-free
(dhf-) implicants.

Definition 2.12 A dhf-implicant is an implicant which does not
intersect any privileged cube of f illegally. A dhf-prime implicant
is a dhf-implicant contained in no other dhf-implicant. An essential
dhf-prime implicant is a dhf-prime implicant which contains a
required cube contained in no other dhf-prime implicant.
Theorem 2.11(b) determines the covering requirement for a hazard-
free cover of f : every required cube of f must be covered, that is,
contained in some cube of the cover. Thus, the two-level hazard-
free logic minimization problem is to find a minimum cost cover
of a function using only dhf-prime implicants where every required
cube is covered.

In general, the covering conditions of Theorem 2.11 may not
be satisfiable for an arbitrary Boolean function and set of transi-
tions [11, 9]. This case occurs if conditions (b) and (c) cannot be
satisfied simultaneously.

A hazard-free minimization example is shown in Figure 1.

2.8 Exact Hazard-Free Minimization Algorithm
A single-output exact hazard-free minimizer has been developed by
Nowick and Dill [9]. It has recently been extended to hazard-free
multi-valued minimization by Fuhrer, Lin and Nowick [2]. The
latter method uses Espresso to generate all prime implicants, then
transforms them into dhf-prime implicants, and finally employs
Espresso’s MINCOV to solve the resulting covering problem.

3 HEURISTIC HAZARD-FREE MINIMIZATION

3.1 Overview
The goal of heuristic hazard-free minimization is to find an optimal
(but not necessarily exactly minimum) solution to the hazard-free
covering problem. The basic minimization strategy of Espresso-HF
for hazard-free minimization is similar to the one used by Espresso-
II. However, we use additional constraints to ensure that the resulting
cover is hazard-free, and the algorithms have significantdifferences.

One important distinction is in the use of unate recursive
paradigm in Espresso-II, i.e. to decompose operations recursively
leading to efficiently solvable sub-operations on unate functions.

Espresso-HF(f,T)

Q = generate set of required-cubes(f,T)
P = generate set of privileged-cubes(f,T)
S = generate set of start-points(f,T)
R = OFF-set(f)
Qf

= fsupercubedhf (q)jq 2 Qg
If “undefined”2 Qf then no solution is possible; exit
Minimize Qf with respect to single cube containment
F = Qf

(F;E) = expand and compute essentials(F)
Remove all cubes from Qf that are already covered by E
F = F - E
F = irredundant(F)
do

�2 = jF j
do

�1 = jF j
F = reduce(F)
F = expand(F)
F = irredundant(F)

while (jF j < �1)
F = last gasp(F)

while (jF j < �2)
F = F [E
F = make dhf prime(F)

Figure 2: The Espresso-HF algorithm.

To the best knowledge of the authors, this paradigm cannot be ap-
plied directly to hazard-free minimization. We therefore follow the
basic steps of Espresso-II, modified to incorporate hazard-free con-
straints, but without the use of unate recursive algorithms. Because
of the constraints and granularity of the hazard-free minimization
problem, high-quality results are still obtained even for large exam-
ples.

In this section, we describe the basic steps of the algorithm,
concentrating on the new constraints that must be incorporated to
guarantee a cover to be hazard-free. As in Espresso, the size of the
cover is never increased in size. In addition, after an initial phase,
the cover always represents a valid solution, i.e. a cover of f that is
also hazard-free. Pseudocode is shown in Figure 2.

The first step of Espresso-HF is to read in PLA files specifying
a Boolean function, f , and a set of specified function-hazard-free
transitions, T . These inputs are used to generate the set of required
cubes Q, the set of privileged cubesP and their start points S, and
the off-setR. Generation of these sets is immediate from the earlier
lemmas (see also [9]).2

Unlike Espresso, the given initial specification Q does not in
general represent a solution: while Q is a cover of f , it is not
necessarily hazard-free. Therefore, processing begins by expanding
each required cube into the uniquely defined minimum dhf-implicant
covering it.

The next step is to identify essential dhf-implicants using a modi-
fied EXPAND step. This algorithm uses a novel approach to identi-
fying equivalenceclasses of implicants, each of which is treated as a
single implicant. Essential implicants, as well as all required cubes
covered by them, are then removed from F and Qf , respectively,
resulting in a smaller problem to be solved by the main loop. Before
the main loop, the current cover is also made irredundant.

Next, as in Espresso,Espresso-HF applies the three operators RE-
DUCE, EXPAND, and IRREDUNDANT to the current cover until
no further improvement in the size of the cover is possible. Since
the result may be a local minimum, the operator LAST GASP is
then applied to find a better solution using a different method. EX-
PAND uses new hazard-free notions of essential parts and feasible
expansion. The other steps differ from Espresso as well.

At the end, there is an additional step to make the resulting
implicants dhf-prime, since it is desirable to obtain a cover that

2The algorithm does not need an explicit cover for the don’t-care set
because the operations use the off-set to check if a cube is valid.

consists of dhf-prime implicants. The motivation for this step will
be made clear in the sequel.

3.2 Dhf-Canonicalization of Initial Cover
In Espresso, the initial cover of a function is provided by its ON-set,
FON . This cover is a seed solution,which is iteratively improved by
the algorithm. By analogy, in Espresso-HF, the initial cover is pro-
vided by the set of required cubes,Q. However, unlike Espresso,our
initial specification does not in general represent a solution: though
Q is a cover, it is not necessarily hazard-free. Therefore, processing
begins by expanding each required cube into the uniquely defined
minimum dhf-implicant containing it. This expansion represents a
canonicalization step, transforming a potentially hazardous initial
cover Q into a hazard-free initial coverQf .

Example. Consider the function f in the Karnaugh map of Fig-
ure 3. A set T of specified multiple-input transitions is indicated
by arrows. There are two 1 ! 0 transitions, each corresponding
to a privileged cube: p1 = a0c0 (start point p1strt = a0bc0d0) and
p2 = ad (start point p2strt = abc0d). The initial cover is given
by the set Q of required cubes: fa0c0d0, a0bc0, ac0 , ac0d, abd,
bcd, bcd0g. This cover is hazardous. In particular, consider the
required cube r = bcd, corresponding to the 1 ! 1 transition from
abcd = 0111 to 1111. Required cube r illegally intersects privi-
leged cube p2, since it intersects p2 but does not contain p2strt. To
avoid illegal intersection, r must be expanded to the smallest cube
which also contains p2strt: r(1) = supercube(fr;p2startg). How-
ever, this new cube r(1) = bd now illegally intersects privileged
cube p1, since it does not contain p1strt. Therefore, cube r(1) in
turn must be expanded to the smallest cube containingp1strt: r(2) =
supercube(fr(1); p1startg). The resulting expanded cube, r(2) = b,
has no illegal intersections and is therefore a dhf-implicant. 2

In this example, r(2) is a hazard-free expansion of r, called a
canonical required cube; it can therefore replace r in the initial
cover. (Note that such a canonicalization is feasible if and only if
the hazard-free covering problem has a solution; see Section 4.)

Thus, an initial setQ of required cubes is replaced by a setQf of
canonical required cubes (after having been minimized with respect
to single cube containment). Qf is a valid hazard-free cover of the
function to be minimized, and is used as an initial cover for the
minimization process. In fact, Qf has a second role as well: it is
used to simplify the covering problem. In particular, Qf defines a
new covering problem: each cube ofQf (notQ) must be contained
in some dhf-implicant. It is straightforward to show that the two
covering problems are equivalent: if a dhf-implicant p contains a
required cube r in Q, p must also contain the canonical required
cube of r in Qf ; if not, p would not be a dhf-implicant.

In the above example, any dhf-implicant which contains required
cube r = bcd must also contain canonical required cube r(2) = b.
Therefore, the hazard-free minimization problem is unchanged, but
canonical required cubes are used. An advantage of using Qf is
that it may have smaller size than Q, i.e. being a more efficient
representation of the problem. Also, since the cubes in Qf are
in general larger than the corresponding ones in Q, the EXPAND
operation may be sped up.

In sum, the set of canonical required cubes Qf replaces the set
of required cubes Q as both (i) the initial cover, and (ii) the set of
objects to be covered. Henceforth, the term “set of required cubes”
will be used to refer to set Qf .

We formalize the notion of canonicalization below.
Definition 3.1 Let f be a Boolean function, T be a set of func-
tion hazard-free transitions, and C be a set of implicants. The
dhf-supercube of C with respect to function f and transitions T ,
indicated as supercube(f;T)

dhf (C), is the smallest dhf-implicant con-
taining the cubes of C .

The superscript (f;T) is omitted when it is clear from the context.
supercubedhf (C) is computed by the simple algorithm shown in

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 0

1 0

0

0 1

Figure 3: Canonicalization Example

00 01 11 10

00

01

11

10

a b
c d

1 1

1 1 1

1 1

0

1

0

11

1 10 0

Figure 4: Essential Example

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

Figure 5: Existence Example

supercubedhf

�
set of cubes C = fc1; : : : ; cng

�

r = supercube(fc1 ; : : : ; cng)
while (r intersects any privileged cube pi illegally)

r = supercube(fr; sig) where si is the start point of pi
if r intersects the off-set then return “undefined” else return r

Figure 6: Supercubedhf computation

Expand cube(cube a, req-setQf , priv-set P , cover-set F , off-set R)
Fa = F � a

Qa = Qf

Pa = P
Ra = R
free entries =complement pos cube notation(a)
while (Fa 6= �)

update(a;free entries; Fa; Qa; Pa;Ra)

Fa = fc 2 Fajsupercubedhf (fa;cg) is defined g
Let cb be the best candidate in Fa
a = supercubedhf (fa; cbg)

while (Qa 6= �)
update(a;free entries; Fa; Qa; Pa;Ra)

Qa = fc 2 Qajsupercubedhf (fa; cg) is defined g
Let cb be the best candidate in Qa

a = supercubedhf (fa; cbg)

Figure 7: Expand (for a cube a)

Figure 6.

The canonical required cube of a required cube r can now be
defined as the dhf-supercube of the set C = frg. The computation
of dhf-supercubes for larger sets will be needed to implement some
of the operators presented in the sequel.

3.3 Expand

In Espresso, the goal of EXPAND is to enlarge each implicant in
turn into a prime implicant. As an implicant is expanded, it may
contain other implicants which can be removed, hence the cover
cardinality is reduced. If the current implicant cannot be expanded
to contain another implicant completely, then, as a secondary goal,
the implicant is expanded to overlap as many other implicants of
the current cover as possible.

In Espresso-HF, the primary goal is similar: to expand a dhf-
implicant to contain as many other dhf-implicants as possible. How-
ever, EXPAND in Espresso-HF has two major differences. Unlike
Espresso, expansion in some literal (i.e., “raising of entries”) may
imply that other expansions be performed. That is, raising of entries
is a binate problem, not a unate problem. Furthermore, Espresso-
HF’s EXPAND uses a different strategy for its secondary goal. By
the Hazard-Free Covering Theorem, each required cube needs to
be contained in some cube of the cover. Therefore, as a secondary
goal, an implicant is expanded to contain as many required cubes as
possible.

We now describe the implementation of EXPAND in Espresso-
HF. Pseudocode for the expansion of a single cube is shown in
Figure 7.

3.3.1 Determination of Essential Parts and Update of Local Sets
As in Espresso, a free list is maintained, to accelerate the expan-
sion [10]. The free entries consist of all entries of the current
implicant, in positional cube notation [4], which are still candidates
to be raised to 1. Initially, a free entry is assigned a 1 (0) if the
current implicant a has a 0 (1) in the corresponding position. An
overexpanded cube is defined as the cube a where all free entries
have been raised simultaneously.

An essential part is one which can never,or always, be raised[10].
Our definition of “essential parts” is different from Espresso, since
a hazard-free cover must be maintained.

First, determine which entries can never be raised and remove
them from free. This is achieved by searching for any cube in the
off-set R that has distance 1 from a, using the same approach as in
Espresso.

Next, determine which parts can always be raised, raise them
and remove them from free. This step differs from Espresso. In
Espresso, a part can always be raised if it is 0 in all cubes of the
OFF-set, R. That is, it is guaranteed that the expanded cube will
never intersect the OFF-set. In contrast, in Espresso-HF, we must
ensure that an implicant is also hazard-free: it cannot intersect the
OFF-set, nor can it illegally intersect a privileged cube. Unlike in
Espresso, this is achieved by searching for any column that has only
0s in R AND where each 1 in P implies that the corresponding start
point is covered by a.

Example. Figure 1(a) indicates the set of required cubes,
which forms an initial hazard-free cover. Consider the cube bcd
(11010101, in positional cube notation). As in Espresso, the 0-
entries for literals b0 and d0 can never be raised, since the cube
would intersect the OFF-set. However, after updating the free list,
Espresso indicates that literal c0 can always be raised, since the
resulting cube will never intersect the OFF-set. In contrast, in
Espresso-HF, raising c0 results in an illegal intersection with privi-
leged cube a0c0, so it cannot “always be raised”. 2

Since the hazard-free minimization is somewhat more con-
strained, the expansion of a cube a can be accelerated by the fol-
lowing new operations on the local sets: Pa, Ra, Qa. These sets
are associated with cube a, and are updated as expansion proceeds.
(1) Remove privileged cubes from P where the corresponding start
point is already covered by a (since no further checking is required
for illegal intersection). (2) Move privileged cubes to the local
off-set Ra if the overexpanded cube does not include the corre-
sponding start points (since a can never be expanded to include
these start points, and therefore must avoid intersection with the
cubes entirely). (3) Move privileged cubes to the local off-set
where supercubedhf (fa, start pointg) intersects the off-set (a can
never be expanded to include these start points, and therefore must
avoid intersection with the cubes entirely).

3.3.2 Detection of Feasibly Covered Cubes of F
In Espresso, a cube d in F is feasibly covered by a if
supercube(fa,dg) (the smallest cube containing both a and d) is
an implicant. In Espresso-HF, this definition needs to be modified
to insure hazard-free covering.

Definition 3.2 A cube d in F is dhf-feasibly covered by a if
supercubedhf (fa,dg) is defined.
This definition insures that the resulting cube is (i) an implicant
(does not intersect OFF-set), and (ii) is also a dhf-implicant (does
not intersect any privileged cube illegally). This definition canon-
icalizes the resulting supercube to produce a dhf-implicant. That
is, supercubedhf (fa,dg) may properly contain supercube(fa,dg),
since the former may be expanded through a series of implications
in order to reach the minimum dhf-implicant which contains both
a and d. Using this definition, the following is an algorithm to find
dhf-feasibly covered cubes of F .

While there are cubes in F that are dhf-feasibly covered, iterate
the following:

Replace a by supercubedhf (fa; dg), where d is a dhf-feasibly
covered cube such that the resulting cube will cover as many cubes
of the cover as possible. Covered cubes are then removed, reducing
the cover cardinality. Determine essential parts and update local
sets (see above).

3.3.3 Detection of Feasibly Covered Cubes of Qf

We continue to expandcubea even if it cannotcoverany more cubes
of F . This is motivated by the Hazard-Free Covering Theorem, that
states that each required cube needs to be contained in some cube
of the cover. Therefore, as a secondary goal, a cube a is expanded
to contain as many required cubes as possible. The strategy used
in this sub-step is similar to the one used in the preceding one, i.e.
while there are cubes in Qf that are dhf-feasibly covered, iterate the
following:

Replace a by supercubedhf (fa; rg), where r is a dhf-feasibly
covered required cube such that the resulting cube will cover as
many required cubes not already contained ina as possible. Covered
required cubes are then removed. Determine essential parts and
update local sets (see above).

3.3.4 Constraints on Hazard-Free Expansion
In Espresso, an implicant is expanded until no further expansion is
possible, i.e. when the implicant is prime. Two steps are used: (i)
expansion to overlap a maximum number of cubes still covered by
the overexpanded cube; and (ii) raising of entries to find the largest
prime implicant covering the cube.

In Espresso-HF, however, we do not implement these remaining
EXPAND steps, based on the following observation. The result of
our EXPAND steps guarantees that a dhf-implicant can neverbe fur-
ther expanded to contain additional required cubes. Therefore, by
the Hazard-Free Covering Theorem, no additional objects (required
cubes) can be covered through further expansion. In contrast, in
Espresso, further expansion steps may result in covering additional
ON-set minterms. Because of this distinction, the benefits of fur-
ther expansion are mitigated. Therefore, in general, our algorithm
does not transform dhf-implicants into dhf-prime implicants. Since
expansion to dhf-primes is important for literal reduction and testa-
bility, it is included as a final post-processing step: make-dhf-prime
(see Figure 2).

3.4 Essentials
Essential prime implicants are prime implicants that need to be in-
cluded in any cover of prime implicants. Therefore, it is desirable to
identify them as soon as possible making the resulting problem size
smaller. On the one hand, we know of no efficient solution for iden-
tifying the essential dhf-primes using the unate recursion paradigm
as in Espresso. On the other hand, the hazard-free minimization
problem is constrained by the notion of covering of required cubes,
allowing a powerful method to classify essentials as equivalence
classes.

Example. Consider Figure 4. The required cube, r = bcd,
is covered by precisely two dhf-prime implicants: p1 = bd and
p2 = cd. Neither p1 nor p2 is an essential dhf-prime, since r is
covered by both. And yet, clearly, either p1 or p2 (not both) must

be included in any cover of dhf-primes. If we assume the standard
cost function of cover cardinality, p1 and p2 are of equal cost. 2

Our EXPAND method supports the notion of equivalence classes,
since implicants are not expanded beyond the required cubes which
they cover. In the above example, r would not be expanded further,
since no feasible required cubes can be found. Cube r therefore
represents an essential equivalence class corresponding to the set
fbd; cdg of dhf-primes. It should be removed from the cover. Us-
ing this strategy, which is applicable since the number of required
cubes is usually not large, the problem size can often be reduced
dramatically (see Section 5).

Espresso computes essentials after an initial expand and irredun-
dant. In contrast, Espresso-HF computes essentials as part of a
modified expand step. The algorithm is outlined as follows:

The algorithm starts with the initial hazard-free cover,Qf , of re-
quired cubes. One seed cube is selected and expanded greedily using
EXPAND, to a dhf-implicant p. This implicant is characterized by
the set, Qp, of required cubes which it contains. Dhf-implicant p is
called an essential equivalence class if it contains some required
cube, qf , which cannot be expanded to any other equivalence class.
To check if qf can be expanded to a different equivalence class,
a simple pairwise check is used: for each required cube sf not
covered by p, determine if supercubedhf (fqf ; sfg) is feasible for
some sf . If no feasible expansion exists for qf , it is called a dis-
tinguished required cube, and therefore p is essential. Otherwise,
the process is repeated for every required cube qf in Qp . When
an essential p is identified, all required cubes covered by p are re-
moved, and the covering problem is updated. This step can result in
“secondary essential” equivalence classes. The procedure iterates
until all essentials are identified.

3.5 Reduce

The goal of the REDUCE operator is to set up a cover that is likely
to be made smaller by the following EXPAND step. To achieve
this, each cube c in a coverF is maximally reduced in turn to a cube
c̃, such that the resulting set of cubes, fF � cg [c̃ is still a cover.

Espresso uses the unate recursive paradigm to maximally reduce
each cube. Since Espresso-HF is a required cube covering algo-
rithm, there is no obvious way to use this paradigm. Fortunately,
the hazard-free problem is more constrained, making it possible to
use an efficient enumerative approach based on required cubes.

Our REDUCE algorithm is as follows. For each required cube
qf 2 Qf , it computes the number of cubes in the current cover
F that contain qf . The algorithm then reduces each cube c in the
cover in order. A reduced cube is defined by the set of required
cubes which c uniquely covers. Using the supercubedhf operator,
this set is transformed into the maximally-reduced dhf-implicant c̃.
We then update the number of cubes in the current cover F that
cover each qf , and similarly reduce the remaining cubes in F , in
order.

3.6 Irredundant

Espresso uses the unate recursive paradigm to find an irredundant
cover. However, there is no obvious way to employ this paradigm,
since a “redundant cover” (according to covering of minterms) may
in fact be irredundant with respect to covering of required cubes.

Therefore, as in REDUCE, our approach is required-cube based.
Considering the Hazard-Free Covering Theorem, it is straightfor-
ward that IRREDUNDANT can be reduced to a covering problem
of the cubes in Qf by the cubes in F . That is, the problem reduces
to a minimum-covering problem of (i) required cubes, using (ii) dhf-
implicants in the current cover. In practice, the number of required
cubes and cover cubes usually make the covering problem man-
ageable. Espresso’s MINCOV can be used to solve this covering
problem exactly, or heuristically (using its heuristic option).

3.7 Last Gasp
The inner loop may lead to a suboptimal local minimum. LAST
GASP then uses a different approach attempting to reduce the cover
size. In Espresso, each cube c 2 F is reduced to the smallest cube
containing all minterms not covered by any other cube of F . In
contrast, Espresso-HF computes, for each c 2 F , the smallest dhf-
implicant containing all required cubes that are not covered by any
other cube in F . Using this notion, the remaining steps are identical
to the approach used in Espresso.

3.8 Make dhf-prime
The cover being constructed so far does not necessarily consist of
dhf-primes. It is usually desirable to expand each cube of the cover
to make it dhf-prime as a last step. This can be achieved by a
modified expand step. The following greedy algorithm will expand
an implicant c to a dhf-prime: While dhf-feasible, raise a single
entry of c.

4 EXISTENCE

For certain Boolean functions and sets of transitions, no hazard-free
cover exists. The exact hazard-free minimization method [9] is able
to decide if a solution exists only after generating all dhf-prime
implicants. A solution does not exist if and only if the dhf-prime
implicant table includes at least one required cube not covered by
any dhf-prime implicant.

Since the generation of all primes may very well be infeasible for
even medium-sized examples, it is necessary to find an alternative
approach. We present a new theorem for the existence of a solution
leading directly to a simple algorithm.
Theorem 4.1 A solution of the hazard-free minimization problem
exists iff supercubedhf (q) is defined for all required cubes q.
The proof is immediate from the discussion in Section 3.2.

Example. Consider Figure 5. To check for existence, we com-
pute supercubedhf (q) for each required cube q. Except for abd, it
holds that q = supercubedhf (q) since no privileged cube is inter-
sected illegally. To compute supercubedhf (abd), note that priv-
ileged cube c is intersected illegally, i.e. supercubedhf (abd) =
supercubedhf (bd). Since bd now intersects privileged cube a0c0,
we get supercubedhf (abd) = supercubedhf (b) leading directly
to the fact that supercubedhf (abd) does not exist because b in-
tersects the off-set. Thus, there is no hazard-free cover for this
example. 2

5 EXPERIMENTAL RESULTS

A prototype version of the Espresso-HF algorithm was run on sev-
eral benchmark circuits on a SPARC 10 workstation, as shown in
Figure 8. The results for the exact columns were obtained by run-
ning the exact hazard-free minimizer by Fuhrer/Lin/Nowick [2].
This method uses Espresso to generate all prime implicants, then
transforms them into dhf-prime implicants, and finally employs
MINCOV to solve the resulting unate covering problem. Each of
the algorithms used in the three steps is critical, i.e. has a worst-case
run-time that is exponential.

Three of the fifteen examples could not be solved by the exact
minimizer (in the allotted time of 40 hours). For stetson-p1 the
generation of all prime implicants was not possible. For cache-
ctrl, the exact minimizer was unable to transform the set of prime
implicants into the set of dhf-prime implicants. For pscsi-pscsi, the
resulting covering table was too large. This shows that the exact
algorithm is not useful for large examples in general since all three
steps can fail.

The heuristic minimizer Espresso-HF was able to solve all ex-
amples. For all but one example that could be solved by the exact
minimizer, Espresso-HF finds the optimal solution. It is worth
pointing out that many examples were very positively influenced by
our notion of essentials. Quite a few examples can be minimized by
just the essential step, resulting in a guaranteed minimal solution.

exact[FLN] Espresso-HF
name i/o #p #c time #e #c time

cache-ctrl 20/23 * * * 50 105 2136.87
dram-ctrl 9/8 45 22 0.15 22 22 0.24

pe-send-ifc 12/10 454 27 1.48 27 27 0.86
pscsi-ircv 8/7 20 12 0.07 12 12 0.06

pscsi-isend 11/10 204 23 0.43 23 23 0.39
pscsi-pscsi 16/11 65060 * * 55 78 70.52
pscsi-tsend 11/10 190 22 0.41 22 22 0.48

pscsi-ts.-bm 11/11 188 23 0.46 23 23 0.54
sd-control 18/22 1718 34 40.85 23 36 15.05

sscsi-is.-bm 10/9 87 22 0.20 22 22 0.49
sscsi-tr.-bm 10/9 113 24 0.22 21 24 0.54
sscsi-ts.-bm 11/10 93 20 0.25 20 20 0.41

stetson-p1 32/33 * * * 34 62 447.33
stetson-p2 18/22 1574 37 34.29 26 37 15.85
stetson-p3 6/4 10 7 0.05 7 7 0.02

Figure 8: Comparison of exact and heuristic minimization (#p -
number of dhf-prime implicants, #c - number of cubes, #e - number
of essential equivalence classes, time - run-time in minutes)

The detection of essentials is crucial for speed and size. Espresso-
HF currently exists only as a prototype. Run-times are expected to
improve significantly by careful implementation.

6 CONCLUSIONS

To the best knowledge of the authors, the presented algorithm
Espresso-HF is the first heuristic method based on Espresso to solve
the hazard-free minimization problem for multiple-input changes.

Our prototype can solve all examples that we have available so
far, and almost always obtains an absolute minimum-size cover.
This includes examples that have not been solved before.

Espresso-HF overcomes the three bottlenecks of the exact
method—prime implicant generation, transformation of prime im-
plicants to dhf-prime implicants, and solution of the covering
problem—each of which being solved by an algorithm with ex-
ponential worst-case behavior.

Espresso-HF also employs a new and much more efficient algo-
rithm to checkfor existencewithout generating all prime implicants.

REFERENCES
[1] R.K. Brayton et al. Logic Minimization Algorithms for VLSI Synthesis. Kluwer

Academic, 1984.

[2] R. Fuhrer, B. Lin, and S.M. Nowick. Symbolic hazard-free minimization and
encoding of asynchronous finite state machines. In ICCAD-1995.

[3] A. Marshall, B. Coates, and P. Siegel. The design of an asynchronous communi-
cations chip. Design and Test, June 1994.

[4] G. De Micheli, R. K. Brayton, A. Sangiovanni-Vincentelli. Optimal state assign-
ment for finite state machines. IEEE TCAD, CAD-4(3):269–285, July 1985.

[5] S.M. Nowick and D.L. Dill. Synthesis of asynchronous state machines using a
local clock. In ICCD-1991.

[6] S.M. Nowick and B. Coates. Automated design of high-performance unclocked
state machines. In ICCD-1994.

[7] S.M. Nowick, M.E. Dean, D.L. Dill, and M. Horowitz. The design of a high-
performancecache controller: a case study in asynchronoussynthesis. In HICSS-
1993.

[8] S.M. Nowick, N.K. Jha, and F. Cheng. Synthesis of asynchronous circuits for
stuck-at and robust path delay fault testability. In VLSI Design 1995.

[9] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic
with multiple-input changes. IEEE TCAD, CAD-14(8):986–997, August 1995.

[10] R. Rudell and A. SangiovanniVincentelli. Multiple valuedminimization for PLA
optimization. IEEE TCAD, CAD-6(5):727–750, September 1987.

[11] S.H. Unger. Asynchronous Sequential Switching Circuits. New York: Wiley-
Interscience, 1969.

[12] K. Yun and D.L. Dill. A high-performance asynchronous SCSI controller. In
ICCD-1995.

[13] K. Yun, D.L. Dill, and S.M. Nowick. Synthesis of 3D asynchronous state ma-
chines. In ICCD-1992.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

