
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

HDL Optimization Using Timed Decision Tables

Jian Li and Rajesh K. Gupta

Department of Computer Science

University of Illinois, Urbana-Champaign

Urbana, Illinois 61801.

Abstract

System-level presynthesis refers to the optimization of

an input HDL description that produces an optimized

HDL description suitable for subsequent synthesis tasks.

In this paper, we present optimization of control
ow in

behavioral HDL descriptions using external Don't Care

conditions. The optimizations are carried out using a

tabular model of system functionality, called Timed De-

cision Tables or TDTs. TDT based optimization pre-

sented here have been implemented in a program called

PUMPKIN. Optimization results from several exam-

ples show a reduction of 3-88% in the size of synthesized

hardware circuits depending upon the external Don't

Care information supplied by the user.

1 Introduction

Due to the maturity of optimization and synthesis tools

at logic and register transfer level, system speci�cation

is increasingly being done at behavioral level using a

Hardware Description Language (HDL), such as VHDL

and Verilog. Though optimization can be done at all

levels of system speci�cation, behavioral-level HDL op-

timization is more e�cient and saves time in lower-level

transformation and veri�cation tasks. Further more,

very often the �nal circuit size depends upon the pro-

gramming style of the HDL description. Though run-

ning the optimization targeting at minimum area may

recover some fraction of the area, in general the opti-

mized circuit obtained from the \bad" HDL description

will not be as small as even the initial circuit corre-

sponding to the \good" description [1].

Behavioral optimization algorithms in this work are

implemented on a model of system functionality called

timed decision tables. Decision tables originated as a

simple and visual way of documenting nested condi-

tional branches in programming languages [2]. Com-

pared with programming languages, decision tables are

0

more concise and canonical. Timed decision tables

(TDT) are an extension of the decision tables to model

hardware-related aspects of operation timing and con-

currency [3].

The suitability of tabular formalisms for hardware

speci�cation has been proposed in several independent

works. In [4] the authors introduced Behavior Tables to

represent a �nite state machine where each row corre-

sponds to a state transition in the machine described by

the table. In [5] the authors used relational algebra to

show the simplicity and power of tabular formalisms.

Both these tabular models are RTL-level system de-

scriptions. In contrast, a TDT represents a behavioral

model and may be translated into di�erent RTL-level

tables after synthesis.

2 Timed Decision Tables

The Timed Decision Table is based on the notions of

condition and action. A condition may be the presence

of an input, or an input value, or the outcome of a test

condition. A conjunction of several conditions de�nes

a rule. A decision table is a collection of rules that

map condition conjunctions into sets of actions. Ac-

tions include logic, arithmetic, input-output(IO), and

message-passing operations.

Actions are grouped in action sets. With each action

set, we associate a concurrency type of serial, parallel,

or data-parallel. An action set of type serial is equiva-

lent to a compound statement in an ordinary sequential

program. A parallel type indicates that no ordering

among individual actions in the action set is assumed.

A data-parallel type means parallel action subject to

data-dependencies between actions. Each action is as-

sociated with an execution delay which may be �xed,

variable or even unbounded. We assume that condition

testing takes zero time. The action delay is typically

used to model the data-path delay associated with an

operation. Because of the timing semantics associated

with actions and action sets, we name the action sets

timed action sets.

The structure of a TDT is shown in Figure 1. It con-

sists of four quadrants. Condition stub is the set of con-

ditions used in building the TDT. Condition entries in-

dicate possible conjunctions of conditions as rules. Ac-

Condition Stub Condition Entries

Action Stub Action Entries

Figure 1: Structure of timed decision tables.

tion stub is the list of action sets that may apply to a

certain rule. Action entries indicate the mapping from

rules to actions. A rule is a column in the entry part of

the table, which consists of two halves, one in the con-

dition entry quadrant, called decision part of the rule,

one in the action entry quadrant, called action part of

the rule.

There are two ways to arrange the condition stub (or

the action stub) and the condition entries (or action

entries). In the limited-entry form the stub enumerates

all possible conditions (or actions) and the entry section

is a Boolean matrix that selects appropriate conditions

(or actions). In contrast, in an extended-entry form, the

entries may assume a range of values.

Example 2.1. A timed decision table. Consider the following
behavior description in HardwareC:

if C1 {

if C2
a1;

else

a2;

}

else

a3;

Assuming that action a2 takes 2 cycles, while the rest take 1 cycle,
the above behavior is described by the following timed decision
table:

C1 Y Y N
C2 Y N X

A a1 a2 a3
delay 1 2 1

Condition entries in this TDT are in the limited-entry form. Con-

dition literals `C1' and `C2' form the condition stub. The action

entries are in extended-entry form, containing three possible val-

ues `a1', `a2', and `a3' of action `A'. A rule f `Y', `N', `a2'g in

column 2 represents the condition that when `C1' evaluates to

true and `C2' evaluates to false, the action set represented by lit-

eral `a2' is executed. The `X' in the condition entry indicates that

a condition assumes a Don't Care value, for a particular rule. 2

Execution Semantics. The execution of a TDT con-

sists of two steps: (a) select the set of rules to apply,

and (b) execute the actions that the selected rules map

to. Execution of actions may generate events which are

actions with future time stamps. These time stamps

are determined by the execution delays and scheduling

of operations in an action.

Iterations, as in loop structures and processes, are

modeled using process TDTs. A process TDT is exe-

cuted repeatedly until a deadlock occurs or an explicit

exit operation is executed. A TDT that is executed only

once, each time it is enabled as a part of an action, is

called a procedure TDT.

As shown in Example 2.1 above, not all conditions

may be applicable to a rule. Conditions that are not

applicable to a rule take a Don't Care value, indicated

by an `X' in the corresponding column. We call these

Don't Cares condition entry Don't Cares. Similarly, not

all actions may apply to a rule. Only applicable actions

are indicated in the action entries of a TDT. In presence

of assertions [6], a weak form of external Don't Cares,

a column may never be selected for execution.

A TDT is considered complete when each possible

combination of condition variable values is covered by

a column in the table. A TDT is consistent when a

given combination of condition variable values is cov-

ered by only one column in the table. The order of

rule application is immaterial in consistent TDTs. In

general, A TDT generated from HDL descriptions need

not be complete or consistent. Missing columns and

overlapped portion of columns can be treated as Don't

Care columns, or columns that will never be enabled

for execution. Indeed in our work, incompleteness and

inconsistency are used to derive or specify behavioral

Don't Cares.

3 TDT Optimizations

The concept of Don't Cares (DCs) has been exten-

sively used in logic synthesis for gate-level optimiza-

tions [1, 7, 8]. For synthesis tasks on behavioral descrip-

tions, the notion of Don't Cares is relatively new [9].

However, it is believed that a proper de�nition and use

of DCs at higher levels of abstraction will provide a large

scope for HDL optimizations. We distinguish behavioral

Don't Cares from structural Don't Cares where the lat-

ter applies only to control functions for hardware im-

plementation [10]. Here we focus on TDT optimization

using behavioral Don't Cares, in particular, condition

dependencies in HDL descriptions. Condition depen-

dencies, also referred to as assertions, are weaker and

safer form of Don't Cares as discussed in [6].

For a given HDL description, its TDT model consists

of hierarchically related Timed Decision Tables and Ac-

tion Sets. Condition dependencies are normally speci-

�ed at the interface of control modules. We propagate

this information to relevant timed decision tables in the

system model via data-
ow analysis [3]. TDT optimiza-

tion is used to reduce the size of the tables using con-

dition dependencies. Table sizes can be reduce in two

ways: (a) by reducing the number of columns, and (b)

by reducing the number of conditions in the tables.

TDT optimization is carried out via a series of row or

column operations targeting at reducing both the num-

ber of rows and the number of columns in a TDT [3, 10].

Performing a series of row or column operations with the

goal of reducing the number of columns can be reduced

to a two-level logic optimization problem of �nding the

minimum cover of a Boolean function. For this pur-

pose, we formulated TDT in an algebraic form [3]. For

example, the TDT in Example 2.1 can be written as

TDTEx2:1 = C1C2a1 + C1C2a2 +C1a3 (1)

where C1, C2 are condition literals associated with a

limited-entry condition stub. Now column reduction

of a TDT can be done via �nding the minimum cover

for the algebraic form of the TDT. We have also im-

plemented the column reduction optimizations using a

two-level logic optimizer Espresso [11]. The following

shows an example.

Example 3.1. TDT Optimization.

Given Don't Care: C1 ^ C2 = 0 the TDT in Example 2.1 is
transformed as shown below.

C1 Y Y N
C2 Y N X

A a1 a2 a3

=)

C1 Y Y N
C2 Y N X

A a1 X a3
(a) (b)

=)

.i 2

.o 2

11 01

10 --

0- 11

=)

.i 2

.o 2

.p 2

1- 01

0- 11
.e

(c) (d)

=)

C1 Y N

C2 X X
A a1 a3

=)
C1 Y N

A a1 a3

(e) (f)

Column 2 in TDT (a) is identi�ed as a Don't Care column. Since

action entry in the Don't Care column can assume any value, we

write explicitly an `X' in that action entry in (b). With an arbi-

trary encoding on the action literals, TDT in (b) can be expressed

in a PLA form as input for espresso as shown in (c). The result

in (d) is produced by running espresso on the input in (c). TDT

(e) is obtained from the PLA form in (d). Finally, since row 2 in

TDT (e) contains only Don't Care values, we can drop this row

and obtain TDT (f). 2

The number of condition literals in a TDT can be re-

duced in two ways: (a) by eliminating a row with all

Don't Care entries, or (b) by re-encoding conditions in

the table as described in below. Additional Don't Care

entries are often produced by two-level logic optimiza-

tions since prime implicants are used in the minimum

cover. Row elimination can then be more e�ectively ap-

plied after column reduction. Condition re-encoding is

used after row elimination. For a TDT withNc columns,

a minimum of dlog2Nce conditions are needed. If more

than dlog2Nce conditions are used, the conditions can

be replaced by a new set of Boolean variables of mini-

mum size where the new set of variables are functions

of original variables. This process of �nding a minimum

number of condition variables is referred to as condition

re-encoding.

TDT merging is applied to enhance the scope of TDT

optimizations. For example, two procedure TDTs can

be merged together if one TDT is the action value in a

rule of another TDT. An algorithm can be found in [3].

C

OLYMPUS
Behaviroal
Synthesis

Structural
Synthesis

Technology
Mapping

External
Don’t Cares

NETLIST

Optimizer

TDT Models

to Compilation

HardwareC

HardwareC

Figure 2: TDT optimizer for behavioral descriptions.

4 Implementation & Experimental Re-

sults

Merging algorithms and optimization techniques have

been implemented in a program called PUMPKIN. An

overview of PUMPKIN is shown in Figure 2. The

PUMPKIN optimizer features a UNIX shell-like com-

mand interface to allow its interactive use by the sys-

tem designer. We use HardwareC to describe system

functionality. The system designer reads in a given

HardwareC description and applies External Don't Care

(EDC) conditions as additional input. A list of EDC

conditions is maintained that can be updated as the

modeling and synthesis of other blocks, with which the

system interacts, proceeds.

To evaluate the e�ectiveness of TDT-based optimiza-

tions, we have experimented with several high-level syn-

thesis benchmark designs. Our experimental methodol-

ogy is as follows. The HDL description is compiled into

TDT models, run through the optimizations, and �nally

output as a HardwareC description. This output is pro-

vided to the Olympus High-Level Synthesis System [12]

for hardware synthesis under minimum area objectives.

We use Olympus synthesis results to compare the e�ect

of optimizations on hardware size on HDL descriptions.

Hardware synthesis was performed for the target tech-

nology of LSI Logic 10K library of gates. Results are

compared for �nal circuits sizes, in terms of numbers of

cells used.

Table 2 describes results of TDT based optimiza-

tion on example designs. Description `gcd' models a

hardware module that repeatedly samples the input on

the rising edge of a control signal, then computes the

greatest common divisor of two input values using Eu-

clid's algorithm. Description `trolley/motorcntrl' refers

to the motor controlling module in a trolley controller

used to transport assembly components on a shop-
oor.

Description `ecc/decoder' decodes parity encoded data

transmitted through a serial line and correct transmis-

sion errors. All the designs are from the high-level syn-

thesis benchmark suite [12].

External condition dependencies can be classi�ed in

two categories: (a) assertions that are not part of HDL

speci�cations, and (b) conditions which are inherent in

circuit size

design (cells) Don't Care �%

before after condition

gcd 272 230 positive inputs 15

trolley/ 2952 366 no position 88

motorcntrl variation

trolley/ 2952 2774 there is always 7

motorcntrl variation

comm/ 234 209 Bwr ^ Brd = 0 11

enqueue (write or read)

cruiser/ 361 350 in OFF STATE! 3

State Control=1|3|9

ecc/ 141 119 correct only 16

decoder single error

parker86 384 270 in2 + in3 = 0 29

div8 174 85 positive input 51

tra�c 35 34 no external dc 3

speci�ed

Table 1: Synthesis results: cell counts before and after

language level optimization.

the behavior speci�cation but are either hard to take

into account while writing descriptions or make the de-

scriptions harder to read if directly incorporated. For

example, two di�erent external conditions are consid-

ered for the design `motorcntrl'. The �rst one, no po-

sition variation, is based on the assumption that the

trolley is to be used in an application which provides

guiding trails. A signi�cant reduction in circuit size

is obtained because the original description contains a

large number of operations to handle the deviation of

the trolley. The second condition, that there is always

variation, assumes the same environment and produces

a slightly di�erent model of the system which results

in a �nal circuit with the same functionality and less

area. The error correction modeled in `ecc' considered

only single errors. However, this information can not be

easily used for optimization unless explicitly stated as

an external Don't Care.

As shown in Table 2, the use of external conditions

can lead to reductions in the size of the hardware cir-

cuits. Further, HDL level presynthesis using PUMP-

KIN makes it possible to build a portable library of

HDL models that can be instantiated into speci�cation

application domains. It should be noted, however, that

the reduction in size ranging from 3-88% is neither typ-

ical nor representative. The actual reduction clearly de-

pends upon the external Don't Care information used

in presynthesis. The chief contribution of this work is to

build a framework for source-level HDL optimizations.

This enables the system designer to specify additional

information about system environment and use it for

system optimizations. As a consequence, it makes the

most general purpose modules easily reusable in a simi-

lar but di�erent environment. It also makes the results

of the synthesis process relatively insensitive to the HDL

coding-style of the system designer, hence reduces the

time designers spend in behavioral speci�cations. More-

over, a description with external Don't Cares explicitly

speci�ed can be more readable than a detailed descrip-

tion incorporating these Don't Care conditions as part

of the system behavior.

5 Conclusion

We have presented the TDT model for behavioral spec-

i�cation and optimization techniques. This model is

used to incorporate the external Don't Care informa-

tion in system optimization. The Don't Care informa-

tion can be supplied by the user as a part of the input

HDL description or entered interactively as assertions

of control variables used in the behavioral descriptions.

6 Acknowledgments

This research is sponsored by a grant from NSF Career

Award No. 95-01615 and a grant from the NSF Engi-

neering Research Center Grant ECD 89-43166.

References

[1] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis.
McGraw-Hill, 1994.

[2] P. J. H. King, \Decision tables," The Computer Journal,
vol. 10, no. 2, August 1967.

[3] J. Li and R. K. Gupta, \Timed decision tables: A model for
system representation and optimization," technical report,
University of Illinois, 1995.

[4] K. Rath, M. E. Tuna, and S. D. Johnson, \Behavior Ta-
bles: A basis for system representation and transformational
system synthesis," in Proceedings of the IEEE International
Conference on Computer-Aided Design, 1993.

[5] A. J. W. M. ten Berg, C. Huijs, and T. Krol, \Relational
algebra as formalism for hardware design," Microprocessing
and Microprogramming, 1993.

[6] D. Brand, R. A. Bergamaschi, and L. Stok, \Be Careful with
Don't Cares," inProceedings of the IEEE International Con-
ference on Computer-Aided Design, pp. 83{86, 1995.

[7] S. Muroga, Logic Design and Switching Theory. John Wiley,
1979.

[8] G. D. Micheli, Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994.

[9] R. A. Bergamaschi, \Control optimization in high-level syn-
thesis using behavioral don't cares," in Proceedings of the
Design Automation Conference, pp. 657{661, 1992.

[10] R. K. Gupta and J. Li, \Control optimization using behav-
ioral don't cares," in Proceedings of the IEEE International
Symposium on Circuits and Systems, 1996.

[11] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algrotithms for VLSI Syn-
thesis. Kluwer Academic Publishers, 1984.

[12] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, \The
Olympus Synthesis System for Digital Design," IEEE Design
and Test Magazine, pp. 37{53, Oct. 1990.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

