A Register File and Scheduling Model for
Application Specific Processor Synthesis

E. Ercanli C. Papachristou

Computer Engineering Department
Case Western Reserve University
Cleveland, Ohio 44106

Abstract— In this paper, we outline general design steps of our Figure 1: Design Steps
synthesis tool to realize application specifiz-processors such
thatfor a given scientific application having intensiterative
computations especially with recurrencesyldW type of co-
processor is synthesized and realized, andaesompanying
parallel code is generated. We introduce a naegjister file
model,Shifting RegisteFile (SRF) based omyclic regularity of

Processor
Template

. . . . Parallel Hardware Implementatio
register file accesses; and a simple metfioghansion Schedul- Application Code Resource Technology
ing, for schedulingiterative computations, which is based on L Generation Allocation
cyclic regularity of loops. We also present a variable-register file
allocation method and showow simple logic units can be used Graph Represent| | Expansion Optimization of Realization
. . . Dependencies Scheduling * Regiger Files * FPGA description
to activate proper registers at run time through an example. Constraints « Busses « IC, Board
. « Cost * Memory Module:
1. Introduction + Performance « Execution Units
. . g . * Response Tim « Control Path
Application Specific Processor (ASP) design concepts [1,7,8]
gained attention after extensive developments have been done in
two different fields:VLSI design automation and paraliebde Software pipelinings a widely used static instruction schedul-
generation fields. Related advancememts made idayout ing technique to parallelize inpebde at compilgime, which
compaction, logic synthesiRTL and behavioral synthesis, soft- can be classified as global and local scheduling methods. In
ware pipelining, and VLIW type of architectures. ~ global scheduling techniques, also used in fd4ny iterations
These recent developments offer high performance architec-are unrolled tdorm alarge loop-bodyand operations are prop-
tures and implementatiorier scientific applications.Scientific erly moved around téind a new bumore condensed lodmdy.

applicationscan be described asostly iterative and recursive On the other hand, in local scheduling techniques, a sirege
computations which contain explicit and implicit parallelism tion (loop-body) isscheduled and successive iteratians prop-

unlike symbolic applications such as system programs op- erly started and overlapped to form a new condensed loop-body.
erating systems. Parallelism in scientific applications can be For the branch intense loops and straight codes, global schedul-
attained automatically byomplex compilersinstead of by ing techniquesnay yield better results [3]. On the other hand,
trained parallel programmers. for the loop intense computations, local scheduling techniques

The objective of our research is to build an application specific yield better parallelization [6]. Because local scheduling tech-
processor synthesis tool suittatfor a given scientific applica- niques use theyclic regularity of loops, and do not unroll the

tion, aco-processor board (or chiphd accompanyingarallel iterations which causes largede expansion. In fact, most sci-
codewill be designed, synthesized, and generated. stdte-of- entific programs havust afew number of conditional branches
the-art techniques alesign automatiorand microarchitecture inside the loop [6].

fields, such a¥/LIW architecture, software pipelining, and pro- Rotation Schedulinga local scheduling method proposed by
grammable logic deviceare utilized; and new techniquasich Chao andLaPaugh in [2], schedulesyclic DFGs (DataFlow

as a scheduling method, a register file model and allocation, Graphs) with resource constraints using loop pipelining. It trans-
memory unit allocation, and implementation techniques are de- forms a given scheduling into a more compact scheduling by a

veloped for high performance computation. retiming method. Although itesults in a proper scheduling

For ASPdesign, usually an architecture is selected first, then handling inter-iteration dependencies, it does not generate
sequentiatode isparallelized to utilize the hardwaedficiently. loop and post-loop parts automatically, and does not have an
This parallel code generation process is call@tstruction anti-data dependency removal method.

scheduling which must preserve the semantics of original se- Reqgister allocatiorin scheduled loops is to allocatee regis-
guential code while minimizing the execution time. In other ters in away that minimizes register idle time whifgreventing
words, scheduled codeust ensure control arghta dependen- lifetimes of the saméoop variants corresponding to successive
cies, and forbid resource contentions. iterations from being assigned tthe samephysical register.
Two current register allocation methods in local scheduling are
Modulo Variable ExpansigrandRotating Register Filefs].

In modulo variable expansion method, successive iterations use
different codes and different registsets, although successive
iterations are overlapped. Iterations are unrolled to resolve re-
source contentions. This causes performance degradation.

In [5], Rau and et al present various heuridiicsegister allo-
cation for softwargipelined loops. They use one large rotating

BThis work hasbeen supported by the Semiconductor Rese2ochoration
(SRC) under Contract DJ-527.

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication'and its date appear, and notice is given that copying is
1 by permission of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permssion and/or a fee.
AC 96 - 06/96 Las Vegas, NV, U J1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

register filefor all thevariables, anaffer variousstrategies for
binding variables to registers.
implement, and have high computational complexity. tHis

array elements, especially recursively aodcurrently accessed

But their strategies are hard toelements,onto memorymodules, which could be single- or

multi-ported, single or multiple modules.

method, theyuse single version of code. Each iteration has a Clustering Execution Units

different register set. Registsources and targetye dynami-
cally renamed. Instructiontegister specification points td-
eration Control Pointe(ICP) modulothe number of registers in
rotating register file. ICP isdecremented each time new stage
starts so that new register file set is activatBatating register
file is global pertaining to all variables.

We proposethe use of local SRFs instead of global rotating
register files to preverbop variants being assignedttee same
physical register. In SRF method, different regisets are as-
signed for differentterations, and each variable has a unique

SRF, which can also be duplicated for concurrent accesses when

necessary. Instead of modulo calculattardware, SRFs use
simple counters oPLAs to access proper registersilso this
method does not need variable increment or decrefmerggis-
ter control, which results ircode expansion. To resoldata

contentions, SRF method avoids iteration unrolling, another great
performance degradation. The number of registers is determine

after thecode is generated fdinfinite’ number of SRFs. We
developed a local scheduling technigispansion Scheduling
to schedule loops for SRF-based VLIW-type of architectures.
After a brief discussion on designethodology in Section 2,
Section 3 discusses code generaigsues and presents SRF

model and Expansion Scheduling method. Section 4 and Section

The objective of clustering is to lower thest by minimizing
the number of execution units. Depending onithigal con-
straints, wemay startdesigning with unlimited or limited num-
ber of resources. Wmmay design an architecture and generate
parallel code, thentry to cluster executionnits such that no
scheduling changes will be needed; ormagy startdesigning for
a limited number of resources and need not cluster execution
units. We construatompatibility graphdgor clustering.

Synthesis and Implementation

At the level of scheduling, and registaremoryand execution

unit optimization, we end upaving various design alternatives,
for which we can figure ouhe performance and cost. Then we
can choos¢he design that fits our needs best. Hardware imple-
mentation is the final step. We can simulate the design on Com-
pass Desigutomation Tools. For prototypirand production,

dve investigate using Field Programmabtegic Arrays(FPGAs)

since, in reality, we have limited tinfer designand realization
of ASPdesigns. FPGAs offer fagtotoypingand less expensive
production cost for a limited number of products[4].

3. Code Generation

3.1 Architecture Model

5 goes through an example to explain SRF allocation schema and Figure 2 illustrates ouWLIW-like processor-template having

discusses possible design choices. Section 6 stesuits of our
design tools for four applications.

2. Design Methodology
Major issues in ASP Design are as follows:

¢ Concurrent Hardware and Software support for numerically
intensive iterative applications

¢ Simple, pipelined execution units

¢ Multiple memory modules and register files

¢ Retargetable hardware and parallel code

Figure 1 illustrates general design steps of our synthadiso
realize a processor and generate parafide for a given scien-
tific computation such as image and DSP applications.

Parallel Code Generation

Our architecture has multiple execution unit@pplication
code is mapped ontbe execution units to achieve minimal exe-
cution time while preserving the semantifte correctness.
There are certain possible hazandamelydata andcontrol de-
pendencies, and resource contentions.

Register Files and Busses

We employ two types afegister files:static register filesfor
loop-invariant$, and SRFsfor loop-variants SRFs offer auto-
matic register renamindpr removinganti data dependencies,
accessing recursive values concurrently, and easy addressing.

Memory Organization Schema

In loops of scientific code, most indirect referenees made to
array elements.Array accesgatterns should be determined at
compiletime, and array elements should be placed iméonory
modules properly sucthat there will be no dateontention be-
tween the pairs of elements that need to be accesseur-
rently. We have developed a novel technique for distributing

! A new value is generated in each iteration for loop-variant variables, such
asrecurrences

2 oop-invariant variables, such as constants or base addresses, are never
modified during loop execution.

two executionunits. In the template, register filémving the
same label are duplicates that hold the same values. Register
files contain both static and SRFs to provide concurrent accesses
to the same register value with the objectiveetmove anti-data
dependencies automatically. We aartscheduling for a tem-
plate with a certain number of execution units or determine op-
timum number of execution units afterwamscording tanitial
design costraints.

3.2 Scheduling

Once a hardware template is selected, software-pipelined
parallel code should be generated utlize the hardware effi-
ciently.

The basic functions of the Loop scheduler are:
Step 1:

Step 2:
Step 3:

Find lower bounds on;T Choose maximum value.
Initial scheduling

Use initial scheduling and inter-iteratiodependency
cycles (from lower bounds).

Check for resource conflicts.

Local Rescheduling allow initiation of succeeding
iterations at everyTwithout any resource or data
conterions.

Step 4:
Step 5:

After one iteration is schedule#terne| pre-loop and post-
loop parts are constructedPre-loopis executed one timigefore
kernel generating a new compacted |dmply. Post-looppart is
executed also once after several repetitions of kernel.

One lower bound oriteration initiation interval T; is the
maximum number of operations any execution unit (resource
limitation), another lower bound the length of the largestcle
(inter-iteration dependency limitation). Minimal;; Tis the
maximum of these two lower bounds. tlie initial scheduling
does not yieldhe minimal T due to acycle, operations belong-
ing to thatcycle are moved up or down to makéem closer to
each other so that theoretical minimal i§ achieved. After a
minimal T;; is foundand justified on the initial scheduling, the
remaining steps are completed, if possible. If ngtjsTincre-
mented until a proper scheduling is found.

Figure 2: Architecture Model for 2 execution units

R n Vi i & 8
/ N
/ ~
/ -
S
MUX MUX, TN\ MU %
’ S
/
7
/' Execution Unit
A

| Write Controf lines

3,

Read Control lines

friei)

Static Registers Shifting Register Files

3.3 Data dependencies

Data dependencies are classified intwo groupsintra-
iteration dependencieshen data-dependent operations belong to
the same iterationjnter-iteration dependenciesvhen data-

dependent operations belong to successive iterations, such as

recurrences An inequality, which should hold fall data de-
pendencie®©pi - Op2, where Operatio®p: (Op2) takesE; (E)
cycles starting at cyclg; (Cy) is: Co— C1— min + T; Odif f> 0.

When it is an intra-iteration dependency, iteration difference
betweenOp: andOp,, diff, becomes 0. Total computation time
of the operations betweddp; andOp- is td. If it is a true de-
pendencymin=E;-1, if anti dependencymin=1-E;, if out de-
pendencymin=E;—E,. Note that (Op:1 - Op, true; diff=n)
means Qpi[k] - Op2[k+n], true;diff=0) for every k. The two
lower bounds for Tare: a) T = {number of operations executed
in any processorgnd b) T ={td / diff for all inter-iteration
dependencies}.

In scientific applications, recurrences (inter-iteration data de-
pendenciespccur veryoften. Thistype of dependencies can
cause iterations initiate less frequently, which, in turn, means
less utilization and less efficiency, i.e., lower performance.

3.4 Dependency removal by Shifting Register Files

Data can be always directly accessed feord written to mem-
ory units, or initially accesseflom memoryunits once, thereaf-
ter accessed fromegister files. Figure 3 illustrates a linear re-
currence, Ri[= Ra * R1j-2] + Rb * R1j-1], andits two types
of scheduling. When data is aws accessed fromemory,
overlapping successive iterations becomes minimal <T6).
This means we caanly start successive iterations atrery six
cycles, almost after one iteration is finished.

On the other hand, with SRFs, we attain a maxinowerlap-
ping (Ty = 2) with a limited hardwareost for SRFs. We can
start successive iterations awery second cycleecause inter-

Figure 3: Example for overlapping

1. Data always accessed from
memory modules:

Iteration 1 Ti=6
Read a, R
Read b, R
RL2) R R RI(I Read Y(2), R2
Read Y(1), R1
Mult R2, R, RA
Mult R1, R, RB Iteration 2
2 1 AddRA RB,RC Reada,R
R1 Store RCY(3 Read b, R
‘L> ReadY(3), R3
Read Y(1), R2
v Mult R3, R, RA
Mult R2, R, RB
Add RA, RB, RC
2. Data accessedrttugh register files (SRFs).
Overhead Ti=2
Read a, R
Read b, R
Store #y1, R1(-1)
Store #y0, R2(-2)
Iteration 1 Iteration 2 Iteration 3

Mult Rs, R1(-2), Rm
Mult Ry, R1(-1), Rn
Add Rm, RnR1(0) MultRs R1(-1), Rm
Store R1(0), Y(3)™ Mult RR1(0), Rn
Add Rm, RnR1(1) Mult Ry R1(0), Rm
Store R1(0), Y(4)™ Mult R R1(1), Rn
Add Rm, Rn, R1(2)
Store R1(0), Y(5)

3.5 Expansion Scheduling

We have developed a scheduling technigipansion
Scheduling which alleviates the problems of RotatiBohedul-
ing, thus finds a proper scheduling includalgthree partspre-
loop, kernel andpost-loop in a simpler way.

We use the initiakcheduling from ouscheduler to find inter-
iteration dependency hazards atheir types,which could be
cyclic ornot. Then we can determine a minimal. TAs ex-
plained above, we schedule operationshim order of their exe-
cution times. Operations remain at their time slots and execution
units aslong asthere is no resource or data contention. If re-
source contention ige only problem for operatiom, we try to
find another execution unior n without incrementingts start-
ing cycle. Ifthere are also data contentions, we increment start-
ing timecycle ofn, which we call ashifting down operationn.

All the succeeding (children) operations causing intra-iteration
data dependency hazards also need to be shifted down recur-
sively to coverall successive operations. In case of a possible
conflict due to an inter-iteration dependency, resource conflicting
operations are shiftedown. If none of these shifts works, then
we try to shiftn back to clear data and resource contentions. If
we cannot find a solution, then we incrementahdtry expan-

sion again. However, our experiments show thataveobtain a
scheduling for minimal T most of the time.

An example is given in Table 1 dustrate the expansion con-
cepts. This example is excerpted from [2]. Operations with a ‘-’
sign are inter-iteration dependent operations, e.g. operation

mediate data is kept and can be accessed through SRFs instedt$es the output of operati@rgenerated in the previous iteration.

of from memory modules. Since we allocate a new registein

the same SRFor eachiteration, we carconcurrently access dif-
ferent sets in the same SRFor example, R1 belonging to the
first iteration can be written while the previous value of R1 is
read. If we didn’'t have SRFs, we would have to waitil the
previous value is read to be able to waoteoR1. Notethat we

do not consider the number of execution units in this example.

Table 1: An example

Operations
1 2 3 4 5 6 7 8 9 10 11
OperandsT 11 12 11 1 3 4 5 11 11 8 -9
7 -9 -10 2 - -7 6 -7 -9 -10 -

Table 2: Initial Scheduling and Final Kernel On the other hand, we allocabme dedicated SRF for each
Initial Scheduling New loop body variable. By having separate SRFs, we dacodethe register
references at run time by dedicated hardware decoders instead of

Execution Units Execution Units . . . L .
time + * time + * selecting proper registers at comilme, which is a timeon-
I LT suming process.
0 11 0 | 5(-1) 11
1 2 9 1 I SEi-lg 7(i-(1)) At the software development stage we assuthetl we had
2 1 - 2 | 23) (i) infinite number ofshifting and static register files, however, in
3 4 - 3 | 1() 10(-1) reality, just a limited number of register files &ough to
4 3 6 4 | 4) - achieve the same performance. We have consideagdus
5 5 - 5 1 3() 6() register selection alternatives rangiingm having afull degree
6 8 7 of register duplication wherever necessary and no duplication at
7 - 10 ; : . .)
all (just single register files)Also we mayhave dedicated buses
Table 3: Instances to each register file, or hayest a single bus to seradl register
Instance 1 Instance 2 Instance 3 Instance 4 files. After being selected and assigra@tobuses, register files

should be bound to variables; and patterns of register read and

liter. 2.ter. l.iter. 2.iter. l.ter. 2.ter. l.iter. 2.iter. . .
write should be extracted to construct confpath. Register

timemod P1 P2 P1p2 P1Pp2 P1PpP2 assignment ontbuses and degree of register duplication are two
2 (1) 2 191 i 1'] B 1_3 i 1_L factors determining the ratio performance/cost Higher degree
> 2|1 - 29 2 o 5 g of register duplication results in lesista communicatiortime

3 3|4 - 1 - 1 - 1 - (i.e., higher performance), and higher cost.

4 413 6 4 - 4 - 4 - We have developedwariable-register bindingschema to allo-
5 5|5 -|P1P2 | 3 6 P1P2| 3|6 P1P2| 3|6 P1P2 cate variables ontoset ofoptimum number of SRFs; and also a
6 0|8 7:-11 |5 -t- - 5 -t - 11 5 4 - 11 SRF allocation technique, which generategister access pat-
7oy -10:29) 18 7p- 10 48 70 - o) |8 T - - terns andcontrol path As explained above, we allocdt®p-

8 2|- -i1 - -102 9 -1002 9 - -i209 . .

9 3|-. -iq - N 1 - S 10 1 - variantsonto dedicated SRFs to presetiie subsequent values.
10 4| - -i3 6 N 4 - o4 A loop-variant,V, having a life rangdrom StartTime toEnd-
11 5| - -i5 - - -i3 6 3 4 - 434 Time must be allocated onto a SRFhaving
12 0 8 7 5 - 5 - 5

13 1 - 14 8 7 8 17 8 1 ndTime— StartTime 1) / 1[| number of registers, called
14 2 - - - 1@ -1 - . f

15 3 - - - - - 1d register_count

16 4 - - - - - - For consistencypnly Mod egister count Nth register can be up-
175 - - - - - - dated during théith iteration. Thus once a valueVfs updated

One lower bound for ;T based on resources is 6 (Cei”ng of and writtenonto aregister of |t§RF, it will be available during
11/2). Another lower bound based on inter-iteration dependen- its life range.
cies caused byyclic dependencies is 4 (length of the largest Taple 4: DO-loop example AN €xample of aDO-loop

cyclethat is between 1 and @pntaining operations 1,4,6,7) in code (partly adoptedfrom

terms of time steps. Thus minimal becomes 6. Table 2 doi=1,35 [5]) and its scheduling in-

shows the initial scheduling for two execution units. s=s+ali] cluding starting times of op-
Four instances of expansion ateown in Table 3. Blocks rep- afi] =s0Ds Dali] erations and life ranges of

resent modular structuresTwo attached blockélustrate over- end do variables areshown in Table

lapping and possible conflictskegion fromtime cycle 6 totime 4 and Table 5.

cycle 11 is the kernel. For example, the final 4th instahogvs Table 5: Scheduling for the DO-loop

that Whlle operation 5 of the f|r§t iteration is exequted by unit 1, time Operations Life Ranges

operation 11 of theecond iteration is executed byit 2 concur- 0 [TA VI=MemV2(1)] Unitl V1 0-19

rently. From cycle O to cycle 5 is pre-loop, from cycle 1eytde B V2=V2(-1)+V6 Unit2 V2: 0-22

17 is post-loop. The first instance tise initial scheduling, in 13 | C V3BEVI+V3 (1) V31316

which resource conflictingairs of operations are shadeuich 15 | D v4=v30OV3 V4: 15 - 19

are 7 and 11, 10 and 9. Operation 1%hdteddown therefore 18 | E vs5=v40OVvi V5: 18 - 20

all the relatedoperations, whictare all theoperations in this 20 | F Mem[V2 (-1)]=V5

case, are alsshifteddown this isshown inthe second instance. Each operation takes oggcle tofinish. Notethat T; is found

Since it did not resolvany conflictsoperation 11 ishifted up as 2. Theodehas fiveloop-variantsV1, V2, V3, V4, and V5;

which resolves one conflicthis is shown inthe third instance. and oneloop-invariant V6, which holds the address increase
In the last instancegperation 10 ishifteddown to resolve the value (=4)for V2. SRFs dedicated to variables V1, V2, V3, V4,
last conflict. After four instances, we obtained a final scheduling and V5 are R1, R2, R3, R4, and R5 respectively; and these SRFs
for the minimal T (= 6). Table 2 shows the new loop body. must have 10, 12, 2, 3, and 2 registers respectigetprding to
4. Register File Organization the formula for register_count For example, variable V1 is
allocated onto SRF R1, which must have (19-0+1)/2=10 registers
so that V1's values will be keffor 20 cycles, throughoiis life
range. V6 is allocated onto a single static register, R6.

Table 6: Kernel

Register allocation in scheduled loops is to allothgregis-
ters in a way that minimizes register idle time. In [5], Rau and et
al present various heuristiésr register allocatiorfor software
pipelined loops.Theyuse one large register fifer all thevari-

ables, andffer variousstrategiedor binding variables to regis- P1 p2 P3 P4 P5 P6
ters. But their strategies are hard to implement, len@ high 0].A(n+10): B (n+10) E(mtl) . F(m)
computational complexity. 1 C (n+4) | D (n+3)

After expansion scheduling, kernelthe new compactecbde operationsin order to prevent possible bus contentions caused by
is formed as shown in Table 6. All the operations are distributed bus limitations. In case @ommunication via registdiles, we
over separate execution unitse. over six execution units. As need no explicit bus cycles.
explained above, kernel contains operatifsom differentitera- Register Files. There is a rangfom having noregister file
tions. For example, operation A of the tenth iteration @eta- duplications to having optimally maximum register file duplica-
tion E of the first iteration areoncurrently executed. Register tions. Implementations with no duplicationsaityields alower
references are found as explained above. For example, R1 referboundon both cost (due ttess register files) angderformance

to Oth register of itSRF during the 10th iteration. Forevity, (due to explicitly scheduled bus cycles). @ other hand,
the pre-loop and the post-loop parts are omitted. implementations with optimally maximum duplicationghich
Table 7: SRF usage for 11 iterations emulates a full-crossbamong executionnits and register files,
TR Ra = = yields anupper boundon performance with a reasonably high
t|01/0101794012345678[901234567891p11 cost. In this case, each register file has a bus attached to it,
9 S S therefore there is no need to schedule busses explicitly.
2 01 01 Implementation.Figure 4 illustrates a crossbaonnection
01 01
4 012 012 emulating a full crossbar. This architecture can be implemented
2 S12, S12, in a number ofvays depending othe design constraintghich
& o1zs o1zs aresystem response tim@dimplementation cost
9 01234 01234 A data path implementation of this crossbastiswn in Figure
19 015342 015342 5. There ardour executionunits, andtwo operand buffers for
12 i i i
Zlo 0123456 0123456 each of them. Two-to-onemultiplexers letexecution units re-
110 01234567 |01234567 ceive correctlata. SRF R2 is duplicated three times, R3 twice.
Rig 1o 0123458 01234387, Other SRFs R1, R4, and R5 are not duplicated. Total number of
gy o1 1012345678 1012345678 registers dedicatefbr loop-variants i$5. An additional single
19[23/0 |[012/012345678901234567809 register is dedicated for loop-invariant V6.
A 1% Mi2%356 78miza4asa76 a0l Fi . Archi
224 3|2 1] 3 2410112 3456781234567 891011 Igure4'ArCh|tECture
23 |4 52 34 210112 3456 78]|9 123456 7891p11 SRFs Cross-bar
Table 7 illustrates the overall register allocations and life L
ranges for 23 time cycles. First line shows the SRFs R3, R5, R4, ®
R1, and R2.Secondine shows internal registers of these SRFs.
Leftmost verticaline represents timeycles. Notehat registers i
usedfor 1st iteration are represented Hs, and so on. There- ®
fore even duringhe 11th iteration, SRF R2 keeijps valuefrom
the first iteration. It i®asy tosee,from this table, that registers _ _
are read and written periodically, which form patterns. As it will @ L"é &é

be explained below, simple contrahits can handle these peri-

odic register activation. Figure 5: Optimum implementation

5. Implementation and Datapath ' — — —
Execution Unit ClusteringAs seen in Tablé, utilization rate hd T T
of execution units is jugt50. To achieve the sarperformance s s s
(Tii = 2) with less number of execution units, operations must be
clustered in avay that neither registeconflicts nor execution '! —
unit conflictswill occur. In our example, we clusterediid C,
and A and B, as seen in Table 8. Since operations E &adeC e Y s I i e Y e I |
V1 as a common input, they can share the same SRF for V1. = — = —
Table 8: New compacted loop body { Load, D] { *] { + 0] { Store]
P1 P2 P3 P4 :#:
0|A (n+10§B (n+10) E (n+1)i F(n)
1| D (n+3) i C(n+1) : U
Note that four operations in the first line, and two operations in emon/ Moduies

Controlpath. Figure 6 showshe control pathfor the design
example. There are eight register filesomtrol, some of which
are duplicates. Duplicate SRFs emulate multi-ported memories.
Functional units capnly readfrom SRFsthat are dedicated to
their own input. For example, P3 reafftem SRFsR1, R3, R4
dedicated to itselbnly but writes intcall duplicates oSRF R3
as well as SRF R5, whidire read bpnly P4. In other words,
the same value can lm®ncurrentlyread by different execution
units by means of duplicate SRFkloweverall duplicates of a
SRF are updatedoncurrently by a single executiamit. For
example, duplicates of SRF R2 is reahcurrently by P1 and
P2. There aréwo separate contréihes for write control and
read controlto allow concurrent reading(writing) from(to) sepa-
rate registers in the same register file. Thus, within the same
SRF, one register can be read while another one is being written.

the ®condline aretwo VLIW-type of instructions. In other
words, each instruction contains several operations, each of
which controls separate hardware units concurrently.

Memory allocationIn our example, A and F have concurrent
accesses to/frormemory (Areads while F writes). Since we
cannot readrom and write to the same umbncurrently, we
need to write the results into a sepam&moryunit to prevent
data conflicts.

Data Communication.Data is transferred internalfyom pro-
ducing operation to consuming operation if both operations are
executed in the same execution unit; otherwise it is transferred
externally. Internal data transfers can be realized blgypass-
ing and internal forwarding methods withoutany explicit
scheduling. External data transfers can be realized either via
duplicated register file®r by explicitly scheduled data transfer

Figure 6: SRF control bus

Write Control

Read Control

Implementation of register read/write patterns can be realized
by a simple counter or byRLA. Forexample, folP2, a simple
counter counting up to 12 is enough to activate proper registers
of SRF R2. But P3 needsRLA since it readdrom different
registers of SRF R1. In fact, P3 needs two dedicetedrol
units to determine proper registers of SRFs R5 and R3. As a
result,every functionalinit must have certain dedicated units to
activate proper registers.

6. Results

We have implemented the algorithms on a Sparc 2 workstation
in C programming language. We haue theprogram formany
benchmarks, four of whichre shown in Table 9. Experiments
are finished only within seconds.

Table 9: Applications

number of length of
operations largest cycle
1 5th order elliptic filter 43 19
2 Bandpass 42 13
3 AR Filter 54 0
4 Differential Equation 16 9

In the following graphs in Figure 7, lowdines showthe re-
sulting Ti values for different number of executionits when
expansion scheduling is applied. Succeeding iterationsteain
at every T cycle without causingany data hazards or resource
contentions._Upper lineshow execution completion time of one
iteration when we do not overlap succeeding iterations. Thus we
can compare the effect of overlapping.

Note that wehave obtained maximum throughput fbe third
application. The reason is that our scheduler fiopgmum
scheduling for DFGwiith no cyclic inter-iteration dependencies.
Yet evenfor thosewith cyclic inter-iteration dependencies;; T
values eventually converge to the best possible values as well.

To see theeffect of overlapping in terms adycles,lets con-
sider the third application running orpeocessor with 6 execu-
tion units. When overlapping is applied, minimal {E9) is
achieved. When overlapping is not applied, it oaty be 17.
Assumethat we run this kernel 1,000 times. In foemer case,
it finishes roughly in 9,000 cycles plus timefor pre-loop and
post-loopparts to finish. In the latter case, it finishes in 17,000
cycles. For 18 executiamits, T; becomes 3, when overlapped,
16 when not overlapped. This means 3,@96lesinstead of

16,000 cycles for a thousand iterations when Expansion Schedul-

ing is applied with a cost of 18 executionits. We can also see
the optimum number of execution unifeom the graphs. For
example, 6 execution unifer the first application i€nough to
attain maximum performance/cost ratio.

Size of Register FilesThe number of registers requirkmt the
first application is 55for the second 50, arfdr the forth 18.
For the third application, it variefom 56 t0226 due to high
degree of overlapping whilejTonverges to 1.

Figure 7: Initiation intervals
Upper lines: scheduling witho&ixpansion Scheduling
Lower lines: scheduling witBxpansion Scheduling
Minimal T;; values are placed on the center.

g g
g 39 c
£ ! £ 33 2
S 29 5
8 g 2
= 194 = 13
1 11 21 31 41 1 11 21 31 41
number of execution number of execution
units units
§ § 17
8 41 3 15 4
£ £
S o1 g
a a
£ £ 451
1 11 21 31 41 51 1 11 21
number of execution number of execution
units units

7. Conclusion and future work

In this paper, we presentedreethodology for agdjzation spe-
cific processor synthesis, addresskd problem of scheduling
recurrences and suggested a novel scheduling method for
scheduling iterative computatiorfier resource-constraint archi-
tectures. Our scheduling method is based on extensive use of
register files of twdypes:static and Shifting Register Files. We
also presented a comprehensive register file organization schema
to achieve minimal number of register files. We have shimah
patterns of register accesses can be easily obtainedyesed
ated at run time by simple controllers such as counters.

We have also completed a schema to distribute array variables
onto memorymodules; and designed an executiont template
using Compass Design Automation Tool. Ylan to work on
automatic generation offHDL description of, resultingproces-
sor for a given architecture.

References

1. Breternitz M, Shen J.Architecture synthesis of high-performance
application-specific processard©AC 1990.

2.Chao L, LaPaugh ARotation Scheduling: A Loop Pipelining Algo-
rithm. 30th Design Automation Conference. 1993.

3. Johnson MSuperscalar microprocessor desigRrentice Hall. 1991.

4. Lala P. Digital System Design Using Programmable Logic Devices
Prentice Hall, 1991.

5.Rau B,Lee M, Tirumalai P, Schlansker MRegister Allocation for
Software Pipelined LoopsProceedings of the ACM SIGPLAN ‘92
Conference on Programmiriganguage Design and Implementation,
SIGPLAN Notices, July 1992.

6.Rau B,Schlandker M, Tirumalai P.Code Generation Schema for
Modulo Scheduled LoopsMICRO 1992.

7.Valle, M. et al.A VHDL-based Design Methodology: the Design Ex-
perience of an High Performance ASIC ChilURO-DAC'94, 1994.

8.Woundsma R, Meerbergen JConsumer Applications: A Driving
Force for High-Level Synthesis of Signal-Processing Architectures.
IEEE Micro. Aug 1992.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

