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Abstract−− In this paper, we outline general design steps of our
synthesis tool to realize application specific co-processors such
that for a given scientific application having intensive iterative
computations especially with recurrences, a VLIW type of co-
processor is synthesized and realized, and an accompanying
parallel code is generated.  We introduce a novel register file
model, Shifting Register File (SRF), based on cyclic regularity of
register file accesses; and a simple method, Expansion Schedul-
ing, for scheduling iterative computations, which is based on
cyclic regularity of loops.  We also present a variable-register file
allocation method and show how simple logic units can be used
to activate proper registers at run time through an example.

1. Introduction
Application Specific Processor (ASP) design concepts [1,7,8]

gained attention after extensive developments have been done in
two different fields: VLSI design automation and parallel code
generation fields.  Related advancements are made in layout
compaction, logic synthesis, RTL and behavioral synthesis, soft-
ware pipelining, and VLIW type of architectures.

These recent developments offer high performance architec-
tures and implementations for scientific applications.  Scientific
applications can be described as mostly iterative and recursive
computations which contain explicit and implicit parallelism
unlike symbolic applications such as system programs and op-
erating systems.  Parallelism in scientific applications can be
attained automatically by complex compilers instead of by
trained parallel programmers.

The objective of our research is to build an application specific
processor synthesis tool such that for a given scientific applica-
tion, a co-processor board (or chip) and accompanying parallel
code will be designed, synthesized, and generated.  The state-of-
the-art techniques of design automation and microarchitecture
fields, such as VLIW architecture, software pipelining, and pro-
grammable logic devices, are utilized; and new techniques, such
as a scheduling method, a register file model and allocation,
memory unit allocation, and implementation techniques are de-
veloped for high performance computation.

For ASP design, usually an architecture is selected first, then
sequential code is parallelized to utilize the hardware efficiently.
This parallel code generation process is called instruction
scheduling, which must preserve the semantics of original se-
quential code while minimizing the execution time.  In other
words, scheduled code must ensure control and data dependen-
cies, and forbid resource contentions.

∗This work has been supported by the Semiconductor Research Corporation
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Software pipelining is a widely used static instruction schedul-
ing technique to parallelize input code at compile time, which
can be classified as global and local scheduling methods.  In
global scheduling techniques, also used in [1], many iterations
are unrolled to form a large loop-body and operations are prop-
erly moved around to find a new but more condensed loop body.
On the other hand, in local scheduling techniques, a single itera-
tion (loop-body) is scheduled and successive iterations are prop-
erly started and overlapped to form a new condensed loop-body.

For the branch intense loops and straight codes, global schedul-
ing techniques may yield better results [3].  On the other hand,
for the loop intense computations, local scheduling techniques
yield better parallelization [6].  Because local scheduling tech-
niques use the cyclic regularity of loops, and do not unroll the
iterations which causes large code expansion.  In fact, most sci-
entific programs have just a few number of conditional branches
inside the loop [6].

Rotation Scheduling, a local scheduling method proposed by
Chao and LaPaugh in [2], schedules cyclic DFGs (Data Flow
Graphs) with resource constraints using loop pipelining.  It trans-
forms a given scheduling into a more compact scheduling by a
retiming method.  Although it results in a proper scheduling
handling inter-iteration dependencies, it does not generate pre-
loop and post-loop parts automatically, and does not have an
anti-data dependency removal method.

Register allocation in scheduled loops is to allocate the regis-
ters in a way that minimizes register idle time while preventing
lifetimes of the same loop variants corresponding to successive
iterations from being assigned to the same physical register.
Two current register allocation methods in local scheduling are
Modulo Variable Expansion, and Rotating Register Files [5].

In modulo variable expansion method, successive iterations use
different codes and different register sets, although successive
iterations are overlapped.  Iterations are unrolled to resolve re-
source contentions.  This causes performance degradation.

In [5], Rau and et al present various heuristics for register allo-
cation for software pipelined loops.  They use one large rotating
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register file for all the variables, and offer various strategies for
binding variables to registers.  But their strategies are hard to
implement, and have high computational complexity.  In this
method, they use single version of code.  Each iteration has a
different register set.  Register sources and targets are dynami-
cally renamed.  Instruction's register specification points to It-
eration Control Pointer (ICP) modulo the number of registers in
rotating register file.  ICP is decremented each time new stage
starts so that new register file set is activated.  Rotating register
file is global pertaining to all variables.

We propose the use of local SRFs instead of global rotating
register files to prevent loop variants being assigned to the same
physical register.  In SRF method, different register sets are as-
signed for different iterations, and each variable has a unique
SRF, which can also be duplicated for concurrent accesses when
necessary.  Instead of modulo calculation hardware, SRFs use
simple counters or PLAs to access proper registers.  Also this
method does not need variable increment or decrement for regis-
ter control, which results in code expansion.  To resolve data
contentions, SRF method avoids iteration unrolling, another great
performance degradation.  The number of registers is determined
after the code is generated for ‘infinite’ number of SRFs.  We
developed a local scheduling technique, Expansion Scheduling,
to schedule loops for SRF-based VLIW-type of architectures.

After a brief discussion on design methodology in Section 2,
Section 3 discusses code generation issues and presents SRF
model and Expansion Scheduling method.  Section 4 and Section
5 goes through an example to explain SRF allocation schema and
discusses possible design choices.  Section 6 shows results of our
design tools for four applications.

2. Design Methodology
Major issues in ASP Design are as follows:

• Concurrent Hardware and Software support for numerically
intensive iterative applications

• Simple, pipelined execution units
• Multiple memory modules and register files
• • Retargetable hardware and parallel code

Figure 1 illustrates general design steps of our synthesis tool to
realize a processor and generate parallel code for a given scien-
tific computation such as image and DSP applications.

Parallel Code Generation
Our architecture has multiple execution units.  Application

code is mapped onto the execution units to achieve minimal exe-
cution time while preserving the semantics for correctness.
There are certain possible hazards, namely data and control de-
pendencies, and resource contentions.

Register Files and Busses
We employ two types of register files: static register files for

loop-invariants1, and SRFs for loop-variants2.  SRFs offer auto-
matic register renaming for removing anti data dependencies,
accessing recursive values concurrently, and easy addressing.

Memory Organization Schema
In loops of scientific code, most indirect references are made to

array elements.  Array access patterns should be determined at
compile time, and array elements should be placed into memory
modules properly such that there will be no data contention be-
tween the pairs of elements that need to be accessed concur-
rently.  We have developed a novel technique for distributing

                                                                           
1 A new value is generated in each iteration for loop-variant variables, such
as recurrences.
2 Loop-invariant variables, such as constants or base addresses, are never
modified during loop execution.

array elements, especially recursively and concurrently accessed
elements, onto memory modules, which could be single- or
multi-ported, single or multiple modules.

Clustering Execution Units
The objective of clustering is to lower the cost by minimizing

the number of execution units.  Depending on the initial con-
straints, we may start designing with unlimited or limited num-
ber of resources.  We may design an architecture and generate
parallel code, then try to cluster execution units such that no
scheduling changes will be needed; or we may start designing for
a limited number of resources and need not cluster execution
units.  We construct compatibility graphs for clustering.

Synthesis and Implementation
At the level of scheduling, and register, memory and execution

unit optimization, we end up having various design alternatives,
for which we can figure out the performance and cost.  Then we
can choose the design that fits our needs best.  Hardware imple-
mentation is the final step.  We can simulate the design on Com-
pass Design Automation Tools.  For prototyping and production,
we investigate using Field Programmable Logic Arrays (FPGAs)
since, in reality, we have limited time for design and realization
of ASP designs.  FPGAs offer fast protoyping and less expensive
production cost for a limited number of products[4].

3. Code Generation
3.1 Architecture Model

Figure 2 illustrates our VLIW-like processor-template having
two execution units.  In the template, register files having the
same label are duplicates that hold the same values.  Register
files contain both static and SRFs to provide concurrent accesses
to the same register value with the objective to remove anti-data
dependencies automatically.  We can start scheduling for a tem-
plate with a certain number of execution units or determine op-
timum number of execution units afterwards according to initial
design constraints.

3.2 Scheduling

Once a hardware template is selected, software-pipelined
parallel code should be generated to utilize the hardware effi-
ciently.

The basic functions of the Loop scheduler are:

Step 1: Find lower bounds on Ti i.  Choose maximum value.
Step 2: Initial scheduling
Step 3: Use initial scheduling and inter-iteration dependency

cycles (from lower bounds).
Step 4: Check for resource conflicts.
Step 5: Local Rescheduling allow initiation of succeeding 

iterations at every Ti i without any resource or data
contentions.

After one iteration is scheduled, kernel, pre-loop, and post-
loop parts are constructed.  Pre-loop is executed one time before
kernel, generating a new compacted loop body.  Post-loop part is
executed also once after several repetitions of kernel.

One lower bound on iteration initiation interval  Ti i is the
maximum number of operations on any execution unit (resource
limitation), another lower bound is the length of the largest cycle
(inter-iteration dependency limitation).  Minimal Ti i is the
maximum of these two lower bounds.  If the initial scheduling
does not yield the minimal Ti i due to a cycle, operations belong-
ing to that cycle are moved up or down to make them closer to
each other so that theoretical minimal Ti i is achieved.  After a
minimal Ti i is found and justified on the initial scheduling, the
remaining steps are completed, if possible.  If not, Ti i is incre-
mented until a proper scheduling is found.
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3.3 Data dependencies

Data dependencies are classified into two groups: intra-
iteration dependencies when data-dependent operations belong to
the same iteration, inter-iteration dependencies when data-
dependent operations belong to successive iterations, such as
recurrences.  An inequality, which should hold for all data de-
pendencies Op1→Op2, where Operation Op1 (Op2) takes E1 (E2)
cycles starting at cycle C1 (C2) is:  C2 −− C1 −− min ++ Tii ∗∗ dif f>> 0.

When it is an intra-iteration dependency, iteration difference
between Op1 and Op2, diff, becomes 0.  Total computation time
of the operations between Op1 and Op2 is td.  If it is a true de-
pendency min=E1−1, if anti dependency min=1−E1, if out de-
pendency min=E1−E2.  Note that (Op1 →Op2, true; diff=n)
means (Op1[k] → Op2[k+n], true; diff=0) for every k.  The two
lower bounds for Ti i are: a) Ti i ≥ {number of operations executed
in any processor} and b) Ti i  ≥ { td / diff for all inter-iteration
dependencies}.

In scientific applications, recurrences (inter-iteration data de-
pendencies) occur very often.  This type of dependencies can
cause iterations initiate less frequently, which, in turn, means
less utilization and less efficiency, i.e., lower performance.

3.4 Dependency removal by Shifting Register Files

Data can be always directly accessed from and written to mem-
ory units, or initially accessed from memory units once, thereaf-
ter accessed from register files.  Figure 3 illustrates a linear re-
currence, R1[i] = Ra * R1[i-2] + Rb * R1[i-1], and its two types
of scheduling.  When data is always accessed from memory,
overlapping successive iterations becomes minimal (Tii = 6).
This means we can only start successive iterations at every six
cycles, almost after one iteration is finished.

On the other hand, with SRFs, we attain a maximum overlap-
ping (TiI  = 2) with a limited hardware cost for SRFs.  We can
start successive iterations at every second cycle because inter-
mediate data is kept and can be accessed through SRFs instead
of from memory modules.  Since we allocate a new register set in
the same SRF for each iteration, we can concurrently access dif-
ferent sets in the same SRF.  For example, R1 belonging to the
first iteration can be written while the previous value of R1 is
read.  If we didn’t have SRFs, we would have to wait until the
previous value is read to be able to write onto R1.  Note that we
do not consider the number of execution units in this example.

Figure 3: Example for overlapping
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1. Data always accessed from
memory modules:          

Iteration 1 Tii  == 6
Read a, Ra
Read b, Rb
Read Y(2), R2
Read Y(1), R1
Mult R2, Ra, RA
Mult R1, Rb, RB   Iteration 2
Add RA, RB, RC Read a, Ra
Store RC, Y(3) Read b, Rb

Read Y(3), R3
Read Y(1), R2
Mult R3, Ra, RA
Mult R2, Rb, RB
Add RA, RB, RC

2. Data accessed through register files (SRFs).

  Overhead Tii == 2
Read a, Ra
Read b, Rb
Store #y1, R1(-1)
Store #y0, R2(-2)

  Iteration 1   Iteration 2   Iteration 3
Mult Ra, R1(-2), Rm
Mult Rb, R1(-1), Rn
Add Rm, Rn, R1(0)   Mult Ra, R1(-1), Rm
Store R1(0), Y(3) Mult Rb, R1(0), Rn

Add Rm, Rn, R1(1) Mult Ra, R1(0), Rm
Store R1(0), Y(4) Mult Rb, R1(1), Rn

Add Rm, Rn, R1(2)
Store R1(0), Y(5)

3.5 Expansion Scheduling

We have developed a scheduling technique, Expansion
Scheduling, which alleviates the problems of Rotation Schedul-
ing, thus finds a proper scheduling including all three parts, pre-
loop, kernel, and post-loop, in a simpler way.

We use the initial scheduling from our scheduler to find inter-
iteration dependency hazards and their types, which could be
cyclic or not.  Then we can determine a minimal Ti i .  As ex-
plained above, we schedule operations in the order of their exe-
cution times.  Operations remain at their time slots and execution
units as long as there is no resource or data contention.  If re-
source contention is the only problem for operation n, we try to
find another execution unit for n without incrementing its start-
ing cycle.  If there are also data contentions, we increment start-
ing time cycle of n, which we call as shifting down operation n.
All the succeeding (children) operations causing intra-iteration
data dependency hazards also need to be shifted down recur-
sively to cover all successive operations.  In case of a possible
conflict due to an inter-iteration dependency, resource conflicting
operations are shifted down.  If none of these shifts works, then
we try to shift n back to clear data and resource contentions.  If
we cannot find a solution, then we increment Ti i and try expan-
sion again.  However, our experiments show that we can obtain a
scheduling for minimal Ti i most of the time.

An example is given in Table 1 to illustrate the expansion con-
cepts.  This example is excerpted from [2].  Operations with a ‘-’
sign are inter-iteration dependent operations, e.g. operation 1
uses the output of operation 7 generated in the previous iteration.

Table 1: An example
Operations

1 2 3 4 5 6 7 8 9 10 11
Operands 11

-7
11
-9

11
-10

1
2

3
−−

4
-7

5
6

11
-7

11
-9

8
-10

-9
−−

Figure 2: Architecture Model for 2 execution units
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     MUX              MUX                        MUX                       MUX

                          Execution Unit                                             Execution Unit
                                     A                                                                 B

Static Registers          Shifting Register Files

Read Control lines

Write Control lines
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Table 2: Initial Scheduling and Final Kernel
Initial Scheduling New loop body

Execution Units Execution Units
time + * time + *

0 -- 11 0 5(i-1) 11(i)
1 2 9 1 8(i-1) 7(i-1)
2 1 -- 2 2(i) 9(i)
3 4 -- 3 1(i) 10(i-1)
4 3 6 4 4(i) --
5 5 -- 5 3(i) 6(i)
6 8 7
7 -- 10

Table 3: Instances
Instance 1 Instance 2 Instance 3 Instance 4

1.iter. 2.iter. 1.iter. 2.iter. 1.iter. 2.iter. 1.iter. 2.iter.

timemod P1 P2 P1 P2 P1 P2 P1 P2
0 0 - 11 - - - 11 - 11
1 1 2 9 - 11 - - - -
2 2 1 - 2 9 2 9 2 9
3 3 4 - 1 - 1 - 1 -
4 4 3 6 4 - 4 - 4 -
5 5 5 - P1 P2 3 6 P1 P2 3 6 P1 P2 3 6 P1 P2

A
A
A

A
A
A

A
A
A

A
A
A

6 0 8 7 - 11 5 - - - 5 - - 11 5 - - 11
A
A
A

A
A
A

A
A
A

A
A
A

7 1 - 10 2 9 8 7 - 11 8 7 - - 8 7 - -

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

8 2 - - 1 - - 10 2 9 - 10 2 9 - - 2 9

A
A
A

A
A
A

A
A
A

A
A
A

9 3 - - 4 - - - 1 - 1 - - 10 1 -

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

10 4 - - 3 6 - - 4 - 4 - - - 4 -

A
A
A

A
A
A

A
A
A

A
A
A11 5 - - 5 - - - 3 6 3 6 - - 3 6

12 0 8 7 5 - 5 - 5 -
13 1 - 10 8 7 8 7 8 7
14 2 - - - 10 - 10 - -
15 3 - - - - - 10
16 4 - - - - - -
17 5 - - - - - -

One lower bound for Ti i based on resources is 6 (ceiling of
11/2).  Another lower bound based on inter-iteration dependen-
cies caused by cyclic dependencies is 4 (length of the largest
cycle that is between 1 and 7, containing operations 1,4,6,7) in
terms of time steps.  Thus minimal Ti i becomes 6.  Table 2
shows the initial scheduling for two execution units.

Four instances of expansion are shown in Table 3.  Blocks rep-
resent modular structures.  Two attached blocks illustrate over-
lapping and possible conflicts.  Region from time cycle 6 to time
cycle 11 is the kernel.  For example, the final 4th instance shows
that while operation 5 of the first iteration is executed by unit 1,
operation 11 of the second iteration is executed by unit 2 concur-
rently.  From cycle 0 to cycle 5 is pre-loop, from cycle 12 to cycle
17 is post-loop.  The first instance is the initial scheduling, in
which resource conflicting pairs of operations are shaded, such
are 7 and 11, 10 and 9.  Operation 11 is shifted down, therefore
all the related operations, which are all the operations in this
case, are also shifted down, this is shown in the second instance.
Since it did not resolve any conflicts, operation 11 is shifted up,
which resolves one conflict, this is shown in the third instance.
In the last instance, operation 10 is shifted down to resolve the
last conflict.  After four instances, we obtained a final scheduling
for the minimal Tii  (= 6).  Table 2 shows the new loop body.

4. Register File Organization
Register allocation in scheduled loops is to allocate the regis-

ters in a way that minimizes register idle time.  In [5], Rau and et
al present various heuristics for register allocation for software
pipelined loops.  They use one large register file for all the vari-
ables, and offer various strategies for binding variables to regis-
ters.  But their strategies are hard to implement, and have high
computational complexity.

On the other hand, we allocate one dedicated SRF for each
variable.  By having separate SRFs, we can decode the register
references at run time by dedicated hardware decoders instead of
selecting proper registers at compile time, which is a time con-
suming process.

At the software development stage we assumed that we had
infinite number of shifting and static register files, however, in
reality, just a limited number of register files is enough to
achieve the same performance.  We have considered various
register selection alternatives ranging from having a full degree
of register duplication wherever necessary and no duplication at
all (just single register files).  Also we may have dedicated buses
to each register file, or have just a single bus to serve all register
files.  After being selected and assigned onto buses, register files
should be bound to variables; and patterns of register read and
write should be extracted to construct control path.  Register
assignment onto buses and degree of register duplication are two
factors determining the ratio of performance/cost.  Higher degree
of register duplication results in less data communication time
(i.e., higher performance), and higher cost.

We have developed a variable-register binding schema to allo-
cate variables onto a set of optimum number of SRFs; and also a
SRF allocation technique, which generates register access pat-
terns, and control path.  As explained above, we allocate loop-
variants onto dedicated SRFs to preserve the subsequent values.
A loop-variant, V, having a life range from StartTime to End-
Time must be allocated onto a SRF, having

 ( ) /EndTime StartTime T− + 1
ii

 number of registers, called

register_count.
For consistency, only Modregister_count Nth register can be up-

dated during the Nth iteration.  Thus once a value of V is updated
and written onto a register of its SRF, it will be available during
its life range.

An example of a DO-loop
code (partly adopted from
[5]) and its scheduling in-
cluding starting times of op-
erations and life ranges of
variables are shown in Table
4 and Table 5.

Table 5: Scheduling for the DO-loop
time Operations Life Ranges

0 A
B

V1 = Mem[V2 (−1)] Unit 1
V2 = V2 (−1) + V6 Unit 2

V1: 0 - 19
V2: 0 - 22

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

13 C V3 = V1 + V3 (−1) V3: 13 - 16
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

15 D V4 = V3 ∗ V3 V4: 15 - 19
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

18 E V5 = V4 ∗ V1 V5: 18 - 20
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

20 F Mem[V2 (−1)] = V5
Each operation takes one cycle to finish.  Note that Ti i is found

as 2.  The code has five loop-variants V1, V2, V3, V4, and V5;
and one loop-invariant V6, which holds the address increase
value (=4) for V2.  SRFs dedicated to variables V1, V2, V3, V4,
and V5 are R1, R2, R3, R4, and R5 respectively; and these SRFs
must have 10, 12, 2, 3, and 2 registers respectively, according to
the formula for register_count.  For example, variable V1 is
allocated onto SRF R1, which must have (19-0+1)/2=10 registers
so that V1’s values will be kept for 20 cycles, throughout its life
range.  V6 is allocated onto a single static register, R6.

Table 6: Kernel
P1 P2 P3 P4 P5 P6

A
A
A

AA
AA
AA

A
A
A

A
A
A

AA
AA
AA

0 A (n+10) B (n+10) E (n+1) F (n)
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AA
AA
AA
AA

A
A
A
A

A
A
A
A

AA
AA
AA
AA

1 C (n+4) D (n+3)

Table 4: DO-loop example

do i = 1,35
s = s + a[i]
a[i]  = s ∗ s ∗ a[i]

end do
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After expansion scheduling, kernel of the new compacted code
is formed as shown in Table 6.  All the operations are distributed
over separate execution units, i.e. over six execution units.  As
explained above, kernel contains operations from different itera-
tions.  For example, operation A of the tenth iteration and opera-
tion E of the first iteration are concurrently executed.  Register
references are found as explained above.  For example, R1 refers
to 0th register of its SRF during the 10th iteration.  For brevity,
the pre-loop and the post-loop parts are omitted.

Table 7: SRF usage for 11 iterations
R3 R5 R4 R1 R2

t 0 1 0 1 0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11
0 0 0
1 0 0
2 0 1 0 1
3 0 1 0 1
4 0 1 2 0 1 2
5 0 1 2 0 1 2
6 0 1 2 3 0 1 2 3
7 0 1 2 3 0 1 2 3
8 0 1 2 3 4 0 1 2 3 4
9 0 1 2 3 4 0 1 2 3 4
10 0 1 2 3 4 5 0 1 2 3 4 5
11 0 1 2 3 4 5 0 1 2 3 4 5
12 0 1 2 3 4 5 6 0 1 2 3 4 5 6
13 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6
14 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
15 0 1 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
16 0 1 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
17 2 1 0 1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
18 2 1 0 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
19 2 3 0 0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
20 2 3 0 1 1 2 10 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 10
21 4 3 1 3 1 2 10 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 10
22 4 3 2 1 3 2 10 11 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 10 11
23 4 5 2 3 4 2 10 11 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11

Table 7 illustrates the overall register allocations and life
ranges for 23 time cycles.  First line shows the SRFs R3, R5, R4,
R1, and R2.  Second line shows internal registers of these SRFs.
Leftmost vertical line represents time cycles.  Note that registers
used for 1st iteration are represented as 1’s, and so on.  There-
fore even during the 11th iteration, SRF R2 keeps its value from
the first iteration.  It is easy to see, from this table, that registers
are read and written periodically, which form patterns.  As it will
be explained below, simple control units can handle these peri-
odic register activation.

5. Implementation and Datapath
Execution Unit Clustering.  As seen in Table 6, utilization rate

of execution units is just %50.  To achieve the same performance
(Tii  = 2) with less number of execution units, operations must be
clustered in a way that neither register conflicts nor execution
unit conflicts will occur.  In our example, we clustered E and C,
and A and B, as seen in Table 8.  Since operations E and C have
V1 as a common input, they can share the same SRF for V1.

Table 8: New compacted loop body
P1 P2 P3 P4

A
A
A
A

AA
AA
AA
AA

A
A
A
A

0 A (n+10) B (n+10) E (n+1) F (n)
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

A
A
A

AA
AA
AA

A
A
A

1 D (n+3) C (n+1)
Note that four operations in the first line, and two operations in

the second line are two VLIW-type of instructions.  In other
words, each instruction contains several operations, each of
which controls separate hardware units concurrently.

Memory allocation. In our example, A and F have concurrent
accesses to/from memory (A reads while F writes).  Since we
cannot read from and write to the same unit concurrently, we
need to write the results into a separate memory unit to prevent
data conflicts.

Data Communication.  Data is transferred internally from pro-
ducing operation to consuming operation if both operations are
executed in the same execution unit; otherwise it is transferred
externally.  Internal data transfers can be realized by bypass-
ing and internal forwarding methods without any explicit
scheduling.  External data transfers can be realized either via
duplicated register files or by explicitly scheduled data transfer

operations in order to prevent possible bus contentions caused by
bus limitations.  In case of communication via register files, we
need no explicit bus cycles.

Register Files.  There is a range from having no register file
duplications to having optimally maximum register file duplica-
tions.  Implementations with no duplications at all yields a lower
bound on both cost (due to less register files) and performance
(due to explicitly scheduled bus cycles).  On the other hand,
implementations with optimally maximum duplications, which
emulates a full-crossbar among execution units and register files,
yields an upper bound on performance with a reasonably high
cost.  In this case, each register file has a bus attached to it,
therefore there is no need to schedule busses explicitly.

Implementation. Figure 4 illustrates a crossbar connection
emulating a full crossbar.  This architecture can be implemented
in a number of ways depending on the design constraints, which
are system response time and implementation cost.

A data path implementation of this crossbar is shown in Figure
5.  There are four execution units, and two operand buffers for
each of them.  Two-to-one multiplexers let execution units re-
ceive correct data.  SRF R2 is duplicated three times, R3 twice.
Other SRFs R1, R4, and R5 are not duplicated.  Total number of
registers dedicated for loop-variants is 55.  An additional single
register is dedicated for loop-invariant V6.

Figure 4: Architecture
SRFs Cross-bar
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Figure 5: Optimum implementation
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Controlpath.  Figure 6 shows the control path for the design
example.  There are eight register files to control, some of which
are duplicates.  Duplicate SRFs emulate multi-ported memories.

Functional units can only read from SRFs that are dedicated to
their own input.  For example, P3 reads from SRFs R1, R3, R4
dedicated to itself only but writes into all duplicates of SRF R3
as well as SRF R5, which are read by only P4.  In other words,
the same value can be concurrently read by different execution
units by means of duplicate SRFs.  However all duplicates of a
SRF are updated concurrently by a single execution unit.  For
example, duplicates of SRF R2 is read concurrently by P1 and
P2.  There are two separate control lines for write control and
read control to allow concurrent reading(writing) from(to) sepa-
rate registers in the same register file.  Thus, within the same
SRF, one register can be read while another one is being written.
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Figure 6: SRF control bus
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Implementation of register read/write patterns can be realized
by a simple counter or by a PLA.  For example, for P2, a simple
counter counting up to 12 is enough to activate proper registers
of SRF R2.  But P3 needs a PLA since it reads from different
registers of SRF R1.  In fact, P3 needs two dedicated control
units to determine proper registers of SRFs R5 and R3.  As a
result, every functional unit must have certain dedicated units to
activate proper registers.

6. Results
We have implemented the algorithms on a Sparc 2 workstation

in C programming language.  We have run the program for many
benchmarks, four of which are shown in Table 9.  Experiments
are finished only within seconds.

Table 9: Applications

number of
operations

length of
largest cycle

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA
AA
AA

A
A
A

1 5th order elliptic filter 43 19
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA
AA
AA
AA

A
A
A
A

2 Bandpass 42 13
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA
AA
AA

A
A
A

3 AR Filter 54 0
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AAAA

A
A
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AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AA
AA
AA

A
A
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In the following graphs in Figure 7, lower lines show the re-
sulting Ti i  values for different number of execution units when
expansion scheduling is applied.  Succeeding iterations can start
at every Ti i  cycle without causing any data hazards or resource
contentions.  Upper lines show execution completion time of one
iteration when we do not overlap succeeding iterations.  Thus we
can compare the effect of overlapping.

Note that we have obtained maximum throughput for the third
application.  The reason is that our scheduler finds optimum
scheduling for DFGs with no cyclic inter-iteration dependencies.
Yet even for those with cyclic inter-iteration dependencies, Ti i

values eventually converge to the best possible values as well.
To see the effect of overlapping in terms of cycles, lets con-

sider the third application running on a processor with 6 execu-
tion units.  When overlapping is applied, minimal Ti i (=9) is
achieved.  When overlapping is not applied, it can only be 17.
Assume that we run this kernel 1,000 times.  In the former case,
it finishes roughly in 9,000 cycles plus time for pre-loop and
post-loop parts to finish.  In the latter case, it finishes in 17,000
cycles.  For 18 execution units, Ti i becomes 3, when overlapped,
16 when not overlapped.  This means 3,000 cycles instead of
16,000 cycles for a thousand iterations when Expansion Schedul-
ing is applied with a cost of 18 execution units.  We can also see
the optimum number of execution units from the graphs.  For
example, 6 execution units for the first application is enough to
attain maximum performance/cost ratio.

Size of Register Files.  The number of registers required for the
first application is 55, for the second 50, and for the forth 18.
For the third application, it varies from 56 to 226 due to high
degree of overlapping while Ti i converges to 1.

Figure 7: Initiation intervals

Upper lines: scheduling without Expansion Scheduling
Lower lines: scheduling with Expansion Scheduling

Minimal Ti i values are placed on the center.
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7. Conclusion and future work
In this paper, we presented a methodology for application spe-

cific processor synthesis, addressed the problem of scheduling
recurrences and suggested a novel scheduling method for
scheduling iterative computations for resource-constraint archi-
tectures.  Our scheduling method is based on extensive use of
register files of two types: static and Shifting Register Files.  We
also presented a comprehensive register file organization schema
to achieve minimal number of register files.  We have shown that
patterns of register accesses can be easily obtained, and gener-
ated at run time by simple controllers such as counters.

We have also completed a schema to distribute array variables
onto memory modules; and designed an execution unit template
using Compass Design Automation Tool.  We plan to work on
automatic generation of, VHDL description of, resulting proces-
sor for a given architecture.
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