
Uninterpreted Co-Simulation for Performance Evaluation
of Hw/Sw Systems

J.P. Calvez, D. Heller, O. Pasquier

IRESTE University of NANTES, La Chantrerie CP 3003. 44087 NANTES Cedex 03
FRANCE, Email: jcalveZ@ireste.fr

Abstract

Performance modeling and evaluation of embedded
hardware/software systems is important to help the
CoDesign process. The hardware/software partitioning
needs to be evaluated before synthesizing the solution. This
paper presents a co-simulation technique based on the use
of an uninterpreted model able to accurately represent the
behavior of the whole system. The performance model
includes two complementary viewpoints: the structural
viewpoint which describes the functional structure, the
hardware structure, the functional to hardware mapping,
and the behavioral viewpoint which specifies the temporal
evolution of eachfunction or process. Attributes are added
to the graphical model to specify the local properties of all
components.

The performance properties of the solution are
obtained by simulation with VHDL. Software functions are
executed according to the availability of an execution
resource which simulates a microprocessor. This technique
leads to rapidly obtain a lot of results by modifying
appropriate parameters of the model, and so to easily scan
the CoDesign space to decide on the best implementation.
This modeling and estimation technique is fully integrated
in a whole development process based on the MCSE
methodology.

1: Introduction

In CoDesign, one major problem concerns the
performance evaluation during the design step. Indeed,
designers first have to define the appropriate functional
architecture and then to find the partitioning and the
allocation on the selected hardware. This means that the
solution is deduced from the required performance
constraints.

First of all, in order to answer correctly the design
objective, one needs to consider the whole development life
cycle and to base system developments on a complete
design model and methodology. The work presented here is
based on the use of the MCSE methodology [4] and
specifically on the benefits of the functional model. Then,
all along the design process, the selected solution has to be

0-8186-7243-9/96 $05.00 @ 1996 IEEE

verified and evaluated in accordance to functional andnon-
functional requirements.

In order to avoid the late discovering of perfonnances
not met, the objective of the CoDesign method is to
establish and maintain a strong link between the two
concurrent developments: hardware and software. The two
development branches result from the Hw/Sw partitioning.
Deciding on an appropriate partition is therefore essential.

In this paper, we describe an efficient technique to
evaluate performance properties of embedded Hw/Sw
systems in order to correctly decide on partitioning and
allocation according to performance constraints. Section2
presents an important goal the designer is faced with.
Section 3 describes the proposed CoDesign process.
Section 4 briefly presents the uninterpreted performance
model and the meaning of some attributes. Section 5
describes the co-simulation technique we are developing.
Through an example, Section 6 explains the use of this
model to extract performance properties and decide on the
partitioning. Conclusions are drawn in the last section.

2: The partitioning goal in CoDesign

The [mal quality of systems that designers develop is
mostly dependent on the development process. The fIrSt
step is concerned with customer requirements which are
then translated into functional and non-functional
specifications. Performance constraints are one important
category of non-functional specifications for Hw/Sw
systems. From the specifications, designers have to decide
on an architecture able to satisfy the application
functionalities and performance constraints. The
partitioning and the allocation of functionalities onto
components are decided on during the CoDesign step
[11],[16]. The last steps concern the implementation, the
unit tests, the integration of all the parts, the tests and
certification of the whole system with its environment.

Partitioning and allocation are strongly dependent on
non-functional constraints: perfonnances, timing
constraints, cost, time-to-market, etc. One problem is to
correctly elicit these requirements with the customer.
Another problem we consider here is how to decide on the

132

partitioning.As a matter of fact, designers have to estimate
andpredict the performances of selected architecture(s) and
compare them with the requirements. Later, during the
synthesisof the solution which leads to the implementation
step, more accurate information is available to refme the
performanceestimation and, if necessary, correct thedesign.

Performances qualify the behavior of the system
relatively to observation criteria which may be external to
the system (response time, throughput, etc.) or internal
(utilizationof a resource, bus throughput, etc.) [2],[7],[13].
Each kind of performance is called a performance index.
Here we are concerned with the dynamic performances of
real-time systems which are the most difficult to estimate
and satisfy.

The estimation of system performances is usually done
by analytical methods or simulation techniques [13]. In
order to select the simulation technique for its capability to
model transients, two types of models are possible:
interpreted and uninterpreted. An uninterpreted model is a
model for which the behavior is not dependent on the data
values. It is the contrary for an interpreted model as it is the
case for an algorithm or a state-based diagram. Therefore,
an uninterpreted model is a more abstract model or is an
abstraction of an interpreted model obtained by removing
the data or information values. The effect of these data
values are abstracted and replaced by attributes. For
example, the attribute Execution Time replaces the
execution duration of a sequence of statements on a
processor, the attributes Size and Id replace the content of a
message. Few performance models and tools exist to
evaluate the dynamic performances of any kind of systems
[1],[14].

In CoDesign, an accurate estimation of the temporal
properties of a solution needs to simulate the hardware part
and the software part together. Since a microprocessor is
used to run several processes or tasks, its properties and the
task-scheduling policy mainly define the global system
behavior. The time scale is not the same either: > 1 J.1Sfor
the software, < lOOns for the hardware. Therefore a co-
simulation is necessary.

To help designers during the partitioning phase, we
propose to use a performance model which is an
uninterpreted model to represent the hardware and software
organization and behavior of the solution. Properties are
extracted by co-simulation of this model, which means the
simulation of the software and the hardware together. This
technique is much faster than using an interpreted model
and easily allows to study the influence of some specific
parameters. Generic architectures may also be studied.

3: Presentation of the method

So as to correctlymasterthepartitioningandallocation
in order to find the most appropriatemapping of the

functional description onto a hardware architecture, the
CoDesign process we propose is depicted in Figure 1. For
more details on the global design process, the reader can
refer to [4], [9]. In our approach, before partitioning, the
designer needs to correctly delimitate the critical parts of
the project, to design a functional solution, to specify the
performance requirements and the system workload
conditions, to define a detailed functional solution
including the' geographic partitioning constraints and the
physical interfaces.

The CoDesign stage is decomposed into two phases, in
each one a verification by co-simulation enables to decide
on corrections or to continue.

NOf>oluncllonal

IftcaUona DeIaJIad IuncllonaJ deac~pIIon

Phaaa 1

PMonnances,

~1r8In1S,

Partitioning, allocation

COm>ctions

.Improveme...
Ick-annotations

Global
corrections

Phaaa 2
T,

-Figure1- TheCoDesignprocesswithperformanceestimation.

The partitioning and allocation can be based on various
methods: automatic, semi-automatic, interactive [16]. Since
the input functional description is conform to the MCSE
methodology, in [5],[9] we suggested to follow an
interactive coarse-gain partitioning procedure driven by the
designer who can easily decide on an appropriate choice for
each function.

The uninterpreted performance model presented in the
next section is then easy to obtain. The structural model
results from the composition of the functional structure and
the hardware architecture according to the mapping. The
behavioral model of each function is an abstraction of the
algorithmic behavior. Attributes and parameters specify the
properties of all components. The workload of the system is
used to derIDe the context of the simulation. The
performance indexes are used for selecting the results to
observe.

In the second phase, when an appropriate partition is
reached, the functional description, the hardware
architecture and the mapping are used to obtain the
hardware and software descriptions by synthesis [12]. Both
descriptions are used for a final verification by a detailed
interpreted co-simulation. A back-annotation of execution
times is also possible to enhance the performance model.

This process allows to follow a smooth incremental
design path with a better integration of performance
mastering. In this way the correction or improvement
feedback loop is shorter. As a matter of fact, without the

133

uninterpreted perfonnance modeling and co-simulation
phase, the verification of perfonnance satisfaction is
possible only after the complete synthesis of the solution
and a detailed co-simulation which needs more time.

4: Presentation of the model

The conceptual model of MCSE [4] includes two views,
each corresponding to a specific aspect of the solution:

- thefunctional model (hierarchical and graphical model)
describes a system by a set of interacting functional
elements (organizational dimension or functional
structure) and the behavior of each of them.

- the executive model describes the architectural structure

based on active components (microprocessors, specific
processors, analog and digital components) and
interconnections between them.

These two views, when separately considered, are not
sufficient to completely describe the solution of Hw/Sw
systems. It is necessary to add the mapping between the
functional and the executive viewpoints, defining an
integration or allocation also called configuration.

The functional model, located between models
appropriate to express specifications and models to describe
the architecture, is suitable to represent the internal
organization of a system by explaining all necessary
functions and couplings between them according to the
problem viewpoint. Designing with this method leads to an
internal technology-independent solution. Allor part of the
description may be implemented either in software or in
hardware. Therefore, this model is interesting as a
specification input for a Hw/Sw CoDesign method based on
a coarse-grain partitioning

We enhanced this model according to two
complementary and orthogonal viewpoints to extend its
usefulness to perfonnance modeling:

- the organizational viewpoint (structural model) which
describes the system by a hierarchical structure
including the above functional and executive
structures.

- the behavioral viewpoint for each function or
component, which specifies the set of operations and
their total or partial time ordering. This is an
uninterpreted model of the function.

In the next sections we briefly introduce the two
viewpoints. More infonnation on the perfonnance model
and its use can be found in [6], [10]. In [6] this model was
used to analyze the perfonnance properties of a real-time
video server.

4.1: The structural model

The meaning of the structural model is extended by
considering both the functional meaning (function, event,
shared variable, port) and the executive meaning

(processor, signal, shared memory, communication node).
Thus, it is possible to represent both structures -functional
and executive - with the same graphical model, and so to
describe the complete architectural solution with the
partitioning and allocation (functional to executive
binding). Figure 2 illustrates the concept. On the left hand
side, two structures and the partitioning and allocation are
depicted. On the right hand side, only one structure

represents the ~amesolution.
ne structural model

Co,

-Figure2 - Structuralmodelfor perfonnancemodeling.

The example considered here is a simplified
communication system ComSystem for message transfer
between producers Prad[1:m] and Consumers Cons[1:n].
The function Emission has to send each message of LReq to
its corresponding function Reception through the port
P_Send. To guarantee a correct transfer, each message has
to be acknowledged via the port P_Ack. Emission uses a
watchdog function to limit the waiting duration of the
acknowledgement.

The executive structure is composed of two processors
linked by a node representing a bus. Each processor can be
characterized by two attributes: 'Concurrency (the number
of functions it can execute simultaneously) and 'Power
(relative CPU speed value). The bus can be specified by its
concurrency (number of simultaneous accesses), its send
and receive times for each message. Here the chosen
allocation is simple to understand since it is based on the
geographic partition constraint.

The objective of the perfonnance model (structural
viewpoint) on the right hand side is to represent the two
structures and the allocation with only one model. Figure 2-
b depicts such a composite or combined structural model.
Starting from the functional structure, each processor PI
and P2 is added as an encapsulation of the set of functions
that each processor has to execute. This operation
corresponds to a graph restructuration which is called
folding: a group of nodes in a graph is selected to fonD a
new node composed of the subnodes previously selected. In
this way, PI and P2 have in fact the meaning of a function
with nevertheless the two specific properties of a processor:

134

1

'Concurrency and 'Power. In this structure the inter-
processor link through the node Bus is not considered for
simplification. The temporal properties of the link are
abstractedand integrated into the 2 relations by P_Send and
PAck. If the above structural model is considered too
abstract, it is possible to keep the Bus link. In that case,
interfaces (which are functions) between functions and
processorsmust necessarily be added (Figure 2-c).

4.2: Thebehavioral model

The behavioral viewpoint of an active component is
orthogonalto the structural one. A behavioral model, which
is hierarchical, graphical and uninterpreted, is described
according to the vertical axis representing the temporal
evolution and the horizontal axis describing the data or
information flow (transactions).

The temporal description is based on five kinds of
composition: sequence (&), alternative (I),concurrency (II),
iteration ({-}), conditional (guarded) activation ([?-I?-D.
Figure 3 gives the graphical notation for each of them
(vertical axis). Exclusive or concurrent evolutions are
drawn as paranel branches. Complex internal behaviors
result from dynamic instanciations of activities and activity
refinements. An activity considered elementary is caned an
operation.

~~~~ ~i)
Op1&Op2 Op111Op2 Op[1:n) <O.5>Op11<'>0p2 (Op}'N I?E1&Op11?E2&0p2)

-Figure3 - Representationof compositionrules.

The modeling of performance implies the notion of
execution time for operations and exchanges in order to
extract the global temporal properties of a system from its
local temporal properties. Therefore, an execution time
(attribute 'Time) is added to each operation.

To express interaction rules between vertical branches
Temporal dependencies, (i.e. synchronizations,
communications) and inputs and outputs are represented
horizontally. An activation condition is elaborated from
available inputs. The generation of outputs or internal data
are actions executed after operations. Composition
operators for interactions are represented in Figure 4.

»"1
tr1ctOrder »"1n!yone

~ ~
& 0

E2 E2

Op1&?(E1&E2)&A1 Op1&?(E1AE2)&A1 Op1&?(E11E2)&A1 Op1&?$Pt(:]&A1

93 ~
Alorconcurrency Alternative

81 ~ '1
OR

82 .
sequential

Op&1(S1&S2)0p&J(81AS2) 0p&J«O.5>S11<">S.2)

Selection

~
'Path+~-

OP&I$Pt(:)Op&IS

-Figure 4 - Notation for function or activity interdependencies.

The actions concern the generation of an information
item or of an event through the outputs of the component
including the activity or towards other internal activities.
For a shared variable, the action concerns a reading or a
writing operation. The Alternative symbol leads to produce
only one output. In this case, a rule (attribute) must be
specified to derIDe the output concerned: detenninism,
random. The Sequence symbol defines the order of
reception or generation. The Selection symbol allows to
specify which input or which output in a set or in a vector is
concerned. The attribute 'Path is used for that purpose. The
behavioral model is illustrated by the example give!! further
in Section 6.

An information item or a transaction is defined with a
set of predefmed and user carried attributes. An attributes
are useful to control the temporal evolution of functions,
activities and operations of the whole structure.

4.3: Attributes and parameters

To extract results from this uninterpreted performance
model, attributes must be added to the above graphical
notation.

The predefined attributes of the structural model
concern each active component and each relation
component. For a function, a processor and even a system,
(i.e. an active structural component), we have selected the
following attributes:

- 'Power: floating-point value, (1 by default)
- 'Concurrency: a positive integer, (1)
- 'Policy: (pSP, PSD, NPS, TS), (pSP means Preemptive

Scheduling based on Priority)
- 'Overhead: a time, (0)
- 'Priority: an integer, (1 for the lowest priority)
- 'Deadline: a time, (0).

These attributes are useful to evaluate the properties of
an architecture. The attribute 'Power simulates the power of
a computer unit; execution times of all included active
elements are scaled by this coefficient. It simulates the clock
speed of the computer. The attribute 'Concurrency is useful
to simulate a component having a limitation of running
resources. With it, it is easy to simulate a monoprocessor or
multiprocessor type of component. By changing the
attribute 'Policy, it is also easy to experiment with the
influence of different policies and compare them. The
attribute 'Overhead is useful to simulate the time needed for
task context switching. The last two attributes 'Priority and
'Deadline are used to select the most urgent task to run (only
one of the two values is used according to 'Policy).

Each kind of relation components is also specified by a
set of attributes. Here, due to lack of space, we only give the
selected attributes of a port:

- 'Policy: (Fifo, Priority), (Fifo)
- 'Concurrency: a positive integer, (1)

135



- 'Capacity:max number of messages, ~O, (1)
- 'Write: a time, (0)
- 'Read: a time, (0).

The predefined attributes of the behavioral model are:
'Time for operation durations, 'Size for the size of data or
information items, 'Path to specify a path through a
selection operator, 'Cond for a conditional loop, 'Id for the
identification of a function or an activity.

In general, the value of an attribute is dynamic and is
defined by any mathematical expression including constant
values, parameters, other attributes, the current time,
mathematical and probabilistic functions.

The resulting model is an uninterpreted one. Notice also
that several models may specify an active component at the
same time. This means that during the top-down design
process the behavioral model is a specification from which
it is easy to deduce an equivalent structural solution.

5: Co-simulation and result extraction

Our performance modeling technique and the
corresponding simulationmethod are an integral part of a set
of tools we have been developing as a help to the MCSE
methodology. The performance model has to be simulated
to be usable for CoDesign as a help to decide on partitioning
and allocation. Two techniques are possible: use of a
specific simulator developed for the proposed model,
translation of the model into a language for which a
simulator already exists. In this latter case, the model is
translated into an executable description. We are currently
considering two techniques: translation into VHDL and then
simulation to extract appropriate characteristics, translation
into C++ and execution. The process under development to
evaluate performance is depicted in Figure 4.

:um-M;thod~~d.;d;;I;;.;;;m-: Simulatable: Graphical : VHDL
System, Mod I to mOdel Translation ram
modeling, e cap re InVHDL :, ,, ,

L - ~t.!ri.!>!!12st~fi!'!!12"..- - - - I'!'l"!IIJ!,!n_'l!I~

Interpretation
ofresults

Parameters. workload

-Figure5 - Processfor performanceevaluation.

Designers first have to define the appropriate
performance model according to what they want to
evaluate. The model is captured with graphical tools and the
attributes of all the elements are added. The graphical model
is then automatically translated into a simulatable VHDL
program according to translation rules. The simulation
VHDL model with defined parameters and an appropriate
simulation of the workload of the system generates events
and data which are interpreted to obtain the results.

The performance analysis of the event trace leads to
estimate the properties of the solution during the design step
and to select the best solution and parameters [7].

VHDL is very efficient to describe and simulate
concurrent functions and multiple instanciations with

generic parameters. The simulation allows to extract
various characteristics of architectures to evaluate their

costs and performances. High-level descriptions are also
very easy to describe and test in the form of uninterpreted
models. Generic parameters are an efficient way to specify
the behavior of all types of components of the model.

But for hardware/software co-simulation, we have
observed some limitations due to the fact that VHDL was
conceived to <;lescribecircuits rather than systems.
Probably the main limitation of VHDL for our goal is the

lack of an external process suspe?n including freezing
the process time to simulate a~~ple function processor
sharing. Further details on the translation rules into VHDL
are described in [6], more specifically the execution of
several functions onto a limited processing resource.

6: An illustrative example

The case study we have chosen to illustrate our
approach is described in [5],[9]. The required goal is to
design and prototype a distributed communication system
obtained by assembling many similar boards. On each
board, producers have to send short messages or packets
(256 bytes max.) to consumers located on the same board
or on other boards. Producers and consumers are software
tasks. A 20 Mbits/s serial bus called TransBus [3] is used
to interconnect the boards. The system requirements and
the bus specification are shown on Figure 7. Each message
includes: the address of the consumer, the length of the data
part and then the data.

IAdIL~
20 Mbltsls 4 lines Tokenring

~ ~ Qa~

Tokenln 8' 8 its: Leng"thbytes :
~-cK TokenOut Messa elonnst
DATA TRANSBUS 9

-Figure 6 - Requirements of the communication system.

The bus access management is based on a hardware
token ring. At any moment, only one board must own the
token. The token is implemented as a boolean signal and all
the boards are wired as a circular shift register. Only the
token owner can send a message if needed and then pass on
the token to its neighbor.

6.1: The problem to be solved

The designer's objective is to correctly define and
implement a board according to performance requirements.
A generic architecture is quite simple to imagine. In [9],we
described an architecture based on a microprocessor, an
FPGA and a shared memory. It is easy here to find that a

136



strict minimum of hardware is necessary to satisfy the 20
Mbits/s transmission rate and the bit protocol imposed by
the Transbus, In the rest of the paper, we suppose the
existence of this hardware part to implement the bus
interface, It includes a parallelto serial convertor to transmit
each byte and the reverse for the reception of each byte,

The problem here is to determine the remainder of the
solution, The first step consists in defining the functional
solution, This means identifying all processes and relations
between them. The next step consists in defining the
partitioning and the allocation. But to do so, it is necessary
to have quantitative information on the required
performances and on the performances estimated according
to the selected functional design and generic hardware
architecture. To obtain this information, a model of the
solution is needed.

Rather than developinga complete interpreted model for
both the software part andthehardware part and co-simulate
it, we show in this example that it is relatively easy to
estimate various performance indexes on different
implementations with a generic uninterpreted model and a
co-simulation of it. In the next sections, we describe the
functional model, the behavioral model, the various results
obtained by co-simulating the hardware and the software at
a macroscopic level but sufficiently detailed to rapidly
observe interesting results,

6.2: The functional model

To design this communicating system, it is necessary to
take into account the decomposition of the system into a set
of boards and the interconnection bus (the geographical

Board[l)

G)

distribution of the application). This task is well done by
applying the specification and functional design steps of the
MCSE methodology, The result of geographic partitioning
and introducing the physical interface is described in
Figure 7-a which presents the complete detailed functional
solution of each board which satisfies these technological
constraints. The transbus is here modelled (abstracted) in
Figure 7-b by a vector of events Token(1 :k] to represent the
token ring and a vector of ports TB[1:k] to describe the
behavior of the!message transfer between each pairofboards.

Each message produced is sent by a producer Prod[iJ to
the function Routing through its port Treq[ij, The address
field is used by Routing to determine if the designate
consumer is local (same board) or distant. For each distant
communication, the function EmissionMess sends each
message from Lreq to the addressee board through the port
TB[addresseeJ. Since only one board at one and the same
time must access the TransBus, EmissionMess first has to
request the token (event EmisReq) and wait for it (event
TokenOk). When the message sending is finished, the event
EmisEnd releases the token which is then sent to its

neighbor (Token[i+1 mod KJ). The function ReceptionMess
receives each message which concerns the board and sends
it to the function Dmux through the port Lind. Dmux sends
each message to the addressee consumer.

6.3: The behavioral model

The behavior of each function in an uninterpreted form
is given in Figure 7-c according to the notation described in
Section 4, Attributes are added to the graphical model to
specify the complete behavior, To understand the notations,

'SIze-4+Unlform(250) bytes; TRoutlng'Tlme-0.1 ms;
Tprod'Tlme-Unlform(1, 100) ms; Routing:: {?ITreq[:]&Troutlng&
Prod :: {Tprod&TreqD}' 1«O.5)Lconsl<:">lReq)}"

Tdmux'Tlme-0.1 ms; Trcons'Time.1 ms;

Dmux:: {?(LconsILlnd)&Tdmux& Cons:: {?TconsO&Ttcons}'
I$Tcons[:j)"

TB[1:K]
'Capaclty.O

a) Functional solution lor each board
ToI<8O0

Board[':KJ Board

Token[:]

TBO

LInd

'Write. 0 ms;

Path~ (M..,) mod K;

SToken'T1me-1""; Temls'TIme-A""";
TokenManagement::{[?ToI<enOI?EmlsReq&Em/sslonMess::{?Lreq&IEmlsReq&?ToI<enOk&

?TokenO&1TokenOk&?EmlsEndj& I$TB[:]&Temls&1EmlsEnd}'
SToken&I$Token[:j}"

0) UnlDterpr<ted behario, or each function

Token{1:K] t i TB[':K]

'4'...;,:

b}Board Interconnection

Trecept'Tlme-A'1 "";
ReceptlonMess ::

{?TBO&Trecept&ILlnd}'

Figure 7- Functional structure for one board and the uninterpreted behavior of each function.

137



Treq[]means theport of the same index as the producer in
the vector Treq[l:nj. Treq[:j designates the complete
vector.This notation is interesting for generic components.

Producers and Consumers are very simple cyclic
processes.The size of each produced message is a random
value (function Uniform). T\1e time interval between two
successivemessages is defined by the execution time of the
operation Tprod (attribute 'Time). This is an easy way to
specifythe system workload for this example.

The function Routing receives messages from all ports
in Treq[1:nj and simulates the routage of a part of them to
theport Lcons (local messages). The attributes Proba and *
(which means Else) are used to specify the selected output.
Each generated message includes the attribute 'Size of the
input message. Dmux receives messages from the ports
Lcons and Lind and routes them to the consumer whose
identifier is defined by the included attribute 'Id.

The function TokenManagement is in charge of the bus
allocation toward only one board. EmissionMess receives a
message from Lreq and then asks for the token. The
transmission of each message on Transbus is modelled by
sending it in the port of TB[:j whose index is equal to the
attribute 'Id defined as a random index of a board. The
transmission time is specified by the attribute 'Write which
uses the size coming from the received message and the
parameter A defining the time to transmit each byte. The
function ReceptionMess is a cyclic process waiting for each
message in its port TB[] and then sending it to the port Lind.

6.4: Co-simulationand results

The objective of this example is to show that the model
described above leads to evaluate the main performances of
different implementations of the functional solution. To
enhance the CoDesign approach described in [5], for our
example, we have experimented 3 different
implementations. In Figure 8, the functional description is
decomposed in 3 areas: area (1) includes functions
compulsorily implemented in software, area (2) includes
the two transmission and reception functions on the
TransBus, and area (3) includes only the management of the
token.

The question is: how are the performances modified
when the functions in areas (2) and (3) are mapped onto
hardware or software? To answer this question, we have
simulated the uninterpreted model described above.
Beforehand, it is important to correctly identify the system
workload and the appropriate results expected in order to
decide for the best implementation.

Concerning the system workload, we have stimulated
the communication part of the system (emission and
reception on the TransBus) with producers permanently
sending messages of random size to distant random boards.
In this case, Tprod'Time = 0 ms and in the function Routing,

,..

Proba = 0 (no local transmission). A consumer is also
supposed to spend at least I ms to exploit each input
message. The servo-control of producers to consumers is
obtained by the capacity of each port (attribute 'Capacity).
We have chosen: capacity of Treq[ij and of Tcons[i] "" I,
capacity of Lreq and of Lind"" 5. The correct simulationof
TransBus is obtained with TB[:]'Capacity = 0, which
means a rendez-vous between the sender EmissionMess

and the receiver ReceptionMess connected to theport used.
Concerning the results to evaluate, we consider the

following as representative of the efficiency of the
communication system:

- the latency of a message from the producer to the
consumer,

- the throughput on the TransBus,
- the utilization ratio of the processor running the

software on each board.
Because of the random character of behavior of the

model, the 3 results are evaluated as the average of all
boards and all producers and when the steady state is
reached (# 0.1 s observed by simulation).

The interest of the co-simulation is to study the
influence of different generic parameters of the system.
Therefore, we have varied the number of boards (3, 6, 9)
and the number of producers and consumers (generic
parameter n).

-A-Maximum hardware(areas(2) and (3) in hardware)

To obtain appropriate results, it is necessary to know
the time needed to send each byte on TransBus when
EmissionMess and ReceptionMess are implemented in
hardware. The value is taken from [5] where we described
the solution. Another direct means is to consider the
TransBus protocol at the bit level: II bits x 50 ns # 0.7 /.!S.
Therefore we have chosen A"" 0.7 /.!Sto represent the
speed of the hardware. The time for TokenManagement is
selected to I /.!S.

All software functions of a board are implemented on
the same processor. To do that, a function named
Processor is added which includes all the software
functions. This function simulates a resource with a
concurrency degree of I, which means that only one
included function can be active at one and the same time.
Two interesting attributes define such a function: its
concurrency, and its power (equal to I here). 'Power is
interesting to modify the execution speed of all software
functions and study its influence. The scheduling policy is
also to be defined. The attribute 'Priority of each software
function is used for that purpose. Here the priority is the
highest for Dmux, then Routing, then Cons[1:nj, and the
lowest for Prod[1:nj.

The results are given in Figure 8. K identifies the
number of boards.

138

l



Message latency Bus throughput CPU utilization ratio
"'

Z
'..0"

8
..,

~
"'

.

:1:'.

..

.0"

..

.-:!~:E

...

---~-- :!H

~ / :~ ~--::" '.0"
", .. " .. " " "", .. " " " .. '.', .. " .. " ..

-Figure8 - Resultsfor themaximumin hardware.

The message throughput on each board is constant and
equal to the size average of all the produced messages
(129), each being consumed every I ms by a consumer.The
bus throughput is not dependent on n but on K. The
message latency increases with the number of producers
and consumers because each CPU is shared by all of them.
The CPU utilization rate is relatively low for K-3, because
the bus is not properly used.

-B-Allfunctions in software

All the functions are added inside the function
Processor. The time needed to send each byte on TransBus
is now A-7JlS. The execution time chosen for the operation
SToken is 20 JlSwhich is the time needed for a CPU on
receiving an interrupt. The results are given in Figure 9.

Message latency Bus throughput CPU utilization ratio
O"

~
'-'

El
"

Q
0" :OJ:'' :j;j:E 0" '.',c

~-- ,.

~ ~/ '::0:: . :::~--_._---
~ .. " ,,0"'.. "0 ';':-:-:: ..;--;,-'.

-Figure9 - Resultsfor all functionsin software.

The bus throughput is now constant and a little lower
than the previous case because 20 JlSare added between
two successive messages. The latency< and the CPU
utilization rate are similar.

7: Conclusion

In this paper, we have described a performance model
and a co-simulation technique to help designers for system
partitioning and allocation while developing embedded
hardware/software systems. The model is of uninterpreted
type, this means that it represents the whole solution at an
abstract level but accurate enough to evaluate the system
properties. Because of this type, the simulation is faster
than a complete hardware/software interpreted model. The
performance evaluation is based on a VHDL simulation;
the VHDL program is obtained by a systematic translation
of the graphical performance model and attributes
according to specific translation rules.

A graphical tool and the automatic VHDL program
generator is under development. We are also experimenting
with a translation into C++ to obtain the performance
results. The resulting method and the tool we are currently
developing are fully integrated in the complete MCSE
system-level methodology.

References

[1] J. Aylor,R Waxman,B.W. Johnson,RD. Williams,The
integration of performance and functional modelingin
VHDL,in "Performanceand Fault ModelingwithVHDL",
J.M. Schoen,Editor, Prentice-Hall,New Jersey, 1992,pp
22-145

[2] R Bordewisch, W. Fockeler, B. Schwiinner, F-J. Stewing,
Non-Fonctional Aspects: System Performance Evaluation,
In "Systems Engineering. Principles and Practice of
Computer-Based Systems Engineering", Editor B. Thome,
John Wiley, 1993, pp 223-271

[3] J.P. Calvez, O. Pasquier, A TRANSputer interconnection
BUS for hard real-time systems, Transputer'92 Besan\ion
France IOS Press, May 20-23, 1990, pp 273-283

[4] J.P. Calvez, Embedded Real-time Systems. A specification
and Design Methodology, John Wiley, 1993

[5] J.P. Calvez, D. Isidoro, A CoDesign experience with the
MCSE methodology, Proceedings of the Third International
Workshop on Hardware/Software CoDesign, Grenoble,
France, Sept 22-24,1994, pp 140-147

[6] J.P. Calvez, D. Heller, O. Pasquier, System performance
modeling and analysis with VHDL: Benefits and limitations,
VHDL-FORUM EUROPE Conference, IRESTE, Nantes,
France, April 24-27, 1995

[7] J.P. Calvez, O. Pasquier, Performance Assessment of
Embedded Hw/Sw Systems, ICCD'95, International
Conference on Computer Design, Austin, Texas, October 2-
41995

[8] J.P. Calvez, A System Specification Model and Method,
Current Issues In Electronic Modeling, Issue #4: Modeling
of System Abstraction, Kluwer Academic Publishers, 1996

[9] J.P. Calvez, A CoDesign Case Study with the MCSE
Methodology, To appear in the journal "Design Automation
of Embedded Systems", Special issue on "Embedded
Systems Case Studies", Kluwer Publisher, 1996

[10] J.P. Calvez, A System-level performance model and
method, Submitted to "Current Issues In Electronic
Modeling", Issue #6: Meta-modeling: Performance,
Software and Information Modeling, Kluwer Academic
Publishers, 1996

[11] D.D. Gajski, F. Valid, S. Narayan, J. Gong, Specification
and Design of Embedded Systems, Prentice Hall,
Englewood Cliffs, New Jersey, 1994

[12] RK. Gupta, G. De Micheli, Hardware-Software cosynthesis
for digital systems, IEEE Design & test of computers, Sept.
1993, pp 29-41

[13] R Jain, The Art of Computer Systems Performance
Analysis, John Wiley, 1991

[14] SES/workbench: a multilevel design environment for
modeling and evaluation of complex systems, Scientific and
Engineering Software, Inc., August 1989

[15] D.E. Thomas, J.K. Adams, H. Schmit, A model and
methodology for Hardware-Software Codesign, IEEE
Design & test of computers, Sept. 1993,pp 6-15

[16] W.H. Wolf, Hardware-software Co-Design of embedded
systems, Proceedings of the IEEE, Vol 82, No 7, July 1994,
pp 967-989

139


	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index




