
Two-level Partitioning of Image Processing Algorithms for the
Parallel Map-oriented Machine

Reiner W. Hartenstein, Jiirgen Becker, Rainer Kress

University of Kaiserslautem
Erwin-Schrodinger-StraBe,D-67663 Kaiserslautem, Gennany
Fax: ++49 6312052640, e-mail: abakus@infonnatik.uni-kl.de

Abstract
The partitioning of image processing algorithms with a

novel hardware/software co-designframework (CoDe-X) is
presented in this paper, where a new Xputer-architecture
(parallel Map-oriented Machine) is used as universal
accelerator based on a reconfigurable datapath hardware
for speeding-up image processing applications. CoDe-X
accepts C-programs and carries out both, the profiling-
driven host/accelerator partitioning for performance
optimization, and the resource-driven sequential/structural
partitioning of the accelerator source code to optimize the
utilization of its reconfigurable datapath resources.

1. Introduction
The sceneof hardware/software co-designhas introduced

a number of approaches to speed-up performance, to opti-
mize hardware/software trade-off and to reduce total design
time [5], [9], [22]. Further co-design approaches are advo-
cated explicitly or implicitly in developing custom comput-
ing machines (CCMs: [15], [25]) such within the R&D
scenes of ASIPs [4] [24] [28] and FCCMs [6] [7]. With the
FCCM approach a von Neumann host implementation is
accelerated by external field-programmable circuits. Here
application development usually requires hardware experts.
The von Neumann paradigm does not efficiently support
"soft" hardware because of its extremely tight coupling
between instruction sequencer and ALU: architectures fall
apart, as soon as the data path is changed. So a new para-
digm is desirable like the one of Xputers, which conven-
iently supports "soft" ALUs like the rALU concept
(reconfigurableALU) [12] or the rDPAapproach (reconfig-
urable data path array) by Rainer Kress [18] [19].

For such a new class of hardware platforms a new class
of compilers is needed, which generate both, sequential
and structural code: partitioning compilers, which partition
a source into cooperating structural and sequential code
segments. In such an environment hardware/software co-
design efforts require two levels of partitioning: host/accel-
erator partitioning (first level) for optimizing performance
and a structural/sequential partitioning (second level) for
optimizing the hardware/software trade-off of the Xputer

0-8186-7243-9/96 $05.00 @ 1996 IEEE

resources. This paper presents a framework based on this
paradigm. The hardware/software co-design framework
CoDe-X targets the partitioning and compilation of con-
ventional C programs onto a host using the Xputer as uni-
versal configurable accelerator. In contrast to other
hardware/software co-design approaches no additional pro-
gramming extensions are required and the framework use
is not limited to hardware experts. The partitioning is based
on a simulated annealing algorithm. The fundamentally
new feature of the CoDe-X framework is the two-level co-
design approach.

First this paper describes the underlying target hardware.
Section 3presents the co-design framework CoDe-X and its
strategies. Section 4 discusses a computation-intensive
application example from image processing.

2. The Target Hardware
The target hardware consists of a host workstation that

uses the Xputer as hardware accelerator (see Figure 1). The
key concept of an Xputer [10] [12] [13], is to map the struc-
ture of performance critical algorithms onto the hardware
architecture. Performance critical algorithms typically iter-
ate the same set of operations over a large amount of data.
Since ever the same operations are applied, an Xputer has a
reconfigurable parallel arithmetic-logic unit (rALU), which
can implement complex operations on multiple input words
and compute multiple results. The reconfigurable datapath
architecture (rDPA) which serves as rALU has been devel-
oped especially for computing statement blocks from loops
as well as other arithmetic and logic computations [11].All
input and output data to the complex rALU operations is
stored in a so-called scan window (SW). A scan window is a
programming model of a sliding window, which moves
across data memory space under control of a data sequencer.
All data in the scan windows can be accessed in parallel by
the rALu.

The large amount of input data typically requires an algo-
rithm to be organized in (nested) loops, where different array
elements are referenced as operands to the computations of
the cwrent iteration. The resulting sequence of data accesses

77

shows a regularity,which allows to describe such sequences
generically from a few parameters.AnXputer data sequencer
(DS) provides seven hardwked generic address generators
(GAGs), which arecapableof interpretingsuchparametersets
to compute a generic data address sequence (SP: scan pattern).
This address computation does not require memory cycles.
That's why it providessubstantialspeed-up.

To be run on an Xputer, an algorithm has to be
transformed into parameters sets controlling the generic
address generators and a configuration of the rALU, which
implements the data manipulations within a loop body.Data
manipulations are transport-triggered. I. e., each time, the
GAG places the SW to a new memory location, the complex
operations configured into the rALU are evoked
automatically. Since locality of data is essential in finding a
generic SP, a compiler for an Xputer first has to create a
good and regular storage scheme (DM: data map, see
figure 3) to obtain good results in petformance
optimization.

Host IF: interface
SW: scan window

Configuration
Memory

Configuration
Memory Q)

:;

I sw I reconf.!

~
ALU ::E

0
::E

Figure1. Block Diagram of the
target hardware

The parallel Map-orientedMachine is one possible
Xputer architecture,which provides up to seven MoM
modules.EveryMoMmoduleis directlyconnectedto the

host-bus and contains the above described Xputer hardware
units as well as a configurationmemoryand a rALU
controler (figure1). Different rALU and GAG
configurations are stored in the configurationmemory. So a
fast on-chip reconfiguration is possible during run time.
This is necessary for the computation of nested loops,
which are not fully nested. In this case a reconfigurationis
petformed between inner- and outer-loops, because the
rALU has to compute a different loop-body and the GAG
requires other parameters for computing differentgeneric
address sequences. The switching between fast
reconfiguration-mode and computation-mode is petformed
by a controler.

231
other MoM

modules
address space

MoM moduleM3

M2 .
.
.M1

y.
2°1 I': x

2-dimensionaldatamap

Figure 2. Shared memory structure and Xputer
address format

As described above our most recent Xputer prototype
operates as a kind of configurable co-processor to a host
computer. All I/O operations are done by the host as wellas
the memory management. The host has direct access to all
memory on the Xputer, and on the other hand the Xputer
can access data in the host's memory (shared memory and
address format, see figure 2).

data &
instructions
host

The only connection to the host computer is through the
bus intetface. That way, the Xputer could be intetfaced to a
different host with minim~1 effort. The part of the bus
intetface that is injected into the host's backplane would
have to be redesigned according to the host's bus
specifications. All other parts could remain the same.

3. Parameter-driven HIS Partitioning
This section gives an overviewon the two-levelhardware!

software co-design framework CoDe-X. Input language to
the framework is the programming language C. The input is
partitioned in a first level into a part for execution on thehost
and a part for execution on the Xputer. Possible parts for the
execution on the Xputer may be described in Xputer-C (X-
C). X-C is an extended subset of the programming language
C, which lacks only dynamic structures, but includes

78

l

language features to express scan patterns. The X-C input is
thenpartitioned in the second level by the X-C compiler in a
sequential part for programming the data sequencer, and a
structural part for configuring the rALU. Special Xputer-
library function-calls in the original C description of the
applications allow to take full advantage of the high
acceleration factors possible by the Xputer paradigm.
Experienced users may add new functions to the library such
that each user can access them (see Figure 3).

First the hostlXputer partitioning is explained (next
section). Then the programming of the Xputer is shown.and
finally the options for experienced users are discussed.

3.1 Profiling-driven Partitioning
The first level of the partitioning process is responsible

for the decision which task should be evaluated on the

1St level

Partitioner
Xputer-library

functions

GNUC
complier

I

AnalYZer,
!

:

Profiler :.. :

II

X-C. . I . compiler. I I ., . .. I
\ ,

, ." J--,

-----. 1 ,

Host
Compiler
Section

Xputer
Compiler

Section

Figure 3. Overview
on the CoDe-X
environment

Xputer and which one on the host. Generally three kinds of
tasks can be determined and are filtered out in a first step:

. host tasks,

. Xputer tasks, and

. Xputer-library functions.
The host tasks have to be computed on the host, since

they contain dynamic structures or call operating system
utilities, which cannot be performed on the Xputer
accelerator. The Xputer tasks are the candidates for the
performance analysis on the host and on the Xputer. The
Xputer-library functions are used to get the higbest
performance out of the Xputer. An experienced user bas
developed a function library with all Xputer-library
functions together with their performance values. These
functions can be called directly in the input C-programs.
They are evaluated in any case on the Xputer.

At thebeginning,a filtered input program for the Xputer is
representedas a graph,calledflow graph.This graph is divided
into severalXputer tasks.An Xputer task can be computed on
a singleMoMmodule and is defined as follows:

. basic block (a linear code sequence),. basic block including conditions,

. fully nested loops (up to seven loops), or

. not fully nested loops (up to seven loops).
This means a basic block, which is a linear sequence of

statements, can be included in several Xputer tasks
(figure 5). The restriction of seven loops for one Xputer task
is caused by the current Xputer prototype. The data
sequencer of this prototype contains seven GAGs, which
can operate exclusively. The resulting task graph bas
several alternative paths in such a case. A data dependency
analysis based on the GCD-test [33] gives the data
dependencies between the tasks.

Do I = 2 to N

A [I] = B [I] + 1;

D [I] = B [I] - 1;

Enddo; I Strip

~Mining
Do J = 1 to N by 32

Do I = J to min (J+31, N);

A [I] = B [I] + 1;

D [I] = B [I] - 1;

Enddo;

Enddo;

Figure 4. Strip mining example (block size: 32)

79

Thus tasks which can be evaluated in parallel can be
found. In this phase several code optimization techniques
are possible in order to exploit the target hardware in a
optimized way. For example, single nested loops of large
tasks can be transformed into double nested loops by
organizing the computation in the original loop into chunks
of approximately equal size (see figure 4). This
transformation is called strip mining [21]. This makes it
possible to compute these chunks in parallel on different
MoM modules. In our approach the block size of the chunks
depends on parameters describing the hardware resources
of the cun-ent Xputer prototype in order to achieve an
optimized performance/area trade-off. This technique can
be used e.g. in image processing applications (see
Section 4), if an image is divided in stripes of equal sizes in
order to manipulate these stripes concurrently. The
optimization techniques [21] of loop distribution (splitting
of one loop into two loops computing the same), of loop
fusion (transforming two adjacent loops into a single loops)
and of loop interchanging (switching inner and outer loop)

BB: basic block
XT: XputerTask

/
1rn§I]XT11

I~XT21
I~XT31

I~XT41

I~XT51

~XT6
~

Figure 5. Examplehow
to generate Xputer
tasks from basic blocks

are also performed by the 1st level partitioner in order to
exploit potential parallelism and to optimize the utilization
of the Xputer hardware resources.

For an initial partitioning, thehost tasks are performed on
the host, the Xputer tasks and the Xputer-library functions
are performed on the MoM modules. If several alternative
paths are in the task graph, the largest task which fits onto
an MoM m04ule is chosen. This results in a fine initial
partition since it can be assumed that anXputer tasks can be
evaluated faster on the accelerator than on the host. But
there may be two problems: if the accelerator needs
reconfiguration at run-time and in a few cases, if the
datamap has to be reorganized also at run-time.

Run-Time Reconfiguration. In the case of an Xputer-
based accelerator, the data sequencer requires a new
parameter set, and the rALU requires a reconfiguration.The
parameter set of the data sequencer can be neglected since
there are only a few parameters to configure. The
configuration of the rDPArequires 147456 bits in the worst
case and 23040 bits in an average case. Such a number
cannot be neglected. In any case it is useful to have a local
reconfiguration memory on each Xputer board. There are
three possibilities to reduce the overhead for
reconfiguration at run-time:

. Configureone idlingXputerboardwhileoneor several
otherboardsare running.Unfortunately,thisis not
alwayspossibledue to datadependencies.

. PartialconfigUI3tion:SincetherDPAallowsa partial
configuration,only thedifferencebetweenthe current
and the set to be configuredhas tobe loaded.Cmrently
only theFPGAs fromAIgolronix[16](thenew Xilinx
XC6200series[3]),Atmel [2],and fromNational
Semiconductcn [26]supportpartialconfiguration.

. Contextswitch:Acontextswitchallowsthe switching
between two or more already loaded configuration sets.
In the case of the rDPA array 2304 bits have to be
transmitted to switch all 96 datapath units.
Datamap Reorganization. Due to the large repertory of

scan patterns of the generic address generators (GAGs), a
reorganization of the datamap in the local memories is not
required in many cases. A necessary reorganization can be
performed by the host since the host has direct access to the
local memories via the external bus and the interface. When
the host evaluates a task, it can read from any local memory
and may also write back to any local memory.

Profiling. For each Xputer task, the worst case execution
time on the accelerator as well as on the host is computed.
The performance data for the accelerator is received from
the datapath synthesis system (DPSS) in the X-C compiler.
The X-C compiler is able to evaluate the number of
iterations for the compound operator. Knowing this

80

execution time, the complete evaluation time can be
approximatedby multiplying it with the iteration count. The
time-consuming placement of operators in the DPSS does
nothave to be performed for this analysis.

The performance of the host is approximated by
examining the code. For each processor type and
workstation,another model is required. The behavior of the
underlying hardware and operating system has to be
deterministic and known. This implies the timing behavior
of all hardware components, the effects of caching,
pipelining, etc. The operating system must provide static
memory management, system calls should have a
calculable timing behavior, and no asynchronous intelTUpts
should be allowed [27]. The techniques used are similar to
these from Malik et. al. [23].

The profiler is also computing the overall execution time

tace by using the Xputer as accelerator. The time tace
includes delay times for synchronization, possible
reconfigurations and memory re-mappings of the Xputer
during run time (see equation (1)).The iterative partitioning
process tries to optimize tace and is based on simulated
annealing, which is described later in this chapter.

(eq. 1)
t = ~t +~t +~t+ace £..J exe. £..J exe . £..J r

i E HT I j E XT J j E XT

L tmem.+ L tsyn- L tov
j E XT J VXputerCalls j E XT

whereas:

~ t : sum of execution times of tasks£." exel
i e HT executed on the host (H1)

L texe : sum of execution times of tasks
j e XT j executed on the Xputer (XT)

L tr
je XT

: sum of delay times for reconfiguring the
Xputer during run time

~ t : sum of delay times for re-mapping the 2-£." memo
j e XT J dimensional organized Xputer data map

during run time

L tsyn:sum of delay times for synchronizing
VXputerCal/s hostlXputer (operating system calls)

L tov
VXT

: sum of overlapping execution times
between tasks executed
simultaneously on hostlXputer

The overall execution time is deteffilined by delay times
of the basic blocks (host and Xputer), plus the above
mentioned penalty times (see tacc' equation (1)). Memory

re-mappings are necessary, when two basic blocks use the
same data onto the Xputer, but they are needing a different
distribution of the data within the two-dimensional
organized memory. Then a re-ordering of the data items
must be perfOffiledbefore the execution of the second basic
block starts, which must be also considered in equation (1).
Thevalueof tace is usedas COST-functionin thesimulated
annealing process (see figure 3) and has to be minimized for
optimizing the acceleration-factor of an application (see
equation (1)): The COST-function is determined each time
from the profiler according to equation (1) using the actual
viewed partitioning of the simulated annealing process:

Due to the data dependencies the profiler takes
concurrent evaluations into consideration. The possible
delay times for reconfiguring the Xputer during run time
will be necessary, if a partition moves more basic blocks to
the Xputer, than parallel GAG- or rather rALU-units are
available, or if a fast on-chip reconfiguration is necessary
for an Xputer-task. If possible, the reconfiguration is
performed in parallel to running host tasks. For faster access
all delay times are stored in a lookup table. For speed
improvement of the simulated annealing algorithm, the cost
increase or decrease due to the exchange is computed only.
The rest of the basic blocks are not considered.

Simulated Annealing. The iterative partitioning phase is
based on a simulated annealing algorithm [20]. Our
algorithm computes differentpartitionings of Xputer tasksby
varying their task allocation between host and Xputer. The
Xputer tasksof the initialpartitioning are swapped. If thenew
partitioning results in a lower overall cost, it is accepted. If
not, there is still a finiteprobability to accept.This probability
depends on the temperature of the annealing process. This
avoids that the algorithm gets stuck in a local minimum.
Since a good initial partitioning is used at the beginning, we
start with a low initial temperature. The temperature is
gradually lowered fast at the beginning and slower at theend.
algorithm SIMULATED ANNEALING
begin

temperature = INITIAL_TEMP.
partitioning = INITIAL_PARTITIONING
while (temperature> FINAL_TEMP.) do

for trials = 0 to MAXIMUM_TRIALS do
new-partitioning = PERTURB(partitioning);
~C = COST(new-partitioning) -

COST(partitioning);
if «~C < 0) II (RANDOM(0,1) < exp(-~C/T)))
then partitioning = new-partitioning;

temperature = SCHEDUlE(temperature)
end.

Figure 6.The Simulated Annealing Algorithm

81

I.

The exchange function PERTIJRB (see figure 3) uses
severalpossibilities to change the partitioning randomly:

. A large Xputer task is split into several smaller
tasks, and vice versa.

. One or more Xputer tasks are moved from one
partition to the other.

The PERTURB-function is randomly choosing and using
one of these two possibilities, because simulated annealing
is a probabilistic algorithm of optimizing combinatorial
problems, where the exchanging of elements is completely
arbitrary.

3.2 Resource-driven 2nd level Partitioning
The X-C compiler, which realizes the 2nd level of

partitioning of CoDe-X, translates an X-C program into
code which can be executed on the Xputer without further
user interaction. It comprises four major parts: the data
sequencer parameter generator (DSPG), the datapath
synthesis system (DPSS), and the analysis/profiling tool (N
P) together with the partitioner.

The partitioner at 2nd level (see Figure 3.) performs a
data and control flow analysis. First the control flow of the
program graph is partitioned according to the algorithm of
Tatjan [32] resulting in a partial execution order. This
algorithm is partitioning the program graph into subgraphs,
which are called Strongly Connected Components. These
components correspond to connected statement sequences
like fully nested loops for example, which are possibly
parallelizable. The Xputer hardware resources have not
been considered until now. So second the obtained coarse-
grained components have to be transformed such that:

. theresultingsequencecomprisesblocksof
possiblysimilarsize,and

. a goodexploitationof thegivenhardware
resources can be guaranteed by using available
parallelism

This second partitioning of the data flow is improved by
using a heuristic, which control the computational steps
exploiting the special Xputer hardware resources in an
optimized way [29]. This heuristic analyzes, if the structure
of statement sequences can be mapped well to the Xputer
hardware avoiding reconfigurations or idle hardware
resources. Xputers provide best parallelism at statement or
expression level. So in our approach we try to vectorize the
statement blocks in nested for-loops according to the
vectorization algorithm of J. R. Allen and K. Kennedy [17],
after a data dependency analysis has been performed {33].

The data sequencer parameter generator (DSPG)maps the
programs data in a regular way onto the two- dimensionally
organizedXputer datamap, followedby a computation of the
right address accesses (data sequencing) for each variable
(see Figure 3.). This tool is computing the access sequences

r"

of each variable used inside of nested for loopsaccording to
the linear index functions of these variables.This means that
the for loops of X-C programs are mapped onto parameters
for configuring one generic address generatorof the data
sequencer, which is then generating the corresponding
physical addresses only by hardware.

The access sequences of up to 4 fully nestedloops can be
computed by this tool. A configuration file for the X-C
compiler give~ the current restrictions of thehardware, e.g.
number of GAGs available, size of rALD subnetsetc. This
allows a flexible handling of the compiler for future up-
~rades of the Xputer hardware. The datapath synthesis
system is responsible for the synthesis towards the rALD.
The code optimizations of loop folding (pipeliningacross
iterations of for loops) and loop unrolling are performedby
the DPSS whenever possible. In the current version the
rDPA serves as rALD. Due to a general interface between
the rest of the X-Ccompiler and the synthesis system, it can
be replaced easily by another synthesis tool, if required.

The task of configuring the rDPA is carried out in the
following four phases: logic optimization and technology
mapping, placement and routing, data scheduling, and
finally the code generation. Partitioning of the statements
onto the different rDPA chips is not necessary since the
array of rDPA chips appears as one array with transparent
chip boundaries. The DPSS also gives the execution timeof
the compound operator in the rDPA. Since the worst case
delay times of the individual operators are known in
advance, the data scheduling delivers the complete
execution time. Further details about the X-C compiler and
the four phases of the DPSS, as well as examples of the
mapping onto the rDPA can be found in [29] and [11].

For each Xputer task the X-C compiler produces a trade-
off between area, that means amount of rDPA resources,
and performance is computed and displayed in a graph.

X-C Compiler

...datamap) l rALUcode
Xputer Compiler Section

operator
library-- ~

Experienced
User .

Figure 7. Over
view on the 2nd

partitioning
level.

82

Now,for each Xputer task a single point in the trade-off
graphis chosen. Since the size of the rDPA array is fixed,
thepoint with the maximum performance which fits onto
therDPAof the MoM module is taken. For this task the
configurationset, the required time for configuration, and
the execution time is stored. Usually the following
optimizationsare performed by the X-C compiler. 8

. fully nested loops: loop unrolling (or for
large compound operators: loop folding)

. not fully nested loops:

8 inner loop: loop folding (or for small
compound operators: loop unrolling)

8 outer loop: vectorization (to save area),
or normal operation

The selection of the possible implementationof an Xputer
taskis fully automaticandrequiresno userinteraction.

3.3 Experienced Users
The experienced user is responsible for building a

generic function library with a large repertory of Xputer-
library functions. The scan patterns as well as the rALU
compoundoperators can be described in the language MoPI
[1],which fully supports all features of the MoM modules.
The input specification is then compiled into Xputer code,
namely thedatamap, the data sequencer code and the rALU
code, dependent on the concrete functions calls in the input
C-program (see figure 3). The rALU assembler (RAss)
allows theextension of the operator library which is used as
a base for the configuration of the rDPA (see figure 3). All
operators of the programming language C are in the
operator library by default User specific functions for the
datapath units can be added.

4. Example: SmoothingAlgorithm
Smoothing operations are used primarily for diminishing

spuriouseffects, that may be present in a digital image as a
result of a poor sampling system or transmission channel.
Neighborhood averaging is a straightforwardspatial-domain
techniquefor image smoothing [8].Given an N x N imagef
(x,y), the procedure is to generate a smoothed image g (x,y),
whose gray level at each point (x,y) is obtained by averaging
the gray-level values of the pixels of f contained in a
predefined neighborhood (kernel) of (x,y). In other words,
the smoothed image is obtained by using the equation:

g (x, y) =~ L f (n, m)
(n, m) e S

for x,y =0,1, ...,N-l. S is the setof coordinatesof points
in the neighborhood of (but not including) the point (x,y),
and M is a pre-computed normalization factor. This smal1
example for illustrating the methods of CoDe-X was
divided in four tasks. Two of them were filtered out in the

(eq. 2)

first step for being executed on the host in every case. These
were tasks containing I/O routines for reading input
parameters and routines for plotting the image, which
cannot be executed on the Xputer. The remaining two tasks
were potential candidates for mapping onto the Xputer. In
one of these two tasks strip mining was applied by the 1st
level partitioner, because one for-loop could be transformed
according to figure 8.

The resulting smaller independent loops can executed in
parallel on different MoM modules. The X-C compiler was
performing loop unrolling additionally up to the limit of
available hardware resources (see section 3.2).

The profiler was computing the host- and Xputer- cost
functions for them. The data dependencies require a
sequential execution of the four tasks, which influenced the
overall execution time of this application. The final decision
was to shift the two candidates for the Xputer to the
accelerator. The X-C compiler on the second level of
hardware/software co-design was then mapping these basic
blocks onto the Xputer. In this final solution the Xputer
must be configured only one time. The address generation
for the data accesses in the fully nested loops of the two

.fQr(row=O;row<6400-constl; row++)

. {

. fQr (col.=O; col. <6400-const2+ 1; col. ++)

. 1
sumval =Pix.[(row+O)*256 + (col.+O)] * Coeff[O];
sumval += Pix.[(row+0)*256 + (col.+l)] * Coeff[1];
sumval += Pix.[(row+0)*256 + (col.+2)] * Coeff[2];
sumval += Pix.[(row+1)*256 + (col.+O)] * Coeff[3];
sumval += Pix.[(row+l)*256 + (col.+l)] * Coeff[4];
sumval += Pix.[(row+ 1)*256 + (col.+2)] * Coeff[5];
sumval += Pix.[(row+2)*256 + (col.+O)] * Coeff[6];
sumval += Pix.[(row+2)*256 + (col.+1)] * Coeff[7];
sumval += Pix.[(row+2)*256 + (001.+2)]* Coeff[8];

Pix._new[«row+dead_rows)*256+(col. +dead_ools»]

sumvallnormal3actor;

} I Strip
} ~Mining

fQr(ind.=0; ind.<6400-constl;ind.=index+l000)
{
..fm (row=ind.; row<min(ind.+lOOO,6400-constl); row++)
. {
. fQr (col.=O; col.<6400-const2+1); col.++)
. 1

sumval=Pix.[(row+O)*256 + (col.+O)] * Coeff[O];
sumval += Pix.[(row+0)*256 + (col.+l)] * Coeff[l];..

Figure 8. Transforming for-loop by using strip
mining with block size 1000

83

Xputer tasks was handledeach time by one generic address
generator. The finalacceleration factor in comparison with
a SUN SPARC10/51was 73.

5. Conclusions
CoDe-X, a two-levelpartitioning hardware/software co-

design framework for Xputers has been presented. The
Xputer is used as universal accelerator hardware based on
reconfigurabledatapaths.One of the new features is the two
level co-designapproach. CoDe-X accepts C-programs and
carnes out theprofiling-driven host/accelerator partitioning
for performance optimization and resource-parameter-
driven sequential/structural partitioning for accelerator
programming.At first level, performance critical parts of an
algorithm are localized and shifted to the Xputer without
manualinteraction. The second level carries out a resource-
driven compilation/synthesis from accelerator source code
to optimize the utilization of its reconfigurable datapath
resources. From several application examples encouraging
acceleration factors have been obtained in comparison to a
singleworkstation without an accelerator-board.

6. References
[1] A. Ast, J. Becker, R. W. Hartenstein, R. Kress, H. Reinig, K.

Schmidt: Data-procedural Languages for FPL-based
Machines; 4th Int. Workshop on Field Programmable Logic
and Appl., FPL'94, Prague, Sept. 7-10, 1994, Lecture Notes
in Computer Science, Springer, 1994

[2] N. N.: Configurable Logic, Design and Application Book;
Atmel Coporation, San Jose, CA, 1994

[3] S. Churcher, T. Kean, B. Wilkie: The XC6200 FastMapTM
Processor Interface; 5th Int. Workshop on Field-
Programmable Logic andApplications, FPL'95, Oxford, UK,
Aug.lSept. 1995

[4] A. Despain, I.-J. Huang: Synthesis of Application Specific
Instruction Sets"; IEEE-Trans on CAD of Integrated Circuits
and Systems, Vol. 14, no. 6, June 1995

[5] R. Ernst, J. Henkel, T. Benner: Hardware-Software
Cosynthesis for Microcontrollers; IEEE Design & Test, pp.
64-75, Dec. 1993

[6] K. L. Pocek, D. Buell: Proc. IEEE Workshop on FPGAs for
CustomComputingMachines,FCCM'94,Napa,CA,April 1993

[7] see [6], but 1994, 1995, and 1996
[8] Gonzalez R. C., Wintz P.: Digital Image Processing;

Addison-Wesley Publishing Company, USA 1977
[9] R. K. Gupta, C. N. Coelho, G. De Micheli: Program

Implementation Schemes for Hardware-Software Systems:
IEEE Computer, pp. 48-55, Jan. 1994

[10] R. W. Hartenstein, J. Becker, R. Kress, H. Reinig, K.
Schmidt: A Reconfigurable Machine for Applications in
Image and Video Compression; Conf. on Compression
Techniques & Standards for Image & Video Compression,
Amsterdam, Netherlands, March 1995

[11] R. W. Hartenstein, R. Kress: A Datapath Synthesis System
for the Reconfigurable DatapathArchitecture; Asia and South
Pacific Design Automation Conference, ASP-DAC'95,
Nippon Convention Center, Makubari, Chiba, Japan, Aug. 29
- Sept. 1, 1995

--

[12] R.W. Hartenstein, AG. Hirschbiel, M. Weber: "A Novel
Paradigm of Parallel Computation and its Use to Implement
Simple High Performance Hardware"; InfoJapan'90-
International Conference memorizing the 30th Anniversary
of the Computer Society of Japan, Tokyo,Japan, 1990;

[13] see [12]: also in: Future Generation ComputerSystems no. 7,
pp. 181-198 (North-Holland, 1991/92)

[14] R. Hartenstein, (opening key note): Custom Computing
Machines - An Overview; Workshop on Design
Methodologies for Microelectronics, Smolenice Castle,
Smolenice, Slovakia, Sept. 1995

[15] R. Hartenste!n, J. Becker, R. Kress: CustomizedComputers:
a generalized survey; submitted for FPL'96, Darmstadt,1996

[16] T. A. Kean: Configurable Logic: A Dynamically
Programmable Cellular Architecture and its VLSI
Implementation; Ph.D. Thesis, University of Edinburgh,
Dept. of Computer Science, 1989

[17] K. Kennedy: Automatic Translation of Fortran Programsto
Vector Form; Rice Technical Report 476-029-4, Rice
University, Houston, October 1980

[18] R. Kress: A fast reconfigurable ALU for Xputers; Ph.D.
dissertation (submitted), Kaiserslautern University, 1996

[19] R. Kress: Computing with reconfigurable ALU arrays; IT
Press (planned for 1996)

[20] L. Lin: High-Level Synthesis, Introduction to Chip and
System Design; Kluwer Acad. Pub!., Boston, London, 1992

[21] D. B. Loveman: Program Improvement by Source-to-Source
Transformation; Journal of the Association for Computing
Machinery, Vol. 24,No. I, pp.121-145, January 1977

[22] W. Luk, T. Lu, I. Page: Hardware-Software codesign of
Multidimensional Programs; Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines,
FCCM'94, Napa, CA,Aprill994

[23] S. Malik, W. Wolf, A. Wolfe, Y.-T. Li, T.-Y. Yen:
Performance Analysis of Embedded Systems; NATO/ASI,
Tremezzo, Italy, 1995, Kluwer Acad. Publishers, 1995

[24] P. Marwedel, G. Goossens (ed.): "Code Generation for
Embedded Processors", Kluwer Acad. Publishers, 1995

[25] D. Monjau: Proc. GIIITG Workshop Custom Computing,
Dagstuhl, Germany, June 1996

[26] N. N.: Configurable Logic Array (CLAyTM);Preliminary
Datasheet,NationalSemiconductors,SantaClara,CA,Dec. 1993

[27] P. Puschner, Ch. Koza: Calculating the Maximum Execution
TlIDeof Real-TlIDePrograms; Journal of Real-Time Systems
p. 159-176, Kluwer Academic Publishers 1989

[28] Sato et aI.:An IntegratedDesign Environment for Application
Specific Integrated Processors, Proc. ICCD 1991

[29] K. Schmidt: A Program Partitioning, Restructuring, and
Mapping Method for Xputers; Ph.D. Thesis, University of
Kaiserslautem, 1994

[30] K. Schmidt: Xputers: a high performance computing
paradigm; IT Press (planned for 1996)

[31] N. A. Sherwani: Algorithms for Physical Design
Automation; Kluwer Academic Publishers, Boston 1993

[32] R. E. Tatjan: Testing Flow Graph Reducibility; Journal of
Computer and System Sciences 9, pp. 355-365, 1974

[33] M. Wolfe, C.-W. Tseng: The Power Test for Data
Dependence; IEEE Transactions on Parallel and Distributed
Systems, Vol. 3, No.5, Sept 1992

84

l

	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index

