Partitioning and Exploration Strategies in the TOSCA Co-Design Flow

A. Balboni (a), W. Fornaciari (b, c), D. Sciuto (c)

(a) ITALTEL-SIT, Central Research Labs, CLTE,
20019 Castelletto di Settimo Milanese (M), Italy

(b) CEFRIEL, via Emanueli 15, 20126 Milano, Italy,

(c) Politecnico di Milano, Dip. Elettronica e Informazione,
P.zza L. Da Vinci 32, Milano, Italy

Abstract

The TOSCA environment for hardware/software
co-design of control dominated systems implemented on
a single chip includes a novel approach to the system
exploration phase for the evaluation of alternative
architectures. The paper presents the metrics and the
partitioning algorithm defined for the identification of
the best hardware and software bindings and
modularization, given the design constraints and goals.
The system exploration phase is implemented as an
iterative process directed by the user, based on the
Sformal internal design representation adopted in
TOSCA. The application of the metrics is then shown on
a simple example to illustrate the approach.

1. Introduction

In many embedded applications heterogeneous
hardware/software architectures may provide a more
effective design solution for some target cost and
performance figures with respect to fully dedicated
hardware implementations. Some of the most important
aspects to be considered in the concurrent design of
such systems is the early prediction of the final results,
the possibility of generating different alternative
solutions of the hardware/software partitioning process
satisfying the user requirements, and the possibility of
system designing by incrementing the functionalities of
existing systems, i.e. the possibility of re-using existing
modules (software or hardware).

The tools that implement such strategies should
cooperate with existing design flows and standards to
enable a realistic use within industrial design
environments.

Aim of this paper is to introduce a novel
methodology to manage the co-design process for a
specific application field, i.e. control-dominated ASICs,

62
0-8186-7243-9/96 $05.00 © 1996 IEEE

such as those embedded into telecom digital switching
subsystems. In particular, this paper will focus on the
description of the implemented exploration strategies of
alternative system architectures aiming at balancing
hardware cost/performance and software flexibility.

Research in co-design has produced a number of
different approaches ([1], [2], [3], [4]) which can be
roughly partitioned in strategies starting from a fully
software system implementation moving pieces of
software toward the hardware domain and, viceversa,
strategies aiming at obtaining the minimum cost by
replacing pieces of hardware with software code. Our
approach does not assume an initial solution, apart from
the possibility of tagging some modules as software or
hardware if they are already available in the design
environment and no alternative solution is sought. It
provides an environment enabling the exploration of
different partitioning which can be either user-driven or
automatically performed. All the decisions are
evaluated and possibly taken according to the results of
an iterative analysis performed through a set of metrics
tailored to predict their effects onto the final
implementation.

The paper is organized as follows. Next section
gives an overview of the TOSCA framework and the
target architecture adopted. Section 3 defines the
internal system representation allowing the application
of formally correct transformations of the system to
identify and evaluate the different partitioning
alternatives. The system exploration strategies and
evaluation metrics are presented in Section 4. Finally an
application of the partitioning algorithm is presented in
Section 5.

2. The TOSCA design flow

The TOSCA environment represents a pragmatic
approach to co-design, accepted as prototype in the
R&D department of an Italian telecom company. In

1L e

fact, the proposed framework is integrated within an
industrial design flow and allows the user to approve or
modify all decisions pertaining system exploration,
with the possibility of backtracking along the design
process and of reusing already designed submodules.
The high level of integration with the existing
commercial EDA tools has been obtained by directly
interfacing with existing design entry environments
(e.g. speedCHART). a VHDL representation of the
hardware-bound parts, the direct synthesis of the
software modules and the ability of achieving co-
simulation of the entire mixed hw/sw system within the
same VHDL-based environment. Moreover, the CAD
environment allows the user to cover the whole design
process, ranging from the system-level specification
capture down to the synthesis, by considering low level
effects of the software timing properties (down to
assembly level). by providing the code for software
processes as well as the necessary operating system
support and, finally, by generating the interfaces among
hw and sw modules.

Multiple formalisms are accepted as system
specification, based on the consideration that in
industrial design environment projects are seldom
unconstrained but usually their specifications are
derived from previous experiences, and therefore some
components are a priori hw or sw bound, some are
already synthesized, some are specified by graphical
formalisms, others by textual specification. A unified
internal representation level based on a process algebra
computational model with an Occamll more pragmatic
syntax has been adopted. Other modules, described
through different formalisms, can be mapped or
connected to the internal Occamll representation. The
overall system representation is stored within an object
oriented database tailored to support high-level
architectural exploration, shared by all the tools
composing the TOSCA environment.

The system exploration and partitioning strategy is
based on the internal process algebra based
representation, allowing the application of formal, well
defined transformations. This process is managed by
the Exploration Manager which drives manipulation of
the initial system modularization to produce a new set
of system partitions and their association (if still
floating) either with software or dedicated hardware
units. Our approach. apart from possible bindings
forced by users, does not start from an a priori default
solution (e.g. initially fully software bound). A set of
strategies and basic algorithms can be iterated onto the
system representation, until the design constraints are
satisfied. The output of this process is a set of
monolithic architectural units with a binding
establishing either a hardware or a software
implementation. Each architectural unit is then passed
as input to the following co-synthesis stages.

The partitioning and synthesis processes have to
consider different functional and non functional design

63

requirements, that are tightly related to the target
implementation architecture. Our class of applications
requires a single chip implementation including an
off-the-shelf microprocessor core with its memory
(even if part of the memory can be external) and the
dedicated logic implementing a set of coprocessors, i.e.
the set of synthesized hardware-bound modules
identified during system exploration. The term
coprocessor includes also arithmetic/logic operations
and possible private storage capability, while high-level
synthesis tools typically separate controllers from data-
paths. The master processor is programmable and the
software can be either on-chip resident or read from an
external memory; dedicated units operate as peripheral
coprocessors. To satisfy the requirement of interfacing
among hardware and software bound elements, a
master-slave shared bus communication strategy has
been adopted. All hardware to hardware
communications are managed through dedicated lines
(local buses). The RAM memory required for
program/data storage shares with the coprocessors the
main data bus, but can be accessed only by the master
CPU. Communications among CPU and coprocessors
are based on a memory mapped I/O scheme with one
bus interface manager per coprocessor based on a
common /O buffered protocol manager.

The last stage defined within the TOSCA design
flow covers the synthesis of all the elements:
software-bound modules including the basic operating
system support, hardware-bound parts and interfaces.
The embedded system software is usually built around a
lightweight operating system that provides process
scheduling and interrupt handling facilities aiming at
guaranteeing fairness and real-time behavior to all the
software actors. Our solution is to consider the software
description at the level of a virtual assembly instruction
set (VIS) whose structure can be mapped onto different
CPU cores with fully predictable translation rules and,
consequently, reliable performance estimation [5].

This solution provides the possibility of achieving a
fully VHDL based co-simulation of each proposed
hw/sw architecture [5], to get feedback on the
effectiveness of the implementation. In fact. a suitable
VHDL model for VIS instruction-level execution, has
been developed, so that the entire system can be co-
simulated through a unified VHDL-based environment.

The model is parametric to allow the analysis of
low-level timing/cost/performance, for different classes
of microprocessors.

The hardware synthesis can be performed using
three different strategies: direct mapping of
hardware-bound FSM into a VHDL code compliant
commercial RTL synthesis tools ([6]): transparent
passing of imported VHDL modules descriptions to the
logic synthesis tool; definition of behavioral VHDL
descriptions of the hardware-bound modules to be input
to a commercial high-level synthesis tool.

3. Design representation

The internal model onto which the system
exploration model is defined is based on a
customized process algebra/Occamll representation.
The system representation can be obtained by
importing modules descriptions obtained through
commercial design entry tools (such as speedCHART)
as well as by using the built-in Occamll editor (see
fig.1).
A key issue of the Occamll formalism is the
possibility of easily representing both parallel and
sequential execution of processes at any abstraction
level. For example, by considering a pair of processes
p2 and pl, the termination of p2-after-pl execution
can be captured by the construct SEQ, while and the
impossibility of statically predicting the termination
order between pl and p2 is expressed via the PAR
construct. It is important to underline that no
restriction on the process granularity is required, so
that processes executed in parallel can be constituted
by assignments, input or output statements as well as
parallel or sequential composition of simpler
processes. Details on the Occam paradigm can be
found in [7], [8].
The main advantages provided by the chosen process
algebra/Occamll for co-design purposes, with respect
to the other formalisms (e.g. the statechart family,
flow-chart diagrams, CDFG, VHDL, SDL, ...) are the
following:
e the computational model is based upon a small set
of primitives (assignment, input and output) and
composition operators (sequential, parallel,

e fmerch - Symtan

] O
=

i
i

olel

oS
il

k ? no

o luch direzienall

TLR now PLUS (seconde =

Figure 1. The visual front-end of the TOSCA environment.

64

alternative) allowing the modeling of arbitrary
complex behaviors;
e the simple and regular syntax makes easier the

parsing, the redisplay of transformed
specifications and the internal representation;

e a formal and well assessed theory of
transformations is available;

e multiple paradigms (event-driven, dataflow,

rendez-vous, FSM,...) are supported through the

same syntax and semantics;

e a powerful concurrency model suitable for
system-level specification is defined: channels,
user-defined communication protocols, regular
parallelism (array of processes and channels),
timers and timeouts, process priorities.

An important advantage of using channels to
represent communication is the possibility of
applying the same compact model of data exchange
between heterogeneous processes (and consequently
interfaces). The channels behave as variables with an
attached wunidirectional pipe management, leaving
unmodified the original value (the channel receives
only a copy). Since a channel can be shared by two
processes only, broadcast communication can be
modeled via multiple channels. Synchronization
among processes is realized through channels,
because they implement a rendez-vous mechanism.
Shared variables among parallel processes are
forbidden, they can only transfer values via channels.

Time related issues are supported through the use
of timer objects, acting as read-only channels
providing an integer value corresponding to the
current time.

Delays can be introduced by using deferred inputs
through the AFTER clause. Typical real-time schemes
can be modeled by combining the statements for
managing time with the construct allowing alternative
composition of processes.

The Occam model of the system description is
stored within the TOSCA object oriented design
database, storing classes of objects for modeling the
system functionality and supporting the specific co-
design activities such as simulation and design entry.
All the classes inherit from a top-level class the
following methods:
general purpose methods implementing
functionalities for database management;
methods realizing a user-level visual
back-annotation interface of information concerning
the objects;
methods activating specific actions operating on the
“associated object.

4. System exploration and partitioning

After the acquisition of the system model has been
completed, architectural tradeoffs may be carried out by
iterated manipulation of the internal model stored
within the TOSCA database. This stage manages two
classes of objects: processes and architectural units.
The processes can be subdivided in two classes:
processes to be mapped onto predefined hardware
or software components;

processes whose specification is not biased by the
implementation and therefore different design
alternatives can be explored at system level (e.g. the
ones captured via the graphic Occamll built-in
editor of TOSCA).

The partitioning process can be viewed as an
incremental activity of modification of the initial
specification through the application of transformations.
The TOSCA project has considered this process
through:

The definition and implementation of formal
transformation rules working onto the internal
model stored within the design database.

The definition and implementation of a set of
metrics to drive the partitioning process.

The definition of a partitioning algorithm and its
implementation within the Exploration Manager
framework to obtain a tool allowing both direct
intervention of the user and automatic selection of
the strategies by following the built-in evaluation
criteria.

Since Occam has been derived from CSP [8]. a number
of formal properties are available as a background to
define a set of transformations preserving the semantics
of the original specification.

Some preliminary studies on transformations tailored
for state-based synchronous specifications have been

65

experimented in [6], but the current version of TOSCA
includes:

Parallelization of sequential processes and
viceversa, that can be useful to improve
performance or reuse of basic building blocks (hw o
sw) of processes belonging to the same architectural
unit.

Replacement of channels with variables and
viceversa; this action is usually performed when two
processes will become part of the same sw-bound
architectural unit. For instance, processes belonging
to the same coprocessor share the local variables
while if they are located on different coprocessors
communication channels are required.

Merge of code sections.

Splitting of code sections.

The partitioning process can be executed step by step,
thus allowing direct control of the user through the
exploration manager interface. This allows to take
advantage of user expertise whenever possible, but it
can be automatically performed by applying the default
partitioning flow. Here, the default partitioning flow is
introduced.

The top-level algorithm of the default flow uses a
greedy strategy where the initial model is first of all
expanded in a top-level process containing a PAR
assert. by properly applying the formal transformation
laws. The system allows modification of the granularity
of the decomposition according to the user selection.
After this preliminary step an initial graph G containing
all the not yet allocated processes (leaf nodes) is built.
A set of actions is applied onto such a graph. These
actions can be partitioned in two phases:

1. Pre-allocation: this phase consists of marking the
processes nodes according to the most suitable
implementation technology (hw or sw). The user
can accept the proposed solution or manually
modify the decisions taken.

During a second phase, according to some closeness
criteria defined by the user and based on the metrics
available. new process leaves are built by pairwise
collapsing nodes to build a unified PAR statement;
this activity of collapsing nodes is iteratively
performed until all the architectural units are
identified and their binding is defined.

The initial pre-allocation strongly affects both the
convergence speed of the algorithm and the result
quality. The collapsing of processes in the second
phase, will occur whenever the measure of the
closeness criteria, during the selection of the closest
processes, stays under a certain a priori defined
threshold. This solution is particularly flexible since it
is possible to consider a set of criteria, with different
priorities that can be changed dynamically. according to
the current nodes granularity or user choice.

To support these activities, a set of metrics has been
defined, according to the co-design target. Our
approach focuses on providing a modular design flow

sufficiently open to be easily extended to cover any
new strategy defined. For this purpose the mechanisms
implementing the system transformations have been
kept disjoint from their application policy. A specific
set of metrics for early prediction of cost/performance,
as well as to evaluate the system synthesis results, has
. been developed at first. The activity of identifying some
closeness properties among parts of the system
specification, can be performed by means of a static
analysis based on metrics for early prediction of
cost/performance. It aims at producing an initial
nearly-optimum allocation and binding to be iteratively
improved by the user until design goals are satisfied.
Afterwards, to update the predicted data, a final stage of
actual synthesis is performed. This is the most time
consuming task and it is strongly sensitive to the quality
of the pre-allocation performed during the former
phase; it returns information that will be back-annotated
as replacement of the predicted data.
The metrics consider the system analysis from a
threefold point of view:
Statically, by analyzing composition and structure
of the description contained within the database.
Dynamically, but still independent of the
implementation, through an high-level execution
and profiling of the specification to extract
information such as communication bottlenecks and
statistics on operators applications to better tune the
decision on the initial partitioning and binding.
After-synthesis, requiring at least a complete
synthesis cycle. This returns information that will be
back-annotated as a replacement of predicted data
and will also contribute to the final design
evaluation,
The application of metrics is based on the association of
each Occam process with a module, including the
exported interface and the process body that is hidden
to the other processes. Under a structural point of view,
each Occam module composing the system description
can be considered as a hierarchy of modules, being
each component a module itself.
The most relevant factors considered on such modules
to evaluate the quality of the resulting design, are the

following.

o Communication: costs related to the number of lines
and bandwidth for hw-hw and sw-hw
communication.

e [nterfacing: according to the adopted

communication/synchronization technique among
different modules (e.g. between hw and sw, one
interface unit per coprocessor vs a common bus
manager/arbiter queuing messages), costs can be
affected by number and granularity of modules.
Alternative bus protocol templates can be evaluated.
s Area: this is the most important aspect because of
the single chip implementation. Overall
optimization takes into - account possible
user-defined binding along the evaluation and

66

comparison among different alternatives.

Resources exploitation: on the software side, since
the microprocessor is anyhow present, it is
important to increase as much as possible the CPU
utilization while fulfilling the timing requirements
of the programmed modules and the effectiveness of
memory. Another relevant issue is related to the
power consumption that is improved by a
modularization able to identify the minimum set of
architectural units with the lowest amount of idle
time.

Currently, the TOSCA environment implements a set of
methods to evaluate the following static metrics, based
on the following static properties of the Object Oriented
representation of the Occam specification:

Declarations count.

Data dependencies among data declarations.

Module use.

Structure of modules composing the system graph.
The relevant parameters considered to determine the
declaration count are:

Local(module): representing the number of local
data declarations.

Global(module): representing the number of data
visible within a module.

Scope(module): representing the visibility area of

data declaration overlapped to the module
definition.
The properties representing the relations among

modules are captured by considering the number of
other modules both used (imported) and using the
considered (exported) one. Other important
characteristics are obtained through the analysis of the
graph representing the hierarchy of the modules
composing the system. In particular maximum and
average depth and the number of possibly complete
paths (from the root to a leaf) are taken into account.
These parameters can be considered as a bias to
estimate the system complexity.

Another set of metrics has been introduced to report the
presence of possible inconsistencies when modules are
collapsed. They describe the level of internal cohesion
for each module and the coupling between modules.
Two types of interactions have been evaluated:
declaration and declaration which analyzes if a
declaration interacts with another by considering if a
modification of the first implies also a modification in
the second one: declaration and subroutine which
considers that a declaration interacts with a subroutine
if it has a declarattion and declaration interaction with
at least one of the subroutine declarations.

A significant goal of the entire partitioning process,
is to achieve an high level of internal cohesion together
with a loose coupling with other modules. This is
particularly important e.g. to make easier the moving of
communicating modules within different
implementation domains while saving bus bandwidth,

since it is the only mean to obtain hw-sw data

exchange. Moreover, it is also possible to avoid

unnecessary replication of data variables (or registers
for thé hw domain) to implement the corresponding
data handler.

In addition to the static properties, a profiling
through simulation of the internal specification can be
carried out. This allows to better understand the real
bottleneck and critical parts of the system description.
Since the purpose of this analysis is to provide statistics
and predictions of the execution times, a parametrizable
model has been defined to cover both the hardware and
software domain. In fact, a process composed of basic
actions cannot be represented by simply adding the
execution times of each component. It is necessary to
consider also the effect of process synchronization and
communication that are non explicitly managed by
Occam descriptions. For instance, if software execution
is considered it is necessary to model the overhead due
to context switching among threads and the presence of
subroutine calls.

This modeling of the time properties. allows the
identification of the following process properties:

e Latency of a process execution.

e Execution frequency of a process.

e CPU usage (summation of the latency-frequency
products, for all the software bound processes).

e Channel utilization (bandwidth, idle time).

e Computational load, representing the total number
of operations executed by process p during
simulation.

All the data obtained through metrics evaluation are

gathered within matrices that will be used to evaluate

the closeness among the processes composing the
system graph, and possibly to trigger the application of

system-level transformations, according to a

hierarchical multi-stages clustering algorithm. In

general. the cost function used to evaluate the quality of
candidate solutions has the form of a weighted sum:

cost = E w_m=WxM
m

meM

where M is the set of the considered metrics and W the
matrix expressing the relevance of the metric according
to the designer’s goal. In case of direct intervention by
designer, the results of metrics evaluations can be
back-annotated and considered separately. The
evaluation of metrics computed onto the design
description stored within the database is basically
tailored to support the system level exploration phase,
i.e. as a support in the process of collapsing processes
to identify a set of architectural units with the proper
hw or sw binding and to modify the process granularity.

The algorithm operates by considering the set G of
processes constituting the system graph and the
closeness matrix V(¢,G) according to the criterion ¢
considered: in other words, each V[i,] entry represents

67

the measure of the distance between nodes i and j based
on the evaluation of the ¢ criterium. The decision on the
processes to be collapsed is carried out by the functions
coupleWithMaxCloseness(V) which selects the
closeness pair of nodes of the graph, and
maxCloseness(V) which returns the corresponding
distance. Given a certain criterion, the opportunity to
collapse nodes is driven by the crossing of a user
defined threshold Vi The decision on whether or not the
nodes have to be collapsed is related with the threshold
Cr defined onto the cost function summarizing the
adherence between design results and initial
requirements. This method allows to establish an
ordering in terms of importance among the considered
criteria, which can be modified dynamically. A
pseudo-code representation of the algorithm is here
reported:
while costFunction > Ct {
select ¢ in criteria
while maxCloseness(V(c,G))= Vt(c) {
(i,j) := coupleWithMaxCloseness(V(c,G))
Gl :=G- {ij}
G2 := G1 + { collapse(i,j)}
if not G2.violatesConstraints() {
G:=G2
H
modify (the system)
H
)

The procedure modify allows the introduction of some
modifications into the system model such as a new set
of bindings, the serialization of operations within
processes obtained through previous collapsing and so
on. G2violatesConstraints evaluates if the considered
system instance is acceptable according to the defined
constraints; to reduce the possibility to be cached in a
local optimum, a non deterministic function can be
introduced. The complexity of the implemented
algorithm is O(c x n x log.n) where ¢ is the number
of criteria, n is the number of processes of the system.
The derivation of the closeness matrix starting from a
given metric can be performed by following two
different approaches according to the type of
considered metric. Metrics can express properties both
intrinsic the module (e.g. the Local(m) metric) and
related with its connection to the system (e.g. the
Exported(m) metric) or concern the interaction between
pairs of modules (e.g. the Contemporaneous Presence
(ml, m2)).
In the first case a vector M(c,G) is built such that each
element M[g] represents the evaluation of metric ¢ for
the process ge G. For each pair of processes {i,}, the
values of matrix V[i,] are given by:

Bl | BEE e
VIij] = —— if M[j] = M[i]

M[/]

M{/]

V[ij] = M if M[i] > Mj].

For the latter case the distance matrix is obtained by
normalizing the entries of M(c.G) so that each of its
elements MI[i,j] represents the evaluation of metric ¢
with respect to the processes 7 and j. As a consequence:

V[i,j]=1 if {ij}=coupleWithMaxCloseness(M(c,G))
V[i.j]= M[:, /]

¢ Mk, m]

if {k,m}=coupleWithMaxCloseness(M(c,G)).

If a criterion is associated with more than a single
metric, the distance matrix is obtained by building a
matrix whose elements are the weighted sum of the
corresponding entries belonging to the matrices
concerning the considered metrics (one per metric), and
finally by normalizing the elements to the highest value
obtained. The entries of the matrix all range from 0 to
1, so that the same range of values can be considered
for the threshold V.

For example, by considering for simplicity only the
cohesion metric, i.e. the metric which evaluates the
degree of interrelation between two modules, it is
possible to define a threshold that. if exceeded, enables
the collapsing of two processes p/ and p2 within a
single module m. This choice, according to the
considered metric, is advantageous if the cohesion of m
is greater than the cohesion of the set constituted by
modules p/ and p2. In other terms, the decision
depends on the following relation:

ClI(m1) +CI(m2) _ Cl(ml)+ CI(m2)+Cl
M(ml)+ M(m2) M(m)

where Cl(mi) represents the number of cohesive
interactions of module mi, M(mi) is the maximum
number of possible cohesive interactions of module mi
and Ch2 expresses the number of cohesive interactions
belonging to mi and m2 when they are collapsed. The
values of C/12 obtained by solving the above relation,
can be considered as the threshold for the cohesion
metric.

It has to be painted out the high flexibility of the

proposed approach that can be extended with minimal

re-design effort to cover new design goals or
characteristics, simply

e by adding a proper method operating onto the
design DB to compute the corresponding metric;

e by defining its relative importance with respect to
the other existing metrics in case of user-driven
design to produce a consistent set of analysis data
evaluating the system quality, as well as if the
automatic system partitioning is enabled to modify
the selection strategy.

S. Example of the partitioning process

Let us consider a small example to show the default

68

partitioning flow, using only static properties due to
space reasons. The system implements a convolver
whose functionality is expressed by the following

equation: y; =£x,‘_; XWj xaj

T
where 1<i<2n-1, wj+] =b xx] xwj and g; is given
by aj=cj+ diwithcj=djifxi 20,¢ci=xi/2 ifxi <0
and di = xi+1 ifxi+1 20, di = (xi+1)/2 if xi+1 < 0.

The corresponding Occam representation, stored
within the TOSCA design database, is composed of
three processes whose Occamll hierarchy and
interactions are depicted in figure 2:
p0 models the environment and produces the values

for x and w;
pl implements the convolver;

p models the parallel composition of p0 and pl.
The communication between p0 and pl is performed
via channels.

The system analysis starts by taking into account for
simplicity only the metric measuring the number of
paths of the overall system (Paths) to define the
cost-function weighted sum (i.e. the coefficient
multiplying the other metrics are zeros) and to accept
solutions producing cost < 35.

p
™\ f
X
po 8 p1
W o,
k ,
=, %

Figure 2: Schematic diagram of the example.

Therefore, the cost function is: cost = k * Paths (with
k=1). In addition we introduced some limitations on the
metrics measuring the number of variables local to each
process (that are related to the size) and to the process
latency. The corresponding constraint for each process
p is thus: (Latency (p) < 12) AND (Local (p) < 20).

A static analysis of the system model considered as
a whole has been carried out, the result of the static
metrics evaluation shows that the system does not
satisfy the above conditions (Paths evaluates 43 that is
greater than 35) so that it needs to be restructured to
fulfill the user’s goal. The first step has been to
consider the system at a finer granularity by
decomposing pl into a set of parallel processes, whose
structure is shown in figure 3.

To identify a better system modularization, a set of
metrics has to be evaluated. Here, only five static
metrics have been computed. The data obtained after
processing the system description are reported in fig.4.
Based on these results, for each metric the
corresponding closeness matrix between processes can
be derived. For instance, the matrix corresponding to

the local(p) metric is shown in fig.5.

(p

=

Figure 3: The system afier the first decomposition.
Property/proc. lasiep2 i p3. | pd
Local 3 4 10 17

Global 3 e 10 17

Depth 3 3 3 4

Paths 4) 18 16

Cohesive Inter. 1 I 5 2

Figure 4: Resulls of the analysis of five properties of
the system description.

Similarly, according to the data contained in
figure 4, it is possible to compute the values for each
one of the considered metrics. All these values are then
gathered within a matrix which is evaluated to compute
the closeness among the processes composing the
system graph.

By considering as global closeness criterion only the
local metric, processes pl and p2 in figure 3 are the
closest and their collapsing does not violate the
constraints.

LOCAL pl p2 | p3 pd
pl - 1 4 24
p2 : T e sl 34
p3 - - - 79
p4 7 E 7 g

Figure 5: An example of computation of the local
metric. The values, representing the number of
declarations local to a module, have been normalized.

Since pl and p2 show a low level of cohesive
interaction. they can be composed to produce a unique
software-bound process. To allow their execution on a
single microprocessor, a sequential composition of the
original pair of processes has to be applied. The
transformation process proceeds in a similar way and
processes p3 and p4 are collapsed. According to a
profiling obtained via a dynamic analysis. the
corresponding architectural unit is hardware bound
since it accounts to 73% of the overall computational
load. This modularization corresponds to an acceptable
and final redesign of the system, since a new

69

computation of the metrics produces a set of values
satisfying user’s goal and constraints:
cost =28 < 35 latency =9 < 12 AND local =17 < 20
The partitioning and binding process is thus
completed and the system is ready to be processed by
the TOSCA co-synthesis tools to produce VIS and
VHDL code for the p12 and p34 architectural units,
respectively. Eventually, the channel used for
communication among processes belonging to the same
partition are replaced with global-scope shared
variables and a serialization of the operations of all the
sw-bound processes is automatically performed.

(v

gy
p0
X
- pi2
1
1
L . A, | p34
X >
st
HER s

% J

Figure 6: The final system modularization after
collapsing of p3 and p4.

References

1. Hardware/Software Co-Design. NATO Advanced Study
Institute, G. De Micheli. M.G. Sami eds.. to appear by
Kluwer. 1996.

2

Benner T.. Ernst R.. Henkel J.. “Hardware-Software
Cosynthesis for Microcontrollers™. IEEE Design&Test.
Vol.10. No.4. December 1993.

3. Barros E.. Rosenstiel W.. Xiong X.. “Hardware/Software
Partitioning with UNITY". Proc. 2nd Workshop on
HW/SW Co-Design. Cambridge. MA. 1993.

4. Ismail T.. OBrien K.. Jerraya A.. “lInteractive
System-level Partitioning with PARTIF", Proc.
EDAC'94. Paris. France, February. 1994.

s

Antonjazzi S.. Balboni A.. Fornaciari W., Sciuto D..
“The Role of VHDL within the TOSCA Co-design
Framework™. Proc. of Euro-VHDL'94, September 1994,

6. Antoniazzi S.. Balboni A.. Fornaciari W.. Sciuto D..
“HW/SW Co-design for Embedded Telecom Systems™,
Proc. ICCD'94, pp.278-291. 1994.

7. lifeng H.. Page I.. Bowen J. “Towards a Provably
Correct Hardware Implementation of Occam™. Technical
Report. Oxford University Computing Laboratory. 1994.

8. Hoare C. A. R.. "Communicating Sequential Processes”,
Communications of the ACM. Vol. 18, No. 8. 66-77,
August 1978.

	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index

