The Interplay of Run-Time Estimation and Granularity in HW/SW
Partitioning

Jorg Henkel, Rolf Ernst

Institut fiir Datenverarbeitungsanlagen
Technische Universitidt Braunschweig
Hans—Sommer—Str. 66, D-38106 Braunschweig, Germany
{henkel,ernst} @ida.ing.tu-bs.de

Abstract

An important presupposition for HW/SW partitioning are so-
phisticated estimation algorithms at a high level of abstrac-
tion that obtain high quality results. Therefore the granu-
larities of estimation and partitioning have to be adapted
adequately. In this paper we discuss the effects that arise
when the granularities of partitioning and estimation are
not adapted in a necessary way. Furthermore we present
our solution that allows to choose different levels of gran-
ularities adapted to the estimation and partitioning phase.
The experiments show that this refinement in estimation at a
high level of abstraction leads to an inprovement (in terms of
run-time and chip area) of the whole mixed HW/SW system.

1 Introduction

In recent years HW/SW cosynthesis has become a very in-
teresting field of investigation. This is due to the promising
advantages of this design method.

In HW/SW cosynthesis a system is specified by its behavior
— independent from later implementation in software or in
hardware — instead of its structure. So the designer can
focus on the really challenging problems as, for example,
the correct specification of a system. In the case of HW/SW
cosynthesis the term system is often a synonym for real-time
system because of the large economical potential (areas of
application are telecommunications, car electronics, office
automation, consumer electronics,. ..). The correctness of
a reactive system is not only determined by specifying an
appropriate algorithm for a given problem (e. g. which com-
pression algorithm to select given a limited bandwidth and
a constrained quality) but also by the timing behavior: if a
message of a multiple-process reactive system is not trans-
mitted within a given time slot, other processes may have
to wait and cannot serve the actuators in the right time. In
this case the functionality would not be maintained. The
designer’s task is to prevent such cases by analyzing the de-
mands and specifying accordingly. This is the more urgent
the complexer the system becomes. Otherwise the time-
to-market factor would increase to such an extend that the
resulting system will become too expensive. A typical time-
to-market is about 18 months for complex HW/SW systems
[15].

Presupposition for this increasing abstraction level in sys-
tem design is the existence of an almost automatic synthesis

0-8186-7243-9/96 $05.00 © 1996 IEEE

52

process for both hardware and software parts. This is called
HW/SW cosynthesis.

The well known design steps of a generic cosynthesis flow
are:
1. High-level specification (C, C++,...)
II. Estimation (HW run-time, SW run-time, chip
Ares. 45)
III. HW/SW partitioning
IV. Synthesis (HW, SW, interface)
Steps II. and I1I. are strongly correlated, so only if estimation
values are close enough to the real values (obtained when
really implemented) partitioning makes sense.
The approaches used in the estimation phase — which is
that relevant that it determines the quality (in terms of mon-
etary costs) and the feasibility (given the structure of a target
architecture) of a mixed HW/SW solution — cover a wide
diversity of algorithms: it spans from simple profiling to so-
phisticated approaches that also take into account the micro-
architectural features (pipeline interlocks, register sets,...)
of a given processor core that is provided to execute, for
example, the SW part. The same holds for the hardware
part: the question is, how well the HW runtime estimation
1s suited to that algorithm used when the HW part is really
synthesized (see also [10]) and what will happen if there
is a great deviation between estimation and real data. The
same questions could similarly be applied to the communi-
cation mechanism between the hardware and software part
and the implied costs of an application specific hardware
(chip area).
In any case, the answer is that it is nearly impossible or
at least economically of no interest to perform an auto-
matic HW/SW partitioning unless the underlying analyz-
ing/estimation algorithms are of an appropriate accuracy.

There are a lot of approaches to HW/SW cosynthesis that
differ mainly in two points: the partitioning algorithm it-
self (automatic by means of a combinatorial optimization
algorithm or manually driven) and the accuracy of the an-
alyzing/estimation algorithms. Automatic partitioning is
proposed by [7, 8, 13, 14, 19]. They differ in the way the par-
titioning process is performed: hardware-oriented/software-
oriented approaches. Others [2, 3, 4, 5, 6, 12, 17, 18, 20]
focus on input specification, interface synthesis, rapid pro-
totyping ,. . ..

An inyestigation of how the quality/accuracy of an analyz-
ing/estimation algorithm influences the quality (i. e. costs)
of a HW/SW system that have automatically partitioned has
not been performed so far. This is mainly due to the fact that
those algorithms were imported from the high-level synthe-
sis domain and have not been adapted in an adequate way
to the cosynthesis problem. So it becomes necessary to
perform a re-partitioning or limit the partitioning process
to a coarse-grain granularity' even though a limitation to a
coarse-grain granularity only, might lead — at least poten-
tially — to a sub-optimum result.

This paper focusses on one part of this problem, namely the
estimation of the hardware run-time. The dominating ques-
tion to consider is: in which way is the additional amount
of run-time and/or application specific hardware (i. e. chip
area that implies larger costs) in an automatic HW/SW par-
titioning procedure due to imprecise/inappropriate estima-
tion. Introduced are some (of the large amount) of possible
effects. Presented is a solution that covers (partly) the dis-
cussed effects.

The paper is structured as follows: The next section gives
a definition of the estimation problem when applied to the
domain of HW/SW partitioning. In section 3 we discuss in
detail which effects should be avoided in order to prevent
a cost-intensive mixed HW/SW system. Also, a solution
is presented. Experiments in section 4 underline the rele-
vancy of applying a sophisticated estimation technique. The
quality metric is given by the hardware area and hardware
run-time. Finally section 5 gives a conclusion.

2 Problem definition

2.1 Meeting real-time constraints

An essential goal in HW/SW cosynthesis is the high-level
i.e. behavioral specification of the system that is to be im-
plemented. The designer should not care about the question
whether to implement dedicated parts in hardware or in soft-
ware.

Hardware/Software partitioning is the most challenging step
in HW/SW cosynthesis since the best hardware/software
tradeoff promises the cheapest design while meeting the
specified constraints.

Independent of the fact whether HW/SW partitioning is per-
formed automatically or manually, the quality of the esti-
mation techniques that control the partitioning process will
implicitly determine the costs of a mixed HW/SW system
in terms of the overall chip area. So estimating plays a key
role in this context.

Let Tgfv 1EW sjisies be a time-constraint assigned to a code

segment ¢; in the behavioral description of the system. The
goal is to find an implementation for ¢; such that

I cs
Tawsw sys,ei < TEW/SW sys,eir

where TH W/SW sys,c: denotes the execution time of ¢; af-

ter implementation (i.e. assigned to the software part or to
the application specific hardware part of the mixed HW/SW
system). This is one of the presuppositions to guarantee the
correct functionality of a real-time system.

In this context the task of estimating is to find a

1%We will show later that the choice of coarse-grain granularity hides the
inherent problems since the relative deviations are smaller.

53

a) b)

Figure 1: Defining a granularity from the behavioral de-
scription a) for the purpose of HW/SW partitioning b)

TI?W{ SW sys.c; that represents a lower bound for the ex-
ecution time of each ¢; and that is as close as possible to
the according constraint Tf;W’,SW sys,c; I order to obtain
a cheap design.

2.2 Estimating and granularity

Estimating in HW/SW cosynthesis does not only mean es-
timating from behavioral specification but also estimating
at a specific level of granularity. Thereby granularity is
defined as follows:

Definition 1 Given the behavioral description of an
algorithm the granularity determines how to cut this
algorithm into a set B of n pieces b;

B .= {bﬂrb]: v Jbﬂ—i}
for the purpose of distributing these pieces among the
hardware part and the software part of a mixed hard-
ware/software system (see fig. 1.)

Examples for obvious granularities, directly derived from
the structure of the behavioral descriptions, are: operator-
level, statement-level, base-block-level, control-block-level’
and task/process-level.

Note that the choice of the granularity does not necessarily
mean that the largest code-segment to be implemented either
in hardware or in software is limited to the extension of the
according granularity®. But it does mean that the smallest
code-segment can not be smaller than the smallest element
b; € B. So the granularity determines a lower bound of a
code-segment.

Once the granularity has been determined, for each piece
b; the execution time Tgw,b‘_ has to be estimated in order

to guide the HW/SW partitioning. Thereby T'fyy,, is the

estimated execution time of piece b; for the assumption that
b; would be implemented in hardware. Principally there are

two different ways how to obtain wa'b‘_ :

2We use the term control-block for a set of adjacent base blocks con-
taining also control statements (IF, FOR,. . .) and clustered by a closeness-
metric.

3In fact in many cases it is advantageous to put several adjacent b;'s to
hardware or software.

Casel

The hardware execution time is estimated taking the whole
code without dividing it into a set of pieces B. So the whole
behavioral description would be assumed to get executed by
the hardware part. Let T4y, ., be the according execution
time. If we intend to design a mixed HW/SW system we
now have to choose a granularity i.e. we have to find a set
B. The HW run-time Ty, for each b; can be derived
from Tfy, sys DY simply dividing the whole description ac-
cording to the granularity and assigning all of the run-time
attributes that are found within each piece to b;.

This method is advantageous for the case that there is al-
ready a run-time estimator available (e.g. a scheduler from
the.domain of High-Level Synthesis). Nevertheless, this
method lacks accuracy: if the granularity is fine-grain (a
large n i.e. a lot of b;’s in B) with only a few operators
within a b;, we should be aware of the fact that a schedule
strongly depends on what has been scheduled some control
steps before. Say, the schedule of b; depends on data/control
dependencies outside of b;*. Hence, the schedule of b; is
only 100% correct if all adjacent b;’s are also implemented
on the hardware side (see above).

Case2
This is the reverse case. Ty ;. is obtained by an estimation

technique that is limited to the boundaries of a b; (e.g. a
simple List-Scheduler). It works great if we do not have
any code segment to put to hardware that is larger than a
single code segment b;. But remember that the choice of a
granularity is only a basis for partitioning (see beginning of
this subsection). So, a larger code segment (consisting of
more single-estimated b;’s) has also an inherent inaccuracy
coming from the inaccuracy implied by each b;. This is
because none of the b;’s does take advantage of synergetic
effects.

Definition 2 A synergetic effect arises if in the case of
an interplay of two or more b;’s an effect is obtained that
is different from the effect obtained by the sum of effects
of the single b;’s.

In the context of scheduling we could observe that synergetic
effects will lead to a better result. So, without taking these
effects into account we will get sub-optimum results.

We can summarize the two cases by formulating an inequal-

ity expressing the all-over relative error (Err<®*{12}) a5
suming that some of the b; € B (denoted as H with H C B)
are intended to get implemented in hardware:

Tiiih, — Tiw
casel o 304 o
Err§f =Yy 0%)
bieH HW,b;
S (1)
Opt
TcaseZ Sl
case2 __ HW,b; HW,bi
ETTH "o Z (TOPt)
b;eH HW,b;

Consequently casel is a lower bound and case2 is an upper
bound according to the optimum solution.
Obviously the estimation error can be reduced if we simply

“4Detailed effects will be the topic of the next section.

54

try to reduce the number n of blocks b;. This is equivalent
to choosing a coarse-grain granularity. Task/process-level
granularity belongs to this group. During the partitioning the
question will arise whether to move the whole task/process
to hardware or to software — independent from the exten-
sion of the task (i.e. lines of code). But note that the area of
application are small embedded systems which — in most
cases — are very cost sensitive: even a few more gate equiv-
alents for the part of the application specific hardware lead
to an increase in price that makes this product uninteresting
in the market of e.g. consumer products (audio, video,. ..)
where competition becomes harder and harder. So, if the
designer describes an embedded system only by aspects like
modularity, portability etc. — i.e. programming style® —
this might not be a good choice as a basis for the partition-
ing process. Therefore it is very probable that a coarse-grain
granularity hides inherent optimization potential.

Or, on the other side, a fine-grain granularity will keep all
the potential open.

In the next section we will start to discuss effects implying
the inaccuracies in more detail and present our approach.

3 Effects in estimating and how to solve

3.1 Effects

As described in the last section HW/SW partitioning swaps
code-segments b; of a previous chosen granularity between
hardware and software in order to find the best hard-
ware/software tradeoff. This procedure is driven by esti-
mation of relevant aspects. As for this paper we investigate
the HW run-time estimation although the principles can also
be applied to SW run-time estimation for example.
Thereby an error is invoked that is mainly due to effects at
the borders of a code-segment at which control is transmit-
ted from software to hardware, from hardware to software or
— in case of a parallel execution of hardware and software
parts — a fork or a join is performed.

Let G = {V, E} be a directed acyclic graph (DAG) where
each node v; € V represents a basic block that contains at
least one single operation and where a directed edge e; ; € E
specifies the direction of the control flow, meaning that there
is an edge from v; to v;. A node v; € pred(v;) is a node in
G that s called a predecessor of v; since there is an edge e; ;.
Accordingly a node v € succ(v;) is called a successor of
v;. A granularity determines code-segments b; € B, where

bi={v; €G: /\ v vy € pred(v;)Vug € succ(vj)}
v; Eb; v €Dy

So, this recursive definition says that a b; is a connected part
of the origin code.

Different number of resources

Fig.2 shows the example of a graph G with b; consisting of 3
elementary nodes v. b; is now assumed to get implemented
in hardware, the rest of G should remain in software.

The number of hardware resources (ALUs, multipliers,
shifters,. . .) available on the software side HW Res>"W and
on the hardware side HW Res™™W will be different. In order

31n fact we state that the designer has in most cases no chance to decide
whether a code-segment is very time-consuming and/or cost intensive when
implemented in hardware since the chain from behavioral description to
real implementation is long with a lot of optimization potential in it.

vi: tl=m*x+n;

vi
(@
.\Psw-bﬂw
a " @ 1[0 1[0
v7 10 2|©
not adapted 3 @ @
v8 4 |©®
adapted

Figure 2: Estimating the run-time of the statements adjacent
to a control transfer point

to obtain a speedup by using an application specific hard-
ware, it is HW Res®W > HW ResS". That implies that
scheduling across point Psyw —, gw where control is trans-
mitted from SW to HW (or vice versa) causes an inaccuracy
unless Psw_, gw is identical to the point where a new b;
starts.
Let us assume that there is HW ResS" = 1° with no par-
allel invoking of the resources and HW Res™W = 2 with
possible parallel execution of the resources in the exam-
ple. For the adjacent area (statement before and behind) of
Psw_, gw we obtain a scheduling result of 2 control steps
for the case that scheduling has no information about the
existence of Psw_, gw. In the other case a more precise
estimation obtains 4 control steps. The difference of 2 con-
trol steps has to be put in relation to the schedule of the
following code-segment that will be put to hardware (see
inequality 1). The same is for the point Pgw_,sw where
control is transmitted back from HW to SW.
The effect is the larger the smaller a b; is and run-time es-
(tiimation does not use the same granularity as partitioning
oes.
Data transfer
At a control transfer point there is also transmitted data
for the general case that hardware side and software side
are data dependent. So, HW run-time consists not only
of the scheduling result of the pure code-segment that is
intended to be put to hardware, but it also consists of the
data transfer time 7*"2"$/¢", The choice of the granularity
i.e. the extension of the b; € B should be adapted to the
amount of T*"ens/€T Otherwise a performance increase by
using an application specific hardware with more resources
than the software has, will be decreased drastically.
The extend of influence depends on the specific application
(data- or control-dominated) and therefore it is indispensable
to dynamically determine the granularity at which estimation

Smeaning 1 ALU, 1 multiplier, . ..

55

portion of I/O, operations [%]

-

0.01

granularity

Figure 3: Data transfer overhead for different granularities

should take place. Dynamically means that it is adapted to
the application and not fixed to structural peculiarity of the
behavioral description like the composition of a program
in its tasks/processes as one extreme and its statements as
the other extreme. Fig. 3 shows the data transfer overhead
of different granularities relative to the hardware execution
time. For different granularities (the horizontal axis points
in direction of decreasing granularities)

»

bieB

Ttr ansfer
bi

erec
HW.b;

is shown (vertical axis), where 7%, is the pure hardware

execution time. This application’ comes from the domain of
digital signal processing and therefore is strongly data dom-
inated. Concerning a selection of an appropriate granularity
it can be seen that an index of 7% really makes sense since
the data transfer overhead is beyond 50%. The HW/SW par-
titioning will prefer moving code-segments to hardware that
are expected to obtain a large speedup’. So the granularity
for estimation should be chosen accordingly (see above).
The following subsection describes the method we use to
find a granularity adapted to estimation.

3.2 Clustering for estimation
In order to prevent low quality results for run-time estimation
due to the fact that the granularity it takes place on is either
too small or too large (section 2.2) we introduce in short
terms our approach. Note that this clustering does not fix the
extension of code-segments to get implemented in hardware
but it does find a granularity that is suited for run-time
estimation and that is acting as a basis for the following
HW/SW partitioning process. In our cosynthesis design
flow clustering is located as follows:

I. High-level specification

II. Clustering for estimation (HW run-time, SW

run-time, chip area,. . .)

71t is a chromakey algorithm for HDTV studio equipment.

8The granularity index is introduced in the next section.

?This is the performance increase of a mixed HW/SW system compared
to a simple SW system. It is illustrated in more detail in the section 4.

nesting level

a) b) c)

"Figure 4: Small example program a) converted to a graph
and according nesting level c)

II. Estimation (HW run-time,. . .)
IV. HW/SW partitioning
N

For clustering we define a graph GG with the following char-
acteristics: G = {V, B EV} is a directed acyclic graph
where each node either represents a basic block'° or a control
statement like if, for, There are two kinds of directed
edges, both pointing in direction of the control flow. The
edges e € EH do not change the hierarchy level whereas
the edges eV € EV do. This implies the definition of a hi-
erarchy level: the hierarchy level is an attribute of a node v;
that is incremented by one compared to pred(v;) if pred(v;)
represents a control node and v; is nested in the hierarchy
of pred(v;). As an example assume there is an if-statement
that encloses a base block executed when the condition is
true. Then this base block is called to be nested in the if-
statement and consequently has hierarchy incremented by
1. A statement that follows the whole if-construct would
have the same hierarchy level as the if-statement.
The edges EH are drawn from left to right and the edges
EV are drawn from top to bottom. Fig.4 gives an example
of a code and its representation as graph GG. All nodes at a
specific line own the same hierachy level. Counting starts
with O that is reserved for the head of the function/task.
Furthermore the graph has the characteristic that the feed
back edges are implicit: if we arrive at a leaf node we have
to skip to node succ(v;) where v; is the node we previously
descended to the hierarchy we are currently in.
Clustering always starts at the leaf nodes of the graph. The
cost function for controlling contains mainly two compo-
nents:

Number n of pieces b;

The number of pieces determines the computation effort for
both estimating and following HW/SW partitioning. As for
the run-time estimation it means that we have to execute
n schedules'!. But the complexity for a based path-based
scheduling depends on the number of possible paths within
each b;. The number of paths grows exponentially with the
number of operations within a b; in the worst case.

Since the complexity of the combinatorial optimization
problem for partitioning grows exponentially with n. (O(2™))

10The term basic block is used in the same manner as in [1].
15 is the number of all b;’s in B.

56

the requirements concerning n seem to be contradictory. We
have overcome this problem by using a path-based estima-
tion technique [11].

So the user can determine the number 7 of pieces b; as one
constraint for clustering.

The "quality" of pieces b;
For each possible piece b; a quality metric is defined as
follows:
TSEW,bg
i T;:'a.nsfer 3. Tfisc

quah'ty(b«') = pre—eiic
THW,&;

The term Tsz,b,- expresses the run-time estimation for the
case b; would be executed at the software part and T§55F,

expresses the run-time estimation for the assumption of ex-
ecuting b;. Since we only want to find a possible granularity
where a sophisticated run-time estimation can take place

afterwards, Ty, * is determined by a simple list sched-

ule. The transfer time for data from software to hardware
and vice versa is obtained by a data flow analysis that de-
termines the I N _Set(b;) and OUT _Set(b;) similar to the
method described_ in [1]. A possible pvcrlap of b; can get
expressed by 7;7**¢ (then there is 7,7*¢ < 0).

So the quality metric gives a hint whether b; could be a good
candidate for the HW/SW partitioning with the difference
that in HW/SW partitioning itself a more sophisticated cost
function is used ([9, 7]).

The task is now to find the n best clusters within GG. Since
a detailed description of the used algorithm would fill a
separate paper, and we mainly concentrate on the interplay of
run-time estimation and granularity in this paper, a shortened
textual description is given here:
Phase 1
I. Get all leaf nodes in G.
II. Define each leaf node as a primary cluster.

III. Extend each of these clusters by merging a new
v;. This v; is obtained by walking against the
direction of edges e/.

If there is no more edge ef" found then climb up

one hierarchy by walking against the direction

of an edge e".

. If this proceeding causes that two or more clus-
ters will touch then merge them to a new cluster.

. For each merge operation note the number of all
clusters n obtained so far. If the current num-
ber of clusters is greater than n then proceed by
repeating steps III-V,

Phase 2

Now determine for all n clusters the quality.

By a random function two clusters a picked out.
One of the clusters is enlarged by applying the
steps III-V while the other one is reduced apply-
ing the according reverse operations. Thereby
the total number has to be kept constant (con-
traints).

. For each cluster gained in the previous step the
quality is calculated. The acceptance of a clus-
ter depends on more aspects than the pure qual-

VIIL
VIIL.

Figure 5: Two different scenarios of clustering during phase
1

ity: an important aspect for run-time estimation
phase is that all of the clusters should be of al-
most the same extension and should not be too
small in order to prevent the inaccuracy for the
later estimation (see ineq.1).

X. The algorithm ends either by a user-specified
time or by a threshold that defines the necessary
quality improvement as a average of the last x
merge operations.

Fig.5 shows two scenarios during clustering in the first
phase.

4 Experiments and Results

Aim of the experiments is to show that a refinement in run-
time estimation and an adaptation of granularity for estima-
tion and partitioning leads to better results. In this context
better could possibly mean a lot of things like simply the im-
provement of a run-time estimation technique compared to
the real schedule. We will start to discuss this point. Much
more interesting is the question in which way the quality
of the whole mixed HW/SW systems will be improved by
only refining one (namely the HW run-time estimation) es-
timation technique. Of course we cannot expect that the
improvements to the whole system will be as large as the
comparison of two single algorithms would imply. The main
question is whether it is worth to refine an estimation at a
high abstraction level. Does it have any influence on the
implementation of the whole system ?

We first start to compare the scheduling results of using our
path-based estimation technique [11], that operates on the
graph described in the last section, and a simple list sched-
uler that has been used before in our system. Table 1 shows
the results in terms of clock cycles that could be obtained
after scheduling and profiling. The last column gives the
fraction of time the according test program uses for execu-
tion compared to the list schedule. It can be seen that for
all test programs (festp) the path based estimation technique
(PBET) can obtain better results in terms of clock cycles al-
though we picked out the worst case results the path-based
estimation method delivered. This is due to the effect that
the granularity for applying the list schedule has been too
small i.e. limited to the scope of basic blocks only. This
reflects the effect discussed in section 2.2 case2 and which
is expressed by the inequality 1.

In [11] it is declared in detail in which way the computation
time can be kept small when the quality is improved using
the path-based estimation technique.

A quality metric describing the whole HW/SW system is

57

testp 1ok List-Schedule PBET frac rtime
[cycs] Leyes] [%]
contour 127 360,524 261,441 TaD
distance 695 256,680 184,255 71.8
fuzzy 100 80,353 72,321 90.0
median 302 26,680,323 | 21,980,162 82.4
table 664 17,623,269 | 10,108,341 | 57.4

Table 1: Comparison of schedules obtained by simple List-
Schedule and path-based estimation technique (PBET) using
an appropriate granularity

the speedup:

TSWsys

S ==
PUHW/SW sys THW{SWsys
In this equation T'sw s, is execution time in clock cy-
cles for the case the whole system is implemented in
software i.e. running on a standard processor core. The
term Thw/swsys denotes the execution time in cycles
after partitioning in hardware and software parts. So
spupw/swsys = 2 for example means that a mixed
HW/SW implementation is twice as fast as a pure software
solution of the same behavior. The time 15y 5w sys cON-
tains all relevant times like the part the software needs for
execution of the HW/SW system, the hardware execution
time, HW/SW transfer time for data, the time for trans-
mitting control from software to hardware and vice versa
and synchronization time. For the different test-programs
in table2 we changed two parameters: the first one is the
constraint-speedup (constr) of the system and the the sec-
ond is the variation of the run-time estimation algorithm (LS
for the small granularity of base blocks only and PBET for
estimating path-based at various levels of granularity) in or-
der to measure its influence according to the performance of
the mixed HW/SW system. The HW/SW partitioning has
been performed automatically as described in [7, 9]. The
column spu shows the estimated speedup as described in
equation above. If we compare according lines, for exam-
ple lines 2 and 6 of test program #rs (both have the same
constraint speedups) we can note that in all cases estimation
using PBET obtains better results (in most cases about 5 %)
than LS meaning that PBET is superior due to the effects
described in section 3.2.
Next part of the experiments'? discusses the question
whether the increased quality can also influence the total
monetary costs of the mixed HW/SW system. A quality met-
ric is the chip area in terms of gate equivalents. Therefore the
test programs have been automatically partitioned as above
and in the following steps they have been synthesized us-
ing the High-Level synthesis system BSS and SYNOPSYS
for implementing the application specific hardware on Xil-
inx FPGA’s. Afterwards we transformed the specific CLB-
usage into gate equivalents (geg). The results are shown in
column area of table 2. For two of the benchmarks (signed
by asterisks) we could detect that the number of gate equiv-
alents is different at the same constraints (constr) due to the
two different run-time estimation techniques. In all other

121n all experiments we switched off the weighting function for the
Simulated Annealing described in [7] in order to obtain more design points.

B o =

area PB
testp constr spu [geq] ET LS
2 70 | 558 | 89865 | x
bpic |23 40 | 393 | 76970 | x
4 70 | 2.14 | 78930888
35 30 | 333 | a5l X
*6 40 | 438 | 9101.0 X
7 70 | 740 = X
1 10.0 [11.79 | 16483.0 | x
2 70 | 652 | 150575 | x
key 3 3.0 1.01 1088.5 | x
4 10.0 | 11.20 | 16483.0 X
5 70 [633 | 15057.5 X
6 30 [1.01 10885 X
1 30 [101 | 78830 | x
smth =7 100 | 1096 | 110895 | x
4 12.0 | 11.00 | 127065 | x
5 30 | 1.01 | 7883.0 X
*7 10.0 | 10,70 | 139025 X
8 12.0 | 1052 | 127065 X
s 1 50 1.04 | 34495 | x
2 10,0 | 1165 | 128375 | x
4 50 | 6.16 | 150575 X
6 10.0 | 11.20 | 16483.0 X

Table 2: Schedules and according chip area obtained for
different design points using a List-Schedule and the path-
based estimation technique (PBET)

cases the total hardware area is the same.

The complexity of a part of the test programs has been so
large that they consumed a CPU time of > 1000 (more than
90% due to the SYNOPSYS tool). This also confirms the
need of estimation tools at a high level of abstraction that
can execute much faster at acceptable accuracy.

Fig.6 shows the dependency of gate equivalents and
SPUFW/SW sys for all test programs using PBET.

As a general result we can note that the accuracy in HW run-
time estimating from behavioral description does influence
the quality of the mixed HW/SW system in spite of the fact
that a lot of other aspects (estimation of SW run-time, data
transfer time, . . .) are superposed.

5 Conclusion and future work

‘We have shown that estimating HW run-time at a high-level
of abstraction is a challenging problem. By a sophisticated
technique where the granularity of estimation is adapted dy-
namically and adapted to the following HW/SW partitioning
we could demonstrate that the all over quality of the hard-
ware software system can be increased in terms of speedup
and area.

The results seem not to be specific to the problem of HW
run-time estimation only. So we are motivated to refine
other high-level estimation techniques (e.g. area estimation)
also. Our future work will concentrate on this point.

References

[1]1 A.W. Aho, R. Sethi and J.D. Ullmann, COMPILERS Principles, Techniques and
Tools, Bell Telephone Laboratories, 1987,

[2] E.Barros, W. Rosenstiel, X. Xiong, A Method for Partitioning UNITY [
in Hardware and Software, Proc. of Euro—DAC’94, pp. 220-225, 1994.

[3] K. Buchenrieder and C. Veith, CODES: A Practical Concurrent Design En-
vironment, Handout from Int'l Workshop on Hardware-Sofiware Co-Design,
Estes Park, Colorado, Oct. 1992.

58

16000

14000 +

10000

8000 -

Area [geq]

6000 +

2000

4 6 8 10 12 14
Speedup of mixed HW/SW system

Figure 6: Area-Speedup-Dependency using the PBET

[4] P. H. Chou, R. B. Ortega, G. B. Borriello, The Chinook Hardware/Software
Co—Synthesis System, IEEE/ACM Proc. of 8th. International Symposium on
System Synthesis, pp. 22-27, 1995,

[5] J.G.D'Ambrosio, X. Hu, Configuration-Level Hardware/Software Partitioning
for Real-Time Embedded Systems, IEEE/ACM Proc. of 3rd. Int. Waorkshop on
Hardware/Software Codesign, pp. 3441, 1994,

[6] M. Edwards, J. Forrest, A Development Environment for the Cosynthesis of
Embedded Software/Hardware Systems, Proc. of EDAC'94, pp. 469473, 1994.

[7] R. Emst, J. Henkel and Th. Benner, Hardware/Software Co-Synthesis Jor Mi-
crocontrollers, IEEE Design & Test Magazine, Vol. 10, No. 4, Dec. 1993,

[8] R.K. Gupia and G.D. Micheli, System-level Synthesis using Re-programmable
Components, Proc. of EDAC’92, IEEE Comp. Soc. Press, pp. 2-7, 1992,

[9] J. Henkel, Th. Benner, R. Ernst, W. Ye, N. Serafimov and G. Glawe,COSYMA
A Software-Oriented Approach to Hardware/Software Codesign, The Journal
of Computer and Software Engineering, Vol. 2, No. 3, pp. 293-314, 1994,

[10] J. Henkel, R. Ernst, U. Holtmann, Th. Benner, Ad iptation of Partitioning and
High-Level Synthesis in Hardware/Software Co—Synthesis, Proc. of ICCAD’94,
pp.96-100, 1994,

[11] J. Henkel, R. Emnst, A Path-Based Estimation Technique for Estimati g Hard-
ware Runtime in HW/SW-Cosynthesis, IEEE/ACM Proc. of 8th. Int'l Symp. on
System Level Synthesis, pp. 116-121, 1995,

[12] TB. Ismail, M. Abid, A. Jerraya COSMOS: A CoDesign Approach for Com-
municating System, Proc. of 3rd IEEE Int. Workshop on Hardware/Software
Codesign, pp. 17-24, 1994,

[13] A. Jantsch, P. Ellervee, J. Oberg et. al., Hardware/Software Partitioning and
Minimizing Memory Interface Traffic, Proc. of Euro-DAC’94, pp. 220-225,
1994,

[14] A. Kalavade, E. Lee, A Global Critically/Local Phase Driven Algorithm for
the Constraint Hardware/Software Partitioning Problem, Proc. of 3rd IEEE Int.
Workshop on Hardware/Software Codesign, pp. 42-48, 1994,

[15] K. Keutzer, Hardware-Sofiware Co-Design and ESDA, Proc. of 31st Design
Automation Conference, pp. 435-436, 1994

[16] Z. Peng, K. Kuchcinski, An Algorithm for Partitioning of Application Specific
System, Proc. of The European Conference on Design Automation 1993, PP
316-321, 1993,

[17] M. B. Srivastava, R. W. Brodersen, SIERA: A Unfied Framework for Rapid-
Prototyping of System-Level Hardware and Sofiware, IEEE Trans. on CAD,
Vol. 14 No. 6, pp. 676-693, June 1995,

[18] M. Theisinger, P. Stravers, H. Veit, Castle: An Interactive Environment for
Hw-Sw Co-Design, Proc. of 3rd IEEE Int. Workshop on Hardware/Software
Codesign, pp. 203-209, 1994.

[19] E Vahid, D.D. Gajski, J. Gong, A Binary-Constraint Search Algorithm for
Minimizing Hardware during Hardware/Software Partitioning, Proc. of Euro—
DAC'94, pp. 214-219, 1994,

[20] T. Y. Yen, W. Wolf, Multiple-Process Behavioral Synthesis for Mixed
Hardware-Software Systems, ITEEE/ACM Proc. of 8th. International Sympo-
sium on System Synthesis, pp. 4-9, 1995,

	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index

