A Framework for Interactive Analysis of Timing Constraints in
Embedded Systems

Rajesh K. Gupta
Department of Computer Science
University of Illinois at Urbana-Champaign
1304 W. Springfield Avenue
Urbana, Illinois 61801.

Abstract

An important goal of embedded system co-synthesis
is to realize system designs under constraints on tim-
ing performance. We present applicable constraints and
the notion of satisfiability of a given set of constraints.
We describe a two-level system model that is useful for
carrying out constraint analysis in presence of the tim-
ing and ezecution uncertainty inherent in embedded sys-
tems. We conclude by presenting a framework to deter-
mine constraint satisfiability and to interactively debug
constraint violations. Ezamples are presented to show
the utility of our approach.

1 Introduction

Timing relationships in embedded systems originate
from their requirement to maintain timely interactions
with a reactive environment. Examples of such sys-
tems can be found in medical instrumentation, process
control, automated vehicle control, and networking sys-
tems. Several approaches to system design and CAD
treat an embedded system implementation as consist-
ing of interacting hardware and software components.
An overview of these approaches in the general area of
hardware-software co-design is presented in [1]. These
embedded computing systems typically consist of sev-
eral concurrent and interacting modules that often op-
erate with a wide disparity in the rate of execution.
Thus, an analysis of constraints on the timing relation-
ships is crucial to a systematic design methodology. We
consider timing constraints as bounds on operation de-
lays, or on the interval between operation start times,
or as bounds on the execution rate of periodic opera-
tions. Constraints may also be specified relative to a
specific context or control-flow in the system specifi-
cation. Constructs for specifying these constraints are
presented later.

The chief contribution of this paper is a two-level
system model and a framework for analysis of timing

0-8186-7243-9/96 $05.00 © 1996 IEEE

constraints. This analysis is useful to the embedded
system designer in identifying performance bottlenecks
in system design.

This paper is organized as follows. In Section 2 we
introduce our system model. We provide an overview of
the tasks in performance analysis for embedded system
in Section 3 followed by a summary of the tests to ensure
constraint satisfiability in Section 4. The description of
individual algorithms is beyond the scope of this pa-
per and appropriate references have been provided. We
present a framework for specifying and checking con-
straint satisfiability in Section 5. Section 6 summarizes
results and contributions.

2 A Two-Level System Model

A co-synthesis approach to embedded computing sys-
tem (ECS) is based upon compilation and synthesis
techniques for digital hardware. Therefore, it is required
that the input language used for system specification
has a synthesis path to hardware realization. We use a
C-based Hardware Description Language(HDL), called
HardwareC [2] though other HDLs, such as VHDL or
Verilog, can be used as well.

The basic entity for specifying system functionality
is a process. A process executes concurrently with other
processes in the specification. A process restarts itself
on completion of the last operation in the process body.

The HDL description is compiled into a set of graph
models. A graph model provides an abstraction between
objects modeled as vertices and a relation between the
objects, modeled as edges or hyper-edges. When object
vertices represent operations or other executable enti-
ties, a typical execution semantics associated with the
graph model is to enable a vertex for execution once its
predecessor has completed execution. In case of multi-
ple predecessors, a choice needs to be made in enabling
the vertex for execution once all or any of its prede-
cessors have completed execution. Graph models that

choose one of the two interpretations are referred to as
untlogic graphs [3]. In some graph models, both se-
mantics are allowed. Such graphs are called bilogic [4].
Our system model consists of unilogic as well as bilogic
graphs at the process and operation levels of abstraction
as described below.

1. Process-level consists of a unilogic process graph
that models processes and their synchronization inter-
actions. An embedded system is modeled as a process
graph, Gp(Vp, Ep). A vertex p; € Vp represents a pro-
cess with an independent thread of control. We assume
that all processes are concurrently active. The process
interaction is by means of enable signals that enable the
execution of other processes. An enable signal from pro-
cess p; to process p; is represented by a directed edge
(pi,p;) € Ep. Each edge (p;, p;) has a delay dp(p;i,p;)
associated with it which represents the delay in invoca-
tion of p; after start of p;. A new instance of process,
pi, starts executing after all its predecessor processes
have issued enable signals for p;. This execution seman-
tics allows for multiple instances of a process to execute
simultaneously.

Given a set of processes, modeled as nodes in a pro-
cess graph, two types of inter-process relations are mod-
eled:

e Sequencing is indicated by an edge between two
processes

e Concurrency is indicated by the forking of multiple
edges from a process.

Use of only two relations between processes makes it
possible to represent a process-level model algebraically,
upon which the rate analysis is based [5]. However, at
the process-level, conditional invocation of processes is
not allowed. This limitation is not overly restrictive,
since a conditional selection between two process graphs
can be easily modeled at the operation-level that is de-
scribed next.

2. Operation-level consists of a bilogic flow graph
that models operations and their dependencies. A flow
graph captures both data and control dependencies in a
hierarchical directed acyclic polar graph. Each process,
pi, in the process graph is modeled as an operation-level
flow graph, Gi(V;, E, x). The vertex set V;(G) repre-
sents language-level operations and special link vertices
that are used to encapsulate hierarchy. A link vertex
induces (single or multiple) calls to another flow graph
which may represent a shared resource or body of a loop
operation. The edge set E;(G) represents dependencies
between operation vertices.

Function y associates a Boolean (enabling) expres-
sion with every edge. In the case of edges incident from
a condition vertex or incident to a join vertex, the en-
abling expression refers to the condition under which the

rﬁ

Architecture Selection
ﬁl‘&lﬂ‘,mm"m

connectivity
network interface(s)

System Performance Evaluation (Macro)

mﬂ & bus wilizations
distributions
stochastic & queueing analysis
System Performancd Evaluation (Micro)

Runtime Evaluation Process-level Operation-level
RT Schedulability Analysis Rate analysis Rate analysis Delay analysis

m\:’;‘ﬂm’ pipelined implementations non-pipelined I

deadlings process rynchronizati “open— ,'Ml l ‘

unary binary k-ary

45

i interval group & path
m consirainis consirainis

Figure 1: Performance analysis for embedded systems.

successor node for the edge is enabled. These expres-
sions determine the flow of control through the graph
model which includes both concurrency as well as con-
ditional selection.

Given a set of operations, modeled as vertices in a
flow graph, three types of inter-operation relations are
modeled:

e Sequencing is indicated by an edge between two
operations

e Concurrency is indicated by conjoined forking of
multiple edges from an operation

o Conditional choice is indicated by a disjoined fork-
ing of multiple edges from an operation.

Finally, we note that the loop link and wait opera-
tions introduce uncertainty over the precise delay and
order in which various operations are invoked. Due to
this uncertainty, a system model containing these opera-
tions is called a non-deterministic model and operations
with variable delay are termed as non-deterministic de-
lay, or ND, operations. Apart from the ND operations,
we assume that we are given estimates of the execution
time of the operations in the flow graph for all processes.
These estimates may be crude because execution times
may be value dependent and may also be execution-
context sensitive.

3 ECS Performance Evaluation

Figure 1 shows an overview of the performance anal-
ysis tasks for embedded systems. These tasks are
strongly linked to the level of abstraction in the de-
sign process. For a given embedded application, the

first task is selection of a suitable architecture consist-
ing of system components such as processor and mem-
ory subsystems and their interconnectivity. This task is
typically performed based on legacy systems and archi-
tect’s experience. For a given system architecture per-
formance estimation at the macro level concerns issues
such as processor utilization, bus bandwidth allocation,
use of application profiling information for architecture
tuning and queueing analysis [6]. Micro-level system
performance evaluation consists of analysis at the pro-
cess and operation level and evaluation of the runtime
system [7, 8, 9, 10, 11, 12]. We focus on process-level
and operation-level performance analysis in this paper.

¢ OPERATION-LEVEL ANALYSIS is carried out
on individual process-level models. As such only con-
straints that concern within one process are considered.
In addition, inter-process synchronization is not consid-
ered at this level of analysis. Operation-level analysis
consists of delay and rate analyses.

o Delay Analysis refers to analysis of timing con-
straints on execution delay of individual or groups of op-
erations. In particular, we consider binary constraints
that define (upper and lower) bounds on time-intervals
of operation pairs. In general, there are thirteen possi-
ble interval relationships as indicated in Table 1. Here
symbols ¢, and d; represent execution start time and
execution delay of operation a. Our input language
provides for specification of all possible timing inter-
val relationships which are subsequently captured into
a group of minimum and maximum (binary) delay con-
straints. A minimum (binary) delay constraint, l;; > 0
from operation vertex v; to v; is defined as:

tv;(kJ 2 tvs(k) b~ It'.f (1)

Similarly, a maximum delay constraint, u;; > 0 is de-
fined as:
(2

o Rate Analysis concerns the interval of time be-
tween successive executions of an operation. In particu-
lar, rate constraint on an input(output) operation refers
to the rates at which the data is required to be con-
sumed(produced). We assume that each execution of
an input(output) operation consumes(produces) a sam-
ple of data. Assuming a synchronous execution model
with cycle time 7, we define the rate of execution at
invocation k of an operation v; as the inverse of the
time interval between its current and previous execu-
tion. That is,

ri(k)

ty; (k) > t”i(k) + ij

WOETR A ®)

By convention, the instantaneous rate of execution is
0 at the first execution of an operation (fg — —o0).

e

cycle™!)

46

4

Description

[Constraint type |

A before B ta+da < Iy

A meets B tat+da=tp

A overlaps B tp—ta < da

A finishes by B ta+da =ty +dp

A during B ta > tp and tq + da < tp + dp
A finishes B ta > tp and tq + da = 1 + dp,
A is overlapped by B | tg — 1 < dp

A is met by B ta+da =13

A after B ty +dp < tq

A contains B ta < tpand da > dp

A starts B ta =ty and da < dp

A equals B ta =ty and dq = d

A is started by B ta = tp and dq > dp

Table 1: Possible binary timing constraints.

For a flow graph, G, its rate of reaction, is defined as
the rate of of execution of its source operation, that is,

oc(k) 2 ro(k). The reaction rate is a property of the
graph model and it is used to capture the effect on the
runtime system and the type of implementation chosen
for the graph model. To be specific, the choice of a
non-pipelined implementation of GG leads to

ec(k)™! = A (k) + va (k) (4)

where y(k) refers to the overhead delay, that represents
the delay in re-invocation of G. (k) may be a fixed
delay representing the overhead of a runtime scheduler
or it may be a variable quantity representing delay in
case of conditional invocation of G.

The actual execution delay or the latency, Ag(k),
refers to the delay of the longest path in G. This path
may contain ND operations in which case the latency
is variable and not bounded. We define the time in-
terval [ty,(G)(k + 1) — tyy(c)(k)] as the overhead vg (k)
where vy and vy refer to the source and sink operations
respectively. If G is not a root-level flow graph, then
there exists a parent flow graph G4 that calls G using
a link operation, say v. The overhead time for G then
refers to the time-interval in successive invocations of v
in G.|..

A minimum rate constraint, r; (cycles™!), on an in-
put/output operation defines the lower bound on the
execution rate of operation v;. Similarly, a mazimum
rate constraint, ry (cycles™'), on an I/O operation de-
fines the upper bound on the execution rate of operation
v;. That is,

Tora SlyB)~to(k=1)ST-m"1 . (B)
In general, when considering rate of execution of v; we
must consider the successive executions of v; that may
belong to separate invocations of G. A relative rate
constraint on an operation, v;, with respect to a graph

model, G, is a constraint on the rate of execution of
v; for the same invocation of G. The relative rate of
execution expresses rate constraints that are applicable
to a specific contezt of execution as expressed by the
control flow in G. The problem of operation delay con-
straint analysis is then to determine a feasible solution
to Inequalities 1,2 and 5 for a given set of hierarchical
flow graphs, G.

¢ PROCESS-LEVEL ANALYSIS is carried out on
the process graph models that include inter-process syn-
chronization operations. The marginal rate of execution
of a process is defined as the number of executions of
the process per unit of time. Let ,,(k) denote the time
when the kth execution of process p; starts. Since the
time between successive executions of a process is not
constant, we define the average ezecution rate of a pro-
cess p; to be

o [lim :;é iPi (k o 1) i tPi (k) (6)

n—oo n

if the above limit exists. It can be shown that for a
finite process graph with finite edge delays the above
limit exists and can be efficiently computed [5]. The
problem of rate analysis is to find the upper and lower
bounds on the average rate of execution of each process
in a given process graph model of an ECS.

Thus, the rate analysis finds an in-
terval [ri(p;), ru(pi)] for each process p; such that the
average rate of execution of the process is guaranteed
to lie in this interval. This information about the av-
erage rate of execution of a process is used to compute
the bounds on the average execution rates of operations
in the flow graph. We now provide a summary of the
results to solve constraint analysis problems.

4 Constraint Satisfiability Tests

At the operation-level constraint satisfiability is re-
lated to existence of a feasible schedule of operations.
For each invocation of a flow graph, an operation is
invoked zero, one or many times depending upon its
position on the hierarchy of the flow graph model. The
execution times t,(k) of an operation v are determined
by two separate mechanisms: (a) The runtime sched-
uler, 7, and (b) The operation scheduler, 2. The run-
time scheduler determines the invocation times of flow
graphs, which may be as simple as fixed-ordered where
the selection is made by a predefined order (most likely
by the system control flow). This is typically the case in
hardware implementations where the graph invocation
is purely a subject of system control flow. On the other
hand, software implementations of the runtime sched-
uler are based on the choice of the runtime environment.

47

Given a graph, G = (V, E), the selection of a schedule
refers to the choice of a function, £ that determines the
start time of the operations such that

W) 2 max [0, ®+60)] ()

(k) 2 Er;}jgd(y‘_}[tu,-(k)+5(vj)] (8)

is satisfied for each invocation k > 0 of operations v; and
vj. Here §(-) refers to the delay function and returns the
execution delay of the operation. Equation 7 applies in
case of conjoined predecessors and Equation 8 applies
in case of disjoined predecessors.

Given a scheduling function, a timing constraint is
considered satisfied if the operation initiation times de-
termined by the scheduling function satisfy the corre-
sponding constraint inequalities (1, 2 and 5). Clearly,
the satisfaction of timing constraints is related to the
choice of the schedulers 2 and 7". In general, choice of
a particular operation scheduling mechanism depends
upon the types of operations supported and the result-
ing control hardware or software required to implement
the scheduler.

For constraint analysis purposes, it is not necessary
to determine a schedule of operations, but only to ver-
ify the ezistence of a schedule. Since there can be many
possible schedules, constraint satisfiability analysis pro-
ceeds by identifying conditions under which no solutions
are possible. A timing constraint is considered incon-
sistent if it can not be satisfied by any implementation
of the flow graph model. Since the consistency of con-
straints is independent of the implementation, these are
related to the structure of the graphs.

The operation-level delay constraints are abstracted
in an edge-weighted constraint graph model, Gp(V, E;U
Ey, A), where the edge set contains forward edges Ey
representing minimum delay constraints and backward
edges E} representing maximum delay constraints. An
edge with weight 6;; € A on edge v; < v; defines con-
straint on the operation start times as t,,(k) + 6;; <
ty;(k) for all invocations k. The rate constraints are
indicated as attributes on the operation vertices.

Operation-level delay and rate analyses are based on
static path analysis of the flow graphs. We define the
length, £(G) € Z%, of the longest path between the
source and sink vertices assuming that each loop call
is executed at least once (that is, loops are of the type
‘repeat-until’). In presence of conditional paths, the
length is a vector, £ = (£[i]) where each element £[z]
indicates the execution delay of a path in G. The ele-
ments of £ are the lengths of the longest paths that are
mutually-exclusive.

The length computation for a flow graph proceeds
by a bottom-up computation of lengths from delays of
individual operations. Given two operations, u and v

with delays, 6y, 6y, these can be composed in one of the
following three ways in the flow graph:

o Sequential composition: The combined delay of u
and v is represented by 8, ® 8, and is defined as

8y © 6y 2 by + by;

e Conjoined composition: when the operations u and
v belong to two branches of a conjoined fork. A
conjoined composition is denoted by ® and the de-
lay is defined as 6, ® 6, = max(by, 6y). A max-
imum of the delay is chosen to indicate that the
time to completion of the concurrent operations is
determined by the operation with the largest delay;

e Disjoined composition: when the operations u and
v belong to two branches of a disjoined fork. This
composition is denoted by symbol & and the com-

bined delay is defined as 6, @ 8, = (8u, 6,).

Example 4.1. Figure 2 below shows a process
graph model, G5 and graph models on its calling
hierarchy. G calls G2 that constitutes body of a
loop operation, vs. Gz in turn calls G; that con-
stitutes the body of a loop operation, v2. Numbers
in the circle indicate delay of the operations.

G1

®

b

5
©

& G ik

L% .9
BN é/x" @
Po

Figure 2: Example for bottom-up length computations.

For this set of graph models, the path lengths are:

{G) = 20(0,1)001)=(3,4)
4G2) = 2030(1,6)0LG)=(6,11) 0 LG)
= (9,10,14,15)
£Gs) = 2020(0,(57))0LG:)
= (4,9,11) 0 4G2)
(13,14, 18,19, 20, 21, 23, 24, 25, 26)
m]

Operation @ and ® are easily extended to k—ary op-
erations. A disjoined composition of two delays leads

48

to a 2-tuple delay since the two operations belong to
mutually exclusive paths. This composition of delays is
generalized to composition of paths as follows. In case
of a sequential composition of two path lengths, £, and
£, with cardinality n and m respectively, the resulting
path length contains n x m elements, consisting of sum
over all possible pairs of elements of £, and £,. In case
of a conjoined composition, the resulting path length is
of cardinality n x m and consists of maximum over all
possible pairs of elements. Finally, in case of a disjoined
composition, the resulting path length is of cardinality
n + m and contains all elements of £, and £,,.

The length computations are simplified for constraint
feasibility analysis since we are often interested only in
the upper and lower bounds £3s and £, respectively for
a length vector £ [3].

4.1 Operation-level Delay & Rate Analysis

Constraint analysis attempts to determine the exis-
tence of a schedule of operations for all possible (and
conceivably infinite) values of the delay of the ND oper-
ations. If a conclusive answer is not possible, bounds on
ND delays are provided to ensure constraint satisfiabil-
ity. Although we do not show it here, it should be noted
that not all constraints lead to a bound on ND opera-
tion delays. In particular, relative rate constraints can
often give a deterministic answer to constraint satisfia-
bility despite the presence of ND operations [13]. We
state without proof the following results that form the
basis of operation-level timing constraint analysis. For
details and proofs the reader is referred to the references
indicated.

1. Operation delay constraints are satisfiable if and
only if the constraint graph is feasible and there exist no
cycles with ND operations [14]. A constraint graph is
considered feasible if it contains no positive cycle when
the delay of ND operations is assigned to zero.

2. A maximum rate constraint, ry, in G is satisfiable
if £,(G) > 7-r7! [13]. Note that minimum delay and
maximum rate constraints are always satisfiable.

3. The lower bound ¢,, used for checking the satis-
faction of maximum rate constraints, also defines the
fastest rate at which an operation in the graph model
can be executed by a non-pipelined implementation.
This points to the necessary condition for meeting a
minimum rate constraint. A sufficient condition for
meeting the minimum rate constraints is obtained by
placing a bound on the time interval in invoking the
concerned flow graph. In general, this bound may im-
ply a bound on the delay due to the runtime system
and/or a bound on the number of times a (calling) loop
operation is invoked.

A bound on the overhead delay yg(k) implies a

A i

P

o

R S

- bound on the invocation interval of G4, and by induc-

tion, bound on the invocation interval of all graphs in
the parent hierarchy. In particular, the bound on the
mvocation interval of the parent process graph Gg cor-
responds to a bound on the delay due to the runtime

~ scheduler. This places restrictions on the choice of the

runtime scheduler. Note that a bound on yg(k) does
not imply a bound on the latency A of G which may, in
fact, be unbounded. We summarize the satisfiability of
a minimum rate constraint for the two cases relating to
ND operations in the flow graph.

(a) A minimum rate constraint on operation, v; €
V(G), where G contains no ND operations is satisfiable
if T

Y6 +£m(G) < 4

or equivalently, the overhead due to the runtime sched-

~ uler is bounded as follows:

Go
ToS— = (@)= Y AUG) - [bn(Go) — tm(G)]
$ Gi=G4+

where AUG;) = €y (Gi) — €n(G;). Thus a minimum
execution rate constraint on a graph G that contains
no ND operations is translated as an upper bound on
the delay of the runtime system which is checked by
comparing against ¥,,.

(b) In presence of ND operations in G, determinis-
tic satisfiability of minimum rate constraints can only
be guaranteed by transforming the the ND operations
into bounded-delay operations. In practice this is ac-
complished by performing a context-switch in case of
synchronization related operations and by bounding the
number of times the body of a loop ND operation is in-
voked. Justification of a bound on the ND operation
comes from the observation that constraint satisfiabil-
ity is a property of an implementation (and not of a
specification), so while it is always possible for a reac-
tive environment to overrun any specified time bound
between its actions, but that does not affect the satisfi-
ability of an implementation. For a detailed treatment
of this aspect the reader is referred to [3]. A impor-
tant implication of having bounds derived from timing
constraints is that it makes it possible to seek transfor-
mations to the system model which tradeoff these mea-
sures of constraint satisfiability against implementation
costs.

We conclude the discussion on the tests for operation-
level satisfiability analysis by an example below.

Example 4.2. Consider the hierarchy of graph
models in Figure 2. We are given following con-
straints on operation ‘A’ in G; that constitutes
loop body of operation 2 in G with loop index, z,
which in turn is a loop body of operation 3 in Gi:

ra = 1/100 r$*=1/5

49

r$? = 1/25

r$r =1/50

Recall, that r§ refers to a minimum rate con-
straint relative to G. Let us first consider, rf‘ =
1/5 cycle™ . Since this constraint is relative to
G4, therefore, there is no overhead in invocation
of Gy, ie., Y5, = 0. Since

o2 1
Yo, +£M(G1)=-151/g =5

Therefore, the constraint r$' = 1/5 is satisfied.
Similarly, constraint rg’ = 1/25 is satisfied since

I

V6, +£m(G1) [tm(G2) +7g, — £m(G1)]

£m(G1)=[154+0—3]+4
1
16 < 1/% =25

+

Il

Constraint r§* = 1/50 is satisfied since

Ya, +£m(G1) [A4G3) + AUG2) + Fg,
€m(G3) = €m(G1)] + £m(Gh)
[13+6+0+13—3]+4

33 51/% =50

-+

Finally, for the minimum rate constraint rq, =
1/100 we should also consider the overhead ¥, due
to the runtime scheduler which adds to the bound
of 33 cycles on successive intervals of operation ‘A’
relative to G3. Therefore, a r4 is satisfied if the
delay due to the runtime scheduler is less than or
equal to 100 — 33 = 67 cycles. O

4.2 Process-level Rate Analysis

‘Due to the unilogic nature of the process graph, the
following equation governs the time of execution of op-
erations in the process graph:

ti(k) = max [ti(k — 1) + dp(pj, pi))] (9)

i<Pi

Recall that dp(p;, p;) refers to the delay in process in-
vocation of p; after start of process p;. This equation is
similar to Equation 7 in case of operation-level graphs,
however, it relates execution times across separate in-
vocations of a process model.

Using the [Max, +] algebraic framework [15] the pro-
cess graph can be expressed as a set of linear equations
by replacing ring operations of addition and multipli-
cation in $® by maximization and addition respectively.
This algebra is useful because it allows us to reason
about a system’s reactive behavior using algebraic prop-
erties of its representation, in particular we use spectral
properties of its matrix representation. We can rewrite

the Equation 9, using the following dot product, ®, in
[Max, +] algebra:

ti(k—1)
_| ta(k-1)

ti(k) = [AiAiz - - Ain]® : (10)
ta(k = 1)

where the process adjacency matriz, A, of the process
graph Gp, is defined as follows:

_ | de(pi,p;) if (pi,p;) € Ep
- { € o otherw':fle (11)
Here ¢ is the identity for max, i.e., ¢ = —oo. Note that
Aﬂj is equal to the length of the longest path from p;
to p; that passes through exactly I — 1 other vertices in
the process graph.

The process-level rate analysis is based on the key
result that irrespective of the initial start times of the
processes, the average rate of execution of the processes
is well defined and can be efficiently computed using
a graph theoretic interpretation of the eigenvalues of
the process adjacency matrix [5]. The latter result is
derived from a theorem due to Karp [16] that states
for a matrix A with corresponding adjacency graph Gp,
the eigenvalue of A is given by the maximum mean cycle
weight in Gp. The mean weight of a cycle C is defined as

EeECCdP(e)

in C. A cycle is said to be criticalif it has the maximum
mean weight amongst all the cycles in the graph.

Process-level rate analysis proceeds by identification
of strongly-connected components (SCCs) in the pro-
cess graph. Since processes in a single SCC execute
with the same average execution rate, the interesting
case consists of multiple SCCs with different rates of
execution. For a single SCC, the maximum mean cycle
weight defines the “open-loop” average rate of execu-
tion, that is average execution ration without any syn-
chronization relationships to other SCCs. In the context
of the process-graph model where the synchronization
is achieved by blocking a process execution until its
predecessors have completed execution, this points to
a “producer-consumer”-type synchronization relation-
ship. The effective rate of execution for the consumer
process is the lower of the “open-loop” producer and
consumer rates of execution. This observation is used
to determine “closed-loop” rate computation for a pro-
cess graph that consists of several SCCs.

We build a component DAG as the graph in which
there is a vertex for each SCC and an edge from u to v
if and only if there is an edge from a vertex in the SCC
represented by u to a vertex in the SCC represented by
v in the original graph. Component DAGs are used to
determine time-evolution of the the embedded system

where |C| represents the number of edges

50

4

behavior in presence of inter-process synchronization re-
lationships. We illustrate the process-level analysis by
an example below.

Example 4.3.

Figure 3: Process graph.

Consider the process graph shown in Figure 3 with
the delay intervals as shown on the edges. For
SCC4, the lower bound on the execution rate is
derived by setting edge delays at upper bound and
computing the maximum mean weight cycle from
the critical cycle (p1 — p2 — ps — p1). There-
fore, r; = (14.67)~" = 0.068. The upper bound on
execution rate is computed by setting edge delays
to the lower bound,

maximum mean weight cycle in SCC,
{10+9+2 24443410
max 3 ;

Wy
» =7
%
Thus, ry = (7)~! = 0.142. Hence, the rate interval
for SCC; is [0.068, 0.142].

Similarly, the “open-loop” rate interval for SCC,
is [0.094, 0.231]. The execution rates in SCC; are
not affected by the edge from SCC; to SCC;, how-
ever, the rate interval for SCC; needs to take
into consideration the rate interval of the “pro-
ducer” SCC. Therefore, the actual rate interval for
SCC; is min{0.094,0.068}, min{0.231,0.142} =
[0.068, 0.142].

We note that for the sake of clarity, we have com-
puted the maximum mean cycle weight using ex-
plicit enumeration. OQOur implementation uses a
dynamic programming algorithm to determine the
critical cycles and mean weight [5]. O

Framework Implementation

Algorithms presented in this paper for operation-
level and process-level timing constraint analysis have
been implemented in the co-synthesis system, VULCAN.

The core analysis routines consist of approximately 3K
lines of C-code. These routines can be used as a part of a
system for constraint satisfiability analysis as well as for
interactive debugging of constraint violations. The fo-
cus of operation-level analysis is to determine constraint
satisfaction for a process at a time. Inter-process con-
straint analysis is carried out on the process graph by
first computing open-loop execution rate intervals. If
the computed rate intervals are contained in the inter-
vals defined by the rate constraints, then the implemen-
tation satisfies all the rate constraints.

In case of constraint violations, debugging of the
violation is done by identifying critical cycles to help
the designer consider alternative implementations of the
processes involved in critical cycles. If an upper bound
rate constraint is violated for process p;, then it means
that p; executes faster than required by the constraint.
This situation is easier to remedy because additional
delay can be introduced on some of the process graph
edges to slow down the execution rate of p;. If a lower
bound rate constraint is violated, the program outputs
processes on the critical cycles that lead to the con-
straint violation. If some of the critical cycles that
cause the rate constraint violation involve self-loops,
then the program also performs rate analysis after re-
moving these self-loops. Removal of a self-loop in the
process graph corresponds to pipelined implementation
of the concerned process.

6 Summary and Future Work

Due to the complexity of system modeling and com-
peting requirements of determinism in delay analysis
versus non-determinism in system models from software
and runtime uncertainties, an efficient decomposition of
the constraint analysis problem is needed. We believe
that our two-level system model provides such a de-
composition where detailed delay and “open-loop” rate
analysis can be carried out at the individual process-
level. However, the effect of inter-process synchro-
nizations is best handled at the process level which is
amenable to algebraic analysis because of the (unilogic)
modeling restrictions. Corresponding to our model of
the timing constraints, the constraint analysis is di-
vided into operation and process levels. The operation-
level analysis focus is on individual processes, whereas
process-level analysis evaluates constraint satisfiability
in view of inter-process synchronizations. Both analy-
ses begin by identifying cases where the imposed con-
straints are inconsistent, that is, these can not be sat-
isfied by any implementation of the embedded system,
and proceed to identify operation and process bottle-
necks in the form of ND operations and critical loops
that cause a particular constraint violation. Extensive

51

designer input is needed during this process to explore
alternative process implementations such as the even-
tual implementation satisfies the constraints.

To complement this analysis, we plan to develop al-
gorithms for runtime evaluation for embedded systems
and its integration with detailed timing analysis.

7 Acknowledgments

The author would like to thank Anmol Mathur for
discussions and contributions. This research was sup-
ported by a grant from the AT&T Foundation and a
grant from NSF No. MIP 95-01615.

References

[1] W. Wolf, “Hardware-Software Co-design of Embedded Sys-
tems,” IEEE Proceedings, vol. 82, no. 7, pp. 965-989, July
1994.

D. Ku and G. D. Micheli, High-level Synthesis of ASICs
under Timing and and Synchronization Constraints. Kluwer
Academic Publishers, 1992.

R. K. Gupta, Co-Synthesis of Hardware and Software for
Digital Embedded Systems. Kluwer Academic Publishers,
Boston, 1995.

V. Cerf, Multiprocessors, Semaphores and a Graph Model of
Computation. PhD thesis, UCLA, Apr. 1972.

A. Mathur and R. K. Gupta, “Rate analysis for embedded
systems,” (submitted. available as technical report), Com-
puter Science, University of Illinois, 1995.

H. Kobayashi, Modeling and Analysis: An Introduction
to System Performance Evaluation Methodology. Reading,
MA: Addison-Wesley, 1978.

B. Dasarathy, “Timing Constraints of Real-Time Systems:
Constructs for Expressing Them, Method of Validating
Them,” IEEE Trans. Software Engineering, vol. SE-11,
no. 1, pp. 80-86, Jan. 1985.

R. Camposano and A. Kunzmann, “Considering Tn'mng
Constraints in Synthesis from a Behavioral Description,” in
Proc. ICCCD, pp. 6-9, 1986.

R. Lauber, “Forecasting Real-Time Behavior During Soft-
ware Design Using a CASE Environment,” Journal of Real-
Time Systems, vol. 1, no. 1, pp. 61-76, June 1989.

D. W. Leinbaugh, “Guaranteed Response Times in a Hard

Real-Time Environment,” IEEE Trans. Software Engg.,

vol. SE-6, no. 1, pp. 85-91, 1980.

J. Leung and J. Whitehead, “On the complexity of fixed-

priority scheduling of periodic, real-time tasks,” Perfor-

mance Evaluation, vol. 2, 1982,

C.L.Liuand J. W. Laylzmd “Scheduling algorithms for mul-

tiprogramming in a h -time environment,” J. ACM,

vol. 20, no. 1, pp. 46-61, Jan 1973.

R. K. Gupta and G. D. Micheli, “Specification and Analysis

of Timing Constraints for Embedded Systems,” (submitted.

available as tech. report), University of Illinois, 1995,

D. Ku and G. D. Micheli, “Relative Scheduling Under Tim-

ing Constraints: Algorithma for High-Level Synthesis of Dig-
Circuits,” IEEE Transactions on CAD/ICAS, vol. 11,

no. 6, pp. 696-718, June 1992,

F. Bacelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Syn-

chronization and Linearity. John Wiley and Sons, New York,

1992.

R. M. Karp, “A characterization of the minimium cycle mean
in a digraph,” Discrete Math., vol. 23, pp. 309-311, 1978.

(2]

3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index

