
FULLY PARALLEL HARDWARE/SOFTWARE CODESIGN FOR
MULTI-DIMENSIONAL DSP APPLICATIONS

Michael SheligaJ Nelson Luiz Pass os and Edwin Hsing-Mean Sha

Dept. of Computer Science & Engineering
University of Notre Dame, Notre Dame, IN 46556

{msheliga,npassos,esha }@bach.helios.nd.edu

ABSTRACT

The design of multi-dimensional systems using hard-
ware/software codesign allows a significant improve-
ment in the development cycle. This paper presents a
technique that enables a design to have arbitrarily high
throughput by using multi-dimensional retiming tech-
niques while adjusting the composition of hardware and
multiple software elements in order to satisfy the area
requirements. A multi-dimensional graph representing
the problem is transformed and scheduled such that all
nodes are executed in a fully parallel way. The tech-
niques presented are applicable to any problem which
can be represented as a multi-dimensional data flow
graph. Results are shown which illustrate the efficiency
of the system as well as the savings achieved.

1. INTRODUCTION

Applications such as image processing, fluid mechan-
ics, and weather forecasting, require high computer
performance. Researchers and designers in those ar-
eas are looking for solutions to multi-dimensional prob- .

lems through the use of parallel computers and/or spe-
cialized hardware. It is known that most of the cur-
rent commercial computers are not able to achieve the
computational speeds required by those applications.
For example, the Advance Vision Systems proposed by
ARPA, involving image formation of synthetic aper-
ture radar (SAR) from collected phase histories," re-
quires greater computational power than is normally
available. At the same time, the development cycle
of new systems needs to be reduced so as to speed
up the process of getting access to system prototypes,
in order to accelerate their evaluation and utilization.
Hardware/software (hw/sw) codesign is assumed to be
the technique that "{illprovide such an improvement[5].
However, most of the existing results in this area do not

, This work was supported in part by the NSF CAREER grant
MIP 95-01006,and by the William D. Mensch, Jr. Fellowship.

0-8186-7243-9/96 $05.00 @ 1996 IEEE

--

consider the advantages that may be obtained by con-
sidering the multi-dimensionality of the applications.
This paper presents C!>lgorithmathat perform hw/aw
codesign for the special area of multi-dimensional ~ys-
terns. Such algorithms allow the design cycle time to
be significantly reduced.

In the hw/sw codesign area most research has fo-
cused on particular aspects of the design process, how-
ever, some automated tools have been developed to per-
form an entire hw/sw codesign. For example, COSYMA
[9] uses a simulated annealing partitioning ~lgorithm,
and VULCAN II [7,8] performs traditional hw/sw code-
sign for reactive systems which have inputs whose ar-
rival times are unknown. However, these tools do not
present any specific solution for the multi-dimensional
applications. The technique proposed in this paper uti-
lizes the multi-dimensional characteristics of the prob-
lems, in order to achieve full parallelism of all oper-
ations and optimize the scheduling process associated
with the hardware/software distribution.

Hardware/software codesign req"uires not only an
excellent planning strategy for the distribution of com-
putational tasks among the software elements and spe-
cialized hardware, but also an optimized utilization of
those resources. Such an optimization, usually, can be
obtained by a good scheduling technique. Most of the
previous results on scheduling focus on one-dimensional
problems [2, 6, 12, 16]. Multi-dimensional hw/sw code-
sign requires t~e improvement of the parallelism inher-
ent to multi-dimensional applications. Some studies
focusing on uniform nested loop scheduling are similar
to the solution of the multi-dimensional problem. For
example, unimodular transformations [17], loop skew-
ing [18]and loop quantization [1]. These techniques do
not change the structure of the iterations, and therefore
may not achieve a fully parallel solution.

More recent research has studied the scheduling of
multi-dimensional applications. For example, the affine-
by-statement technique [4]and the index shift method
[13] are able to achieve a fully parallel execution of

18

I

-I

.

multi-dimensional tasks, utilizing algorithms based on
linear programming techniques. However, these meth-
ods do not consider possible memory changes and con-
sequently they may introduce new queues dependent
on the problem size. The chained multi-dimensional
technique, proposed in [15], can achieve the fully par~
allel solution in polynomial time. Therefore, we use
this technique as the basis for our new algorithm.

Minimizing the system execution time and amount
of hardware includes several important steps. Among

these are deciding what operations to execute in soft-
ware and what operations to execute in hardware, de-
ciding on the number of software units (processors) and
the amount and type of hardware to use, choosing the
number of iterations to be executed in parallel (Should
the hardware and software only focus on one iteration

at a time. Or should a group of iterations be done in
parallel?), choosing a good schedule vector, fully paral-
lelizing and transforming the computational graph by
retiming and unfolding, choosing the shape of the block
of iterations to be executed in parallel, and minimizi~g
the number of registers required. In addition, mini-

mizing _~he.queue size is critical since the queue size
is proportional to the size of the array, and since it is
1J,ffected by the scheduling vector.

In this paper we present a method for answering the
above questi6ns: Our method lays out guidelines for
implementing a multi-dimensional hardware/software
system. Once the above guidelines are used further de-
tails such as minimizing th~ number of registers during
parallelization can be considered. Since the final de-
sign consists of one hardware partition and several soft-
ware partitions it is referred to as the multi-dimensional

hardware/multi-software, or MD HMS, system.

Our system designs any integrated circuit which can
be represented as a multi-dimensional data flow graph.
We make several important contributions in the paper.
We prove that the schedule vector that minimizes the
queue size for existing data dependencies can be found
in constant time. We also show how to choose the

schedule vector and the retiming vector so that the
queue size does not change during retiming. We also
prove that the shape of the group of iterations that are
executed in parallel will not affect the queue size by
more than a constant. It is further demonstrated how

unfolding and retiming can be combined to make each
block fully parallel.

The design time is reduced by following the general
strategy of beginning with an all software implemen-
tation and then adding hardware until a solution is
found. Another strategy that is used to decrease de-
sign complexity is to have each software uni~ execute
one iteration, resulting in minimal communication and

- --

control overhead. When it is necessary to aqd hard-
ware, it is added in proportion to the number of oper-
ations of each type. This not only allows all hardware
units to be fully utilized, but it permits the complexity
of the design process to be further. reduced by grouping
the hardware units so that they may be replicated in
different parts of the design.

The MD HMS methodology is described in this pa-
per as follows: Section 2 introduces defiIiitions and ter-
minology while Section 3 covers the assJl~ptions of our
system and explains the 1fD HMS codesign algorithms
in detail. Section 4 demonstrates the effectiveness of

the algorithm for several input systems(. Finally, sec-
tion 5 draws conclusions from the results obtained and
discusses ideas for future research.

2. DEFINITIONS AND TERMINOLOGY

2.1. Basic Concepts

In this section we present some concepts related to
the modeling of multi-dimensional problems, such as
multi-dimensional data flow graphs, retiming, depen-
dence vectors, iterations, and vector operations. A
multi-dimensional data flow graph (MDDFG) G = (V,
E, d, t) is a node-weighted and edge-weighted directed
graph, where

.V is the set of computation nodes.

.E C V x V represents the set of dependence edges
between nodes.

. d is a function from E to zn, representing the
multi-dimensional delays between two nodes, with
n being the number of dimensions. A three di-
mel!-sionaldelay would, for example, be (3, -2, 2).

. t is a function from V to the positive integers
representing the computation time of each node.
In order to simplify the presentation of the MD
HMS system, we assume tv = 1 V v E V for the
remainder of the paper.

A two dimepsional data flow graph (2DDFG) G2 =
(V, E, d, t) is a MDDFG with d being a function from
E to Z2. We adopt d(e) = (d.:c,d.y)as a general rep-
resentation of any delay in a two-dimensional DFG.
An example of a two-dimensional DFG and its equiv-
alent Fortran code is shown in figure 1. For this ex-
ample, V = {A,B,C,D} and E = {e1 : (A,B),e2 :
(A,C),e3 : (D,A),e4 : (B,D),e5 : (C,D)) where,
d(e1) = d(e2) = d(e3) = (0,0), d(e4) = (-1,1), d(e5) =
(1, 1).

An iteration is the execution of the loop body ex-
actly once, i.e., the execution of eacl~node in V exactly

19

..

(a)

11
10

DO 10 j = O,n
DO 11 k = 0, m

0: d(k,j) = b(k+1,j-1) * c(k-1,j-1)
A: a(k,j) = d(k,j) * .5
B: b(k,j) = a(k,j) + 1.
C: c(k,j) = a(k,j) + 2.

CONTINUE

CONTINUE

(b)

Figure 1: (a) MDDFG extracted from a Wave Digital Filter (b) equivalent Fortran code

once. Iterations are identified by a vector i, equivalent
to a multi-dimensional index, starting from (0, 0,. . .,0).
Inter-iteration dependencies are represented by vector-
weighted edges. For any iteration 3,an edge e from u
to v with delay vector d(e) means that the computa-
tion of node v at iteration 3depends on the execution

of node u at iteration 3- d(e). An edge with delay
(0,0, . . .,0) represents a data dependence within the
same iteration. A legal MDDFG must have no zero-
delay cycle, i.e., the summation of the delay vectors
along any cycle can not be (0,0,...,0). Several tech-
niques are available to verify that an MDDFG does not
have a cycle [3, 11].

An equivalent cell dependence graph (DG) of an
MDDFG G is the directed acyclic graph showing the
dependencies between copies of nodes representing the
MDDFG. Figure 2(a) shows the replication of figure
l(a), and figure 2(b) shows the cell DG with each node
representing a copy of the MDDFG. A computational
cell is the cell dependence graph node that represents
a copy of an MDDFG, excluding the edges with delay
vectors different from (0,0, . . .,0), i.e., a completeiter-
ation. A cell is considered an atomic execution unit.

e
The notation u ---+v means that e is an edge from

node u to node v. The notation u L v means that p
is a path from u to v. The delay vector of a path p =

eo el ele-I. Ie-I
Vo ---+ vI ---+ v2 . .. ---+ VieIS d(p) = Li=O d(ei) and
the total computation time of a path p is L:=o t(vd.

To manipulate MDDFG characteristics represented
by vector notation, such as the delay vectors, we make
use of component-wise vector operations. Considering
two two-dimensional vectors P and Q, represented by
their coordinates (P.:z;,P.y) and (Q.:z;,Q.y), an example
of arithmetic operation is P + Q = (P.:z;+ Q.:z;,P.y +
Q.y). The notation P . Q indicates the inner product
between P and Q, i.e., p. Q = P.:z;* Q.:z;+ P.y *Q.y.

A schedule vector S is the normal vector for a set

of parallel equitemporal (equally spaced in time) hy-
perplanes that define a sequence of execution of a cell

(a)

Figure 2: (a) DG based on the replication of an
MDDFG, showing iterations starting at (0,0).

dependence graph. The existence of a schedule vec-
tor prevents the existence of a cycle. We say that an
MDDFG G = (V,E, d, t) is realizableif there exists a
schedule vector S for the cell dependence graph with
respect to G, i.e., s . d > 0 for any dE G [14].

2.2. Retiming a Multi.Dimensional Data Flow
Graph

A multi-dimensional retiming r is a function from V to
zn that redistributes the nodes in the original depen-
dence graph created by the replication of an MDDFG
G. A new MDDFG G.,.is created, such that each itera-
tion still has one execution of each node in G. The re-
timing vector r(u) of a node u E G represents the offset
between the original iteration containing u, and the one
after retiming. The delay vectors change accordingly to
preserve dependencies, i.e., r(u) represents delay com-
ponents pushed into the edges u -+ v, and subtracted
from the edges w -+ u, where u, v, w E G. Therefore,

e
we have d.,.(e) = d(e)+r(u)-r(v) for every edge u ---+v

20

and dr(l) = d(l) for every cycle lEG. After retiming,
the execution of node u in iteration i is moved to the

iteration i - r(u). A two-dimensional retiming r is a
function from V to Z2 that redistributes the nodes in
the original dependence graph created by the replica-
tion of a 2DDFG G, resulting in a new 2DDFG Gr,
such that each iteration still has one execution of each
node in G.

For example, figure 3(a) shows the MDDFG from
figure l(a) retimed by the function r = (1,0). Fig-
ure 3(b) shows the modified Fortran code. The critical
paths of this graph are the edges A -t B and A -t C
with an execution time of 2 time units.

The retimed cell DG, for the example in figure l(a),
is shown in figures 4(a) and (b), where the nodes origi-
nally belonging to iteration (0,0) are marked. A possi-
ble schedule vector for the retimed graph is s = (1,3).
Figure 5(a) shows an illegal retiming function applied
to the same example. By simple inspection of the cell
dependence graph in figure 5(b) we notice the exis-
tence of a cycle created by the dependencies (1,0) and
(-1,0).

A prologue is the set of instructions that are moved
in directions x and y, in a two-dimensional retiming,
and that must be executed to provide the necessary
data for the iterative process. In our example shown
in figure 4(a), the instruction D becomes the prologue
for that problem. The epilogue is the other extreme of
the DG, where a complementary set of instructions will
be executed to complete the process. In the example,
the reduction of the critical path, as seen in figure 3,
results in a saving of approximately one third of the
total execution time.

2.3. Terminology

In order to simplify the reader's understanding of the
paper some important terminology and variable names,
as well as background assumptions, are summarized
here.

.This paper is concerned with implementing large
numbers of iterations (100 or more). It is as-
sumed that the iterations to be executed may be
represented by a square array of size N. The re-
sults obtained for a square array may easily be
expanded to include rectangular arrays.

.The schedule vector for the processor array is de-
noted by 5.

. The delays for a MDDFG are denoted by the set
D. DS =EdEDd.

[---

.The number of nodes per scheduling hyperplane

is denoted by N H. This is equal to (~S)m4:C ~'"

for a square array.

. The retiming vector for the MDDFG is denoted
by r. For reasons that are explained below, r will
always be perpendicular to S. We use r 1- 5 to
indicate this.

. P is used to denote the number of software units,
or processors, available. All of the P processors
are identical.

.Each processor contains the same number of func-
tional units. For example, the processors may
contain four adder units, two comparator units,
and one multiplier unit.

. The block shape is the shape of the group of com-
putational cells that are to be executed in par-
allel using the existing hardware and software.
For example, if we had eight software units, each
executing one computational cell, with a sched-
ule direction of (0,1), some possible block shapes
would be lx8, 2x4, and 8xl. Of course, intra-
block dependencies of the form (0,0,...,0) are
not allowed.

3. ALGORITHM

In order to minimize the design time and the amount
of hardware in the final design, the MD HMS system
follows the general strategy of beginn;ng with all oper-
ations in software. Initially, the maximum number of
possible software units are used for the given area con-
straint. Hardware is then added until the maximum
area is exceeded. When this happens software is elimi-
nated and replaced by more hardware. This continues
until the design constraints are met, or it is determined
that they can not be satisfied.

The MD HMS algorithm is begun by calculating
5, the schedule direction. This is important since it
determines the queue size. Since the system may be
made fully par?llel, the area depends in large part on
the queue size. The retiming vector r is then chosen to
be perpendicular to 5. Next, the maximum amount of
software that may be used is inserted, and the iterative
process of calculating system parameters, eliminating
software, and inserting hardware is begun. For each
iteration four steps are performed. First the number
of iterations to be executed in parallel are calculated.
Second, the shape of these iterations is chosen to be
aligned to the scheduling hyperplane. Third, the iter-
ations within the block are unfolded. Fourth, retiming
is used to make all intra-block operations parallel.

21

L

(a)

11

D010j=0,n
d(O,j)= b(1,j-1) *c(-1,j-1) }prologue
DO 11 k=0,m-1

d(k+1,j) = b(k+2,j-1)*c(k,j-1)
a(k,j) = d(k,j) * .5
b(k,j) =a(k,j) + 1.
c(k,j) = a(k,j) + 2.

CONTINUE

a(m,j) = d(m,j) * .5
b(m,j) = a(m,j) + 1.
c(m,j) = a(m,j) + 2.

CONTINUE

(1,0) }epilogue
10

(b)

Figure 3: (a) MDDFG after retiming by r(D)=(l,O) (b) equivalent Fortran code

,

...-.--.

~--ci;).. -. ._-~~~~~ --...

Figure 4: (a) DG based on the replication of an MDDFG,after retiming. (b) same DG represented by computational
cells.

(a)

r(D) = (0,1)
r(A)= (0,0)
r(B)= (0,0)
r(C)= (0,0)

Figure 5: (a) Example of illegal retiming. (b) DG showing cycles in the x-direction.

22

3.1. Selection of the retiming vector r and the
scheduling vector 5

In most multi-dimensional systems the vast majority
of edges do not have delays. In order to make the
system fully parallel, we must add delays to these edges.
However, each delay that is added will result in either
a register or a queue entry during execution. Since
the queue size is directly related to the problem size
(Order N), it is beneficial to have as many registers
and as few as queues as possible. It is also known that
if 5 is perpendicular to some delay d, then d will result
in a fixed number of registers [15].Hence, our system
always chooses r 1- 5, with r being a constant for all
retimings. In this manner all edges that are originally
(0,0,0. . .0) will result in registers, not queues.

In order to choose r 1- 5, we must first choose 5.
Hence, the MD HMS system begins by choosing an ap-
propriate value for the schedule vector 5. The schedul-
ing vector must be chosen so that S . d > 0 'ifd ED,
(otherwise we would be attempting to execute itera-
tions that depend on other iterations that have not yet
been execu~ed!). We refer to the region defined by the
above inequalities as the legal scheduling vector region.
By definition the legal scheduling vector region must be
continuous and, intuitively, within ninety degrees of all
delays. The legal scheduling vector region in figure 6 is
represented by the shaded region. Note the extremes
of this region, (1,1) and (0,1), are ninety degrees from
the extreme delays of (-1,1) and (1,0), respectively.
We define 5ew as the boundary of the legal schedule
vector region in the clockwise direction, and Seew as
the boundary of the legal schedule vector region in the
counter clockwise direction. In figure 6, Sew = (1,1)
and 5eew = (0,1). We also note that the magnitude
of the scheduling vector is unimportant. For exam-
ple, scheduling in the (1, 1) direction is equivalent to
scheduling in the (3,3) direction.

The choice of the scheduling vector will have a cru-
cial influence on the rest of the system. In particular,
it is known that N H x EdED 5. d will be equal to
the queue size at the end of the execution of each hy-
perplane. N H is the number of nodes per scheduling

hyperplane, and is equal to 'max(l~I.ls1l1)for a square
array. It may be noted that since we chose r 1- S, the
queue size will remain constant, even after retiming.

Hence, we wish to minimize N H x EdED S.d under
the constraint 5. d > 0 'ifd E D. It may be shown that
the 5 that results in the minimum queue size is one of
the extremes of the legal scheduling vector region for a
square iteration space.

Best Schedule Vector Problem: Consider an N x
N multi-dimensional data flow graph, "(, with a set
of delay vectors, D, that define a (continuous) legal

. . .

. . .

Figure 6: The legal scheduling vector region for rl =
(-I,I),r2 = (-2,3), and rg = (1,0), and an illegal
schedule vector.si = (1,-1).

schedule vector region.
Question: What scheduling vector 5 will result in

the minimal queue size, Q?

Theorem 3.1 The best scheduling vector will be one
of the extremes of the legal scheduling vector region.

The proof of this theorem is not shown here due
to space considerations. Intuitively the result means
that 5 should be as far away from the delay vectors as
possible, but within ninety degrees of all delay vectors.
In figure 6, of the many legal values for 5, the one that
will result in the minimum number of queues must be
in the (1, 1+) or (0+, 1) directions. These two vectors
are ninety degrees from the extreme vectors of (-1, 1)
and (1,0). Hence the schedule vector could be chosen
to be (9, 10). This vector results in an actual queue size
that is very near the minimal queue size as well as a
relatively small prologue. It is important to note that
we use 5. d > 0 not 5. d 2: O.If 5 were exactly ninety
degrees away from an original delay vector d, then r
would be 180 degrees away from some d. In this case,
a cycle would be produced upon retiming.

3.2. Block Selection and Parallelization

Once 5 has been selected (and as a direct result r)
the iterations to be scheduled in parallel, or schedul-
ing block, are chosen. For example, if there are four
processors, no hardware, one delay vector d = (1,5)
and 5 = (1,0), we could choose to schedule four hor-
izontally aligned iterations, four vertically aligned it-
erations, or a square two by two group of iterations.
It may be proven that the shape of the block of itera-
tions chosen will not have an effect on the queue size by
more than a constant. The proof is not shown due to

23

I
space considerations, however a formal definition of the
problem and the results of the proof are given below.

Block Equivalence Problem: Consider a multi di-
mensional data flow graph, "Y,a schedule vector 5, and
P processors that are to execute P iterations in paral-
lel.

Question: Does the shape of the P processors that
are to be executed in parallel affect the queue size by
more than a constant?

Theorem 3.2 The block shape does not affect the queue
size by more than a constant.

Since the block shape selection will not affect the
queue size by more than a constant we may look to
some other criteria to determine it. We do not consider
this problem further in this paper, but leave it as an
open problem. Instead, the block shape is chosen to
be perpendicular to 5 in all cases (aligned with the
scheduling hyperplane). By choosing the block shape in
this manner will assure that there will not be zero delay
dependencies between iterations in the block. This is
guaranteed since 5 is perpendicular to r. For example,
if d = (1,1), S = (0,1), r = (1,0)and P = 4, then
four horizontally aligned iterations would be executed
in parallel. Note that it is impossible to have a delay in
the (1,0) direction between the iterations in this block.

Once we have decided on the block shape of the iter-
ations that are to be executed in parallel, we unfold the
graph and then apply internal multi-dimensionalretim-
ing inside each block. By retiming using this method,
we assure ourselves that all nodes in the unfolded graph
(block of iterations) are fully parallel. Hence, all hard-
ware units may be fully utilized.

3.3. Software and Hardware Allocation

Given a fixed number of processors, we assign each pro-
cessor to one iteration per block. In this manner com-
munication between processors may be ignored since all
such communication will take place between iterations
in different blocks. Furthermore, since each processor is
identical, only one control unit will need to be designed
for all processors. In a similar manner only one global
control unit will need to be implemented on the chip.
When software is eliminated in favor of hardware, the
number of functional units to be added for each op-
eration type must be decided. Hardware is added in
proportion to the number of operations of each type.
In this manner all hardware may be fully utilized. and
the hardware design may be reused. For every four
adders and three multipliers that are added, the same
layout and control unit may be replicated.

1--
-~-

4. EXPERIMENTAL RESULTS

This section presents experimental results for the three
two-dimensional problems, as shown in figure 7. A few
comments will be made to help explain the results, with
the pulse-code modulation device[lO] in mind. The
modulation device contains five adders and three mul-
tipliers, while the software contains one adder and one
multiplier. It is assumed that each software unit is
able to execute one addition and one multiplication in
one time unit. The execution rate of hardware units
is twice that of the corresponding software units. The
hardware and software units are assumed to take up the
areas given at the bottom of the figure. The first four
columns of the figure represent the number of cpus, the
total number of hardware units (adders and multipli-
ers), the number of adders, and the number of multi-
pliers.

It is useful to introduce five addition units for ev-
ery three multiplication units, when replacing software
with hardware. Once this is done these units may be
grouped together. The "Hardware Groups" (HWG)
column shows the number of such groups. The "Hard-
ware Extra" (HWE) column is the number of bard ware
units that can not be placed in such groups, while the
next two columns show the number of adders and mul-
tipliers, respectively, that comprise the extra hardware.

The system begins using the maximum number of
software units possible. If the number of iterations per
time unit is less than the desired value of two, one
software unit is eliminated, and additional hardware is
inserted. This process would normally stop once the
desired value of iterations per time unit is reached, as
indicated by the asteriks, however, results were gen-
erated in this case until an all hardware solution was
reached.

5. CONCLUSION

Multi-dimensional systems are important in areas such
as image processing, fluid mechanics, and weather fore-
casting. In this paper we considered the MD HMS sys-
tem which automates the hw/sw codesign process for
multi-dimensional systems. Since design time is often
the most important factor, our system attempts to im-
plement as much of the system as possible in software
provided that chip area and timing constraints are met.
Results that illustrate the savings which are possible
with the MD HMS algorithm are presented for several
two-dimensional graphs.

6. REFERENCES

[1] A. Aiken and A. Nicolau, .. Loop Quantization: An Analy-

24

l

Figure 7: Results for several two-dimensional problems

sis and Algorithm," Technical Report 87-821, Department
of Computer Science, Cornell University, March 1987.

[2] L.-F. Chao, A. LaPaugh, and E. H.-M. Sha, " Rotation
Scheduling: A Loop Pipelining Algorithm," Proc. 30th
ACM/IEEE Design Automation Conference, Dallas, TX,
pp. 566-572, June, 1993.

[3] E. Cohen and Nimrod Megiddo, " Strongly Polynomial-
Time and NC Algorithms for Detecting Cycles in Dynamic
Graphs," Proc. 21th A CM Annual Symposium on Theory
of Computing, 1989, pp. 523-534.

[4] A. Darte and Y. Robert, " Constructive Methods for
Scheduling Uniform Loop Nests," IEEE Transactions on
Parallel and Distributed Systems, 1994, Vol. 5, no. 8, pp.
814-822.

[5] D. Gaski, F. Vahid, S. Narayan, and J. Gong, "Specifi-
cation and Design of Embedded Systems," Prentice-Hall,
Inc, Englewood Cliffs, NJ, 1994.

[6] G. Goosens, J. Wandewalle, and H. de Man, " Loop Op-
timization in Register Transfer Scheduling for DSP Sys-
tems," Proc. ACM/IEEE Design Automation Conference,
1989, pp. 826-831.

[7] R. Gupta and G.DeMicheli, "Hardware-Software Cosyn-
thesis for Digital Systems," IEEE Design and Test of Com-
puters, October 1993, pp. 29-41.

[8] R. Gupta and G.DeMicheli, "System Level Synthesis Us-
ing Re-programmable Components," The European Con-
ference on Design Automation, March, 1992 pp. 2-7.

[9] J. Henkel, T. Benner, and R. Ernst, "Hardware Generation
and Partitioning Effects in the COSYMA System," 2nd In-
ternational Workshop on Hardware-Software Co-Design,
Workshop Handout, 1993.

[10] A. K. Jain, " Image Data Compression: a Review," in
Proceedings of the IEEE, vol. 69, no. 3, pp. 349-389, March
1981.

[11] S. R. Kosaraju and G. F. Sullivan, " Detecting Cycles in
Dynamic Graphs in Polynomial Time," Proc. 20th A CM
Annual Symposium on Theory of Computing, 1988, pp.
398-406.

[12] T.-F. Lee, A. C.-H. Wu, D. D. Gajski, and Y.-L. Lin, "
An Effective Methodology for Functional Pipelining", in
Proc. of the International Conference on Computer Aided
Design, December, 1992, pp. 230-233.

[13] L.-S. Liu, C.-W. Ho and J.-P. Sheu, "On the Parallelism of
Nested For-Loops Using Index Shift Method," Proceedings
of the 1990 International Conference on Parallel Process-
ing, 1990, Vol. II, pp. 119-123.

[14] S. Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ:
Prentice Hall, 1988.

[15] N. L. Passos and E. H.-M. Sha " Full Parallelism in Uni-
form Nested Loops using Multi-Dimensional Retiming".
Proceedings of 23rd International Conference on Parallel
Processing, August, 1994, vol. II, pp. 130-133.

[16] R. Potasman, J. Lis, A. Nicolau, and D. Gajski, " Perco-
lation Based Scheduling". Proc. A CM/IEEE Design Au-
tomation C.onference , pp. 444-449, 1990.

[17] M. Wolf and M. Lam, " A Loop Transformation Theory
and an Algorithm to Maximize Parallelism" . IEEE Trans-
actions on Parallel and Distributed Sy&tems, vol. 2, n. 4,
pp. 452-471, 1991.

I

[18] M. Wolfe, " Loop Skewing: the Wavefront Method Re-
visited,". International Journal of Parallel Programming,
Vol. 15, No.4, pp. 284-294, August 1986.

25

Units Hardware Grouping Results

Filter CPU HW ADDS MULTS HWG HWE ADDS MULTS AREA IPTU IWR

PCM 3 3 2 1 0 3 2 1 172 1.26 0.71

2 9 6 3 1 1 1 0 166 2.40* 1.14

1 16 10 6 2 0 0 0 172 4.20 1.86

0 22 14 8 2 6 4 2 166 5.33 2.29

WDF 3 3 2 1 0 3 2 1 172 0.88 0.64

2 9 6 3 0 9 6 3 166 1.75 1.11

1 16 10 6 1 4 2 2 172 2.63* 1.55

0 23 15 8 1 11 7 4 171 3.75 2.12

IIR 3 2 1 1 0 2 1 1 167 0.63 0.50

2 8 4 4 0 8 4 4 168 1.25 1.00

1 14 7 7 0 14 7 7 169 1.88 1.50

0 19 9 10 1 4 2 2 165 2.50* 1.80

PCM: Pulse Code Modulation (5 Adder, 3 Mult)
WDF: Wave Digital Filter (8 Adder, 4 Mult)
IIR: Infinite Impulse Response (7 Adder, 8 Mult)
Area Desired = 175 Desired IPTU = 2.0

Adders Per CPU = 1 Mults Per CPU = 1

CPU Area = 50

Adder Area =5 Multiplier Area = 12

IPTU = Iterations Per Time Unit IWR = Iterations Without Retiming
HWE =Hardware Extra HWG =Hardware Groups

	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index

