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Abstract

This reported work applies a transformational synthesis
approach to hardware/software codesign. In this approach,
the process of algorithm design is coupled early on with
hardware design to allow for a complete design space ex-
ploration. Both the specification and the transformation
mechanisms are encoded in a functional notation, called
form, which facilitates algorithmic derivation, structural
transformation and verification. In the algorithmic deriva-
tion phase, possible computational schedules for a given
application function are generated from a partial specifi-
cation of the target architecture. At the hardware level,
structural transformations are applied to explore possible
datapath designs, where different designs yield different
performance and cost. Other design metrics such as inter-
face buffer size, softiware code size and data size etc. are
also included to determine analytically a hardware/
software partition.

1. Introduction

The goal of our codesign process is to synthesize com-
ponents from generic specifications, usually prescriptive in
nature, and transform them to suitable structural forms
which could be mapped either to software processes or
hardware circuits. The specific objective of the codesign
process is to find an implementation that satisfies all the
system design constraints, and has least cost. In the codes-
ign process, refinements of mixed hardware-software com-
ponent behaviours are tightly coupled to afford a fine step
traversal of the design space which enables us to avoid
post-integration design optimisation typical of many other
codesign processes. To support such an integrated design
environment, we have a single high level notation that de-
scribes components in a manner independent of their final
implementation technology. A single notation provides for
codesign a unified system specification device and the pos-
sibility of joint hardware-software optimisation, which in-
volves the analysis of different partitioning possibilities at
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the algorithmic level and the evaluation of design tradeoffs
for different target implementations at the structural level.
This paper uses an example from a class of digital sig-
nal processing applications to illustrate the codesign proc-
ess. The specification language is based on a functional
notation, called a form [1,2]. Its declarative semantics fa-
cilitates transformational synthesis, symbolic manipulation
and verification [3] which provide a basis for integrated
design exploration during hardware/software partitioning.
The design process starts with an executable specification
in form, and proceeds through a series of symbolic manipu-
lations and structural transformations. The symbolic ma-
nipulations are aimed at determining the best possible
computational schedule that makes efficient use of the un-
derlying resources (algorithmic derivation) and the struc-
tural transformations refine the behavior of a given hard-
ware structure into one with lower cost. Its advantage is
that a design synthesised with the transformation system is
verifiably correct. Validation of its correctness is done by
formal equivalence checking [3] which ensures that suc-
cessive transformations preserve both the behaviour and
functionality of the original design, while improving the
performance or resources usage. The partitioned compo-
nents are then mapped to a target embedded system archi-
tecture which consists of a programmable processor core
(software module), an application specific coprocessor
(hardware module) and a set of memory modules for data
and instruction storage. To synchronise these communicat-
ing modules which are typically running at different rates,
the inherent synchronisation associated with function ap-
plication is mapped to an interface module. A typical inter-
face module comprises control and data buffers with a spe-
cific invocation/interaction procedure (protocol) required
for the exchange of data. The buffer size may vary with dif-
ferent partitions of hardware and software and, the amount
and rate of data transferred between them. It is, therefore,
best determined during hardware/software partitioning.
The remainder of this paper is organised as follows.
Section 2 gives a brief introduction to the form notation.
Section 3 presents the case study codesign of a two-dimen-



sional discrete fourier transform operation, including its
specification in form, the transformation into a more effi-
cient schedule using divide-and-combine algorithmic deri-
vation, the coprocessor design, the software generation and
the hardware/software partitioning.

2. The form notation

The form is based on a variant of FP [4], with exten-
sions to support multi-dimensional structured streams, de-
lay functional and synchronized concurrent forms [1,2].
The main advantage of FP is its combinative property that
allows function composition and construction by means of
combining forms. It captures naturally function sequenc-
ing, concurrency and stream synchronization. The primary
feature of a stream is its ability to model time-ordered flow
of continuous data during function evaluation [5] and it
supports modular interaction between entities implemented
in hardware and/or software. This interaction between
functions can be mapped to an implementation in many
ways, such as shared buffers and common bus with an ap-
propriate protocol to govern communication.

The main component of form is the set of combinators
that describe sequential, concurrent, conditional and syn-
chronizing behaviours. The application of a set of trans-
forming algebraic rules allows trade off between resources
and performance while maintaining behavioural and/or
functional integrity [3]. The primitive combinators include
serial composition (denoted by f,-f,), conditional composi-
tion (denoted by (f,.f,)?p), concurrent composition
(denoted by [f,.f,]) and the delay functional (denoted by
Zf) which is used to construct loop/feedback structures [6].
There are some other primitive functions, such as the
identity function (id) and selectors (ot and @ — where
selects the head of a sequence, @ selects the last element of
the sequence and (oi+i) selects the (i+1)th element of the
sequence in a finite multi-dimensional structure.) The in-
tuitive meaning of each construct is stated below.

Serial composition f,-f, means that the result of apply-
ing f, to a stream is a stream which is passed to f,, where
both functions operate at a rate correlated to the input
stream. Conditional composition (f,,f,)?p means that for
each data stream, the predicate p is computed first, then
either f, or f, is applied depending on the truth value of p.
Thus, this computation is non-speculative. An eager
evaluation of a conditional can be defined as:

P S, fr12 (o1, @)200) - [p, f, , £, ]
which applies the predicate and both branches of the con-
ditional concurrently, then selects a result. Note that the
two conditionals have different implications with respect to
resource usage. The eager conditional consumes more re-
sources for each stream data element than the non-specula-
tive one. Concurrent composition [f,,f,] means that the in-
put stream is passed to both functions and the applications
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are performed concurrently. The resulting structured
stream is then passed out at a rate correlated to the input
stream. Therefore, it induces synchronization on concur-
rent activities, even though they may have vastly different
execution time. Finally, the delay functional Zf returns the
previous stream element of the result of f applied to the
same input stream, where the initial output function is de-
noted by f@[0]. The default value of Zf is # (an undefined
function) which always returns the undefined object L.

Form also supports named sequences and treats them as
first-class objects which can be referenced and passed as
arguments to forms. Technically, the selector function can
achieve the same objective as a named sequence, making
naming redundant in the language. However, associating a
name with a sequence can improve appreciably the read-
ability of the notation. The DotProduct example below il-
lustrates the use of the named sequences, a and b.

hd :: a
tail :: a+1... @

DotProduct a b :: + [ x (hd a) hd b, DotProduct (tail a) tail b]

3. The case study design

Many digital signal processing algorithms can be for-
mulated naturally as divide-and-combine computations,
such as the fourier transform and FIR filters etc. This class
of computation exploits the potentially high degree of data
parallelism by partitioning input data into separate, smaller
subsets; performing the same computation on each subset;
and then combining the results into a result for the whole.
For appropriate data, the partitioning process may be ap-
plied recursively until the data size is small enough for the
function to be applied directly. In this case study, where the
objective is to codesign a system for computing the two di-
mensional fast fourier transform (2DFFT) operation, the
function is implemented in a co-processor (hardware mod-
ule) which contains many parallel resources for processing
the partitioned data at high speed. The partitioning of the
input data and arranging it in sequences into a data buffer,
and the loading of instructions into the co-processor are ac-
complished by interleaving the execution of two software
processes on a processor core (Figure 1). This divide-and-
combine parallelisation method is used to generate a range
of hardware/software partitions by varying the size of the
data subset that can be processed by the coprocessor. To
determine a suitable size for the hardware/software parti-
tion, an analytical model is developed to enable the per-
formance evaluation of designs. The model is composed of
a set of design parameters, such as software code size,
hardware module size, buffer size at the interface and exe-
cution time of the computation etc. A heuristic search
method may be used to locate a feasible solution that satis-
fies the design constraints. For each such partition, the be-
haviors of the hardware, software and interface modules



are generated and the behavioral hardware module is then
synthesised into an optimised structure.

Recently, Luk has also developed a hardware/software
partitioning strategy for divide-and-combine algorithms. It
is based on what he called a "divide by software and con-
quer by hardware" methodology [7,8]. Our approach is also
based on this methodology. However, our work contrasts
with his approach in that we have developed an analytical
model for the performance evaluation of this class of al-
gorithms, which takes into account the communication cost
at the interface. This enables a more accurate determina-
tion of a hardware/software partition. The rest of this sec-
tion presents the case study design.

Processor Core

Iinstructions writing
T sl Bl Cco-processor
execute the
> | microcode program
data loading
onio the input

bufiers

Figure 1. The processes running on the processor core
and the interaction with the co-processor

3.1 Problem specification

The two dimensional discrete fourier transform (2DFT)
of x(n,, n,) is defined by:

N-1 N-1
th = Z zxnlnzm;‘klw?k: LB k], kz <N-1
ny=0n,=0 i

where @y =e N, i=+-1
The form description of this mathematical definition,
which is formulated in terms of a multidimensional map
operator which is defined in the box below, follows.

The 2D input sequence x(ny,n,) is expressed as:

(6]

X = [Xoo s Xomenh -+ + Kimetyor -+ X(mety(m-n)] |
and the coefficients matrix as:

2 m- m-
wm[ S [ [o)N°,...,mN‘ ”""’],...,[mN‘ Wrptio
where m=N. The innerproduct generator of the 2DFT
function can be expressed as:

= o o, @ (@
xk1k2 - +‘ + - X XN WN
where the plus operator, + sums all of the elements in the
input sequence. Finally, the 2DFT function is given by:
2DFET =] thz I ky ¢ [0..N-1], k, <~ [0..N-1] ]

where the infix operator "«" successively instantiates the
form for each of the indices.

(m=1)kz+(m-1)k.
I"‘m aHm ),]]

3.2 Divide-and-combine algorithm derivation

To support algorithm design from specification, form
provides a formalism for describing the symbolic manipu-
lations of specifications. This formalism is based on mean-
ing-preserving function transformations. A sequence of
function transformations is applied to an initial form
specification and derives a computational schedule with
desired performance and resource usage. This requires a
methodology to analyse the structure of a specification that
is common to a class of algorithm, and to direct appropri-
ate transformation mechanisms to derive the computation
in that class. In this work, the derivation is carried out by
hand (automatic approaches to structure analysis and the
selection of transformation mechanisms to produce an ef-
ficient schedule are currently being explored).

This section gives the result of a derivation of 2D Fast
Fourier Transform (2DFFT) from the 2DFT specification
using the divide-and-combine parallelisation method. The
resulting function F can be expressed as a general form:

F = combine - G" - divide

® Multidimensional Map operator, f °:

fu An(mj Bn(m} :: [ (f =] aA“(m) GBn{m)), o (f o (DAn{m} G)Bn{m))]
°AY B 1t oA aB ", 1°(0+l... ®)A" (0+1...@)B." ]

L marl
, otherwise

where A,™ , B,™ denote an m-dimensional block with n elements in each dimension. The function f° is de-
fined recursively by applying itself to each element in the most significant dimension. Note that the elements
in [aA,™, ..., ®A,™] have one smaller dimension than A,™, so that this recursive definition terminates. The
base case (second line) states that f is applied to each element in a single dimensional sequence. [1]

@ Quadrant selectors:

first quadrant o, [[o.. (@2-1)]a, .., [o. (@2-1)] (02 -1)]

second quadrant atl [[w2... 0]l .. . [02.. o] (02-1)]
third quadrant a+2, i [[o... (@2 -1)] 02, .. [a.. (02-1)] ]
fourth quadrant (OPS [[02... 0] a2, ...,[0/2...0] 0]

The quadrant selectors select all the elements in each quadrant from a 2D-sequence. Note that the row dimen-
sion is assumed to be the most significant dimension, which will be selected first before the column dimension.
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where divide partitions the input data into subsets that are
to be processed concurrently and independently by the
function G, and the results are then combined using com-
bine. In this derivation, the determination of the function
divide requires knowledge of the underlying implementa-
tion technology which, in this case, is the coprocessor data
path. For instance, in the case of the 2DFT operation, if an
adequate number of multipliers is available in the data
path, the divide function can partition an input 2D se-
quence into rows and then an entire row transform may be
performed in a single operation. On the other hand, if only
a few multipliers are available, an alternative schedule,
such as transforming a small window at a time, is more'ap-
propriate and the divide function, in this case, may parti-
tion the input 2D sequence into subsequences. Assume here
that the 2D sequence is divided into quadrants, and define:
E xN{z) WNtz} o] xNIZ) WN(z)
Applying the divide-and-combine parallelisation, we get:
2 2
: XN{ }WN( ] 2 (2 () 2
X ([Fogxy ™ oWy '™, Farloxg™ o, W™,
F o:+2q-xN(2} aq-WN(z}, F a)q-xN(z) aq-WN{z) 1)
[G)NO’ mN(NJ?)kz’ mN(NfE)h, wNM)kz*-(N"?)kq] s LY
Equation (1) says that function F can be computed by par-
titioning the input 2D sequence into a sequence of four
quadrants and applying F recursively and concurrently to
each quadrant. The four results are then combined using
the combine function "+x"". The individual steps of this
derivation are not included here for space reasons. Some of
the transformation mechanisms that were applied are sim-
ple algebraic laws, such as law of associativity and dis-
tributivity, some are laws relating different multi-dimen-
sional structures and, some are based on the unfold/fold
transformations of Darlington [9].

The divide-and-combine parallelisation can be seen as a
rooted balanced tree (fig 2) with leaf nodes representing the
least task size supported by the implementation technology
(the co-processor). A depth-first-traversal of this tree yields
a sequential schedule (software code) for executing the co-
processor operations. By expanding the tree into different
levels, different sizes of leaf nodes are generated. Thus, the
depth-first-traversal of this partially expanded tree enables
different sizes of hardware/software partitions to be pro-
duced (Fig 2). The behavior of depth-first-traversal of this
tree is expressed in a function S below: Let
x'N(2}:: [0 g ]-xN(2] and W'N(zl nlog,.., o ]-WN(z)
Define S x’N(z) W’NIEJ =

[F ox\@ oW\ @, Z8 (a+1... @)%, W @]
which states that the concurrent applications of recursive
function F in Equation (1), on the four quadrants, are se-
quentialized using the Z-operator in form. This sequential
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behavior represents a depth-first-traversal of the tree. Thus,
from Equation (1),
F chz} an t+x7 (8 X’N(E) W'N(z))

[ mNo’ wN(wz}kz’ mN{we}u,, Ct)N(r~.|f2)p:2+(1\|;2)k1]

Possible sizes of leaf nodes to be
impleﬁnemed on the coprocessor

Figure 2. Possible expansions of the divide-and-combine tree, with
different sizes of leaf nodes to be implemented on the
coprocessor as a piece of hardware or as a microcode.

3.3 Hardware co-processor architecture

The 2DFFT coprocessor may be realised as a semi-cus-
tom ASIC processor with the following synthesisable units:
¢ A programmable microcoded control unit which con-

sists of a sequencer, a control store, and an address

generator to access a coefficient ROM.

e An application specific data path which contains a
shared register file, coefficient ROM, complex multi-
plier/accumulators and shared input/output buses.

» A buffered interface unit which uses a pre-defined R/'W
handshake protocol and supports non-blocking Read/
Write communication. The main components of this
unit are a FIFO controller and three FIFO buffers for
control instructions, and input and oatput data.

The coprocessor begins its instruction execution when the

processor core has filled up both the input data buffer and

the control buffer. The coprocessor control unit then de-
codes the instruction at the top of the control buffer and
executes the microcode segment that interprets the instruc-
tion. This process is halted once the control buffer is empty
and resumed when the buffer is filled up again by the proc-
essor core. The processor core will read the results from the
output buffer when the process terminates. An architectural
model of the coprocessor is shown in Figure 3.

start reset

s 1 i
Reg Salector
fio i B MICROCODED CONTROLLER

host processor

Bus I/O Interface
|

- i
Figure 3. An architecture block diagram for 2DFFT co-processor & interface



Datapath — A partial expansion of the divide-and-combine
tree enables the determination of a suitable size for the
hardware/software partition. Leaf node of the partially ex-
panded tree defines a task to be implemented on the hard-
ware coprocessor. Its datapath is characterised by the be-
haviors of the task. Various implementations of the data-
path are then generated by applying different structural
transformations [3] to allow tradeoffs between resources
and time. The transformations are guaranteed to preserve
the functionality of the structural specification. For
instance, if the datapath unit in Fig3 has four complex
multipliers and each shares a common input bus, it would
have the same "functionality" as the structure with the four
multipliers connected to four separate input buses. On the
other hand, different structures which are function-equiva-
lent may yield very different performances. In the previous
case, if a complex multiplication takes four clock cycles
and an addition takes one cycle, the former structure re-
quires nine cycles to complete while the latter one takes

only five cycles.
Xm“hh Xo WRE Xo WA
L xo W xoWl

e +k
X1V %

i 1 H |

- - L4 L
0 ke Ky Ktk
Xoo W Xo Wi™ XaoWh' Xy W™

time
Figure4. The behavioral model of the datapath structure in Fig3.

The behavior of the datapath unit in Fig3 is specified by
a linear recursive form @, (defined below), which models
the shared input bus structure of a set of multipliers by re-
cursively delaying their input sequences using Z-operators
so that data elements are fed into each multiplier at sepa-
rate time steps (see Fig 4). Assume that the divide-and-
combine tree of the function F in Equation 1 is expanded
in full, the leaf node of the tree would define the base case
of F, denoted by F below.

(M (. (1) ypy (1)
FoXy W, i x00 W,
1)
= [Xo0r Xo1» X10 X4

W4(1) = [mNo, G)Nkz, me“ mNu1+k.‘,]

Now, @, x‘,m W4(1) i projy [ - [u.x4{1), oW,
®, Z(o+1... 0)x,") Z(a+1... ©)W, ") ]

where the operator proj; projects the current non-undefined

elements onto an output bus at each unravelling step. It is
also shown in [3] that:

1 1 1 1
F, xd( ’W4( )zf Acc- @, x4( ’W4( :
where Acc = +- [ id, ZAcc] specifies an add-accumulator
in the datpath unit and =;denotes function-equivalence.

where X,

and
1
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Hardware multiplier — In the datapath description, the
operator "X" represents a functional abstraction of the
complex multiplication operation. The abstract function is
progressively refined to a more detailed level until it can be
directly mapped into library components which is the low-
est level of a given implementation technology. The library
functions may include normal logic and arithmetic func-
tions, or even more complex floating point operations.
Form supports the description of functions at different lev-
els of refinement. An example form description of a serial
multiplier is given below and is one of the library functions
being used to implement the x-operator.
/* One bit adder description */
sum :: @[ o... 0+2]
carry :: or - [ and- [o+2, @ [ o, a+1] ], and: [a, o+1] ]
onebitAdder :: [carry, sum]
/* n-bits adder description */
nbitAdd a b carryin
:: [ o-PrevAdd, (nbitAdd (c... ®-1)-a (a... ®-1)-b
o-PrevAdd) ], -PrevAdd ]
where PrevAdd :: onebitAdder{ w-a, @b, c]
nbitAdder :: [ /2, [ (@/2)+1... ®] ] - nbitAdd
/* Add and Shift */
shifter :: [ a... w-1]
AddShift ¢ acc multiplier multiplicand
i1 [0, shifter- [(nbitAdder- [acc, multiplicand, 0],
[c,acc] )?w-multiplier , multiplier] ]
/* nbit serial multiplier */
SMult :: (( [ AddShift: [a.... ®-1], ®-1, dec- ®],
id )?gt0, ® ) - Z SMult
SMult@[0] a b = [0,0,a,b,n]

SerialMulta b :: [ a+1, a+2]- (SMult a b)

Software code generation — refers to the process of gen-
erating from a form specification an executable program
for both the processor core and the coprocessor. In the al-
gorithmic derivation phase, a partial-order schedule of the
operations is derived. The derived specification may con-
tain concurrent combinators [f,, ..., f,], so invocations of
the concurrent functions f, to f, must be sequentialized in
order to run on the processor core. Thus, at the program
level, the partial order schedule is converted to a total or-
der schedule. However, at the micro-program level, the
partial order schedule remains in order to utilize the full
parallelism offered by the coprocessor datapath. Each of
the form combinators in the total order schedule is then
translated into code in a standard programming language,
for example, a linear recursive form or a map operator is
translated to a for—loop.

Recall from Section 3.2 that function S expresses the
sequential depth-first-traversal of the tree, which can be
translated into nested-for-loops with the function F being
invoked once in each loop. If the data size is assumed to be



NxN where N=2" and there are L-1 levels of nested loops.
The innermost loop computes the base case of F on the
coprocessor, which reads its input sequence X, from the
input data buffer. At each invocation of the function F, the
combine function "+x"", which uses the results of S, is
also computed on the coprocessor. This requires the results
of S to be stored in a coprocessor register-file and the
required maximum number of registers is 4x(L-1), that is,
four for each level of the tree. In the computation of the
combine function, the coprocessor also reads the constant
coefficient sequence W, /@ from the coefficient ROM. The
maximum ROM size for storing the coefficients is 4xL.

The result of the code generation for both the processor
core and the coprocessor is shown in Fig 5. Note that the
input sequence X,@ has already been rearranged by a soft-
ware process AddressGenerationProcess(), so that the right
elements are processed in each loop. This software process
starts running when the control buffer is filled. When the
buffer becomes empty, an empty signal is generated to in-
terrupt the processor core which then immediately resumes
another process (2DFFT process in Fig 5) to feed more in-
structions into the control buffer, and suspends the Ad-
dressGenerationProcess() process by saving its current
context. This process can be characterized by a 4-way re-
cursive function (Fig 6) where each recursion implements
one of the four quadrant selector functions (0t;... ®,).

3.4 Hardware/software interface

The interface module between the processor and the co-
processor consists of three FIFO buffers, a control buffer,
and an input and an output data buffer. Each buffer entry
can be accessed using memory-mapped I/0. When the
buffers have been loaded, the processor asserts the start

signal (by writing an appropriate control code to a control
register) of the FIFO controller, which then starts a coproc-
essor execution cycle by sending it an instruction. The
processor polls the results in the output buffer. Note that
the size of the input buffer is determined by the differences
between the rate of data production by the processor and
the rate of data consumption by the co-processor.

Communication protocols — The communication interface
between the FIFOs and the processor and between FIFOs
and the co-processor is composed by a predefined template
which implements the handshake protocol [5]. The
template contains sender and receiver circuits for asyn-
chronous data transfer. Figure 7 illustrates the interfaces
specification and the Read/Write handshake protocol, that
have been described in the MODAL HDL [2].
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cop_fifo_interface(p.in read, ack_from_fifo, dinfifo[16..1], fifo_status;
p.out request_to_fifo, dout_to_cop[16..1])

fifo_cop_interface(p.in request_from_cop, queue_data[16..1], empty, full;
p.out ack_to_cop, dataout[16..1], filo_stalus)

Figure?. Interface between the FIFO controller, processor and co-processor
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Figure 5. The software code generated for the 2DFFT Figure 6. The Address Generation Process
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3.5 Performance Evaluation - HW/SW partitioning

Given a divide-and-combine tree derived from an initial
form specification, various hw/sw partitions can be created
by expanding the tree into different levels, with the leaf
nodes to be implemented in hardware (see Fig 2). The size
of the leaf nodes defines the granularity of the hardware
module where the larger the grain size, the lesser the
interaction between hardware and software, and the greater
the concurrency and the higher the performance. However,
a larger grain size also means a higher hardware cost. This
section examines various design metrics to assist in the
hardware/software partitioning. To estimate the overall
system performance of this case study design, the following
parameters of the architectural model were considered:

t,= processor data production rate (cycles/data)
t. = co-processor data consumption rate (cycles/ data)

tige= time period in which the coprocessor is computing,
but not consuming any data.
toomp= time period in which the coprocessor is computing.
t,, = interrupt cycle time (interrupt latency + interrupt
service time)
t,= memory transfer time (cycles/data) for writing an

instruction into the control FIFO buffer.
S = input data FIFO buffer size
Q= control FIFO buffer size
= square root of the total data size
L= log,N (the height of divide-and-combine tree)
1= the level to which the tree is expanded, and where
leaf nodes define the grain size of the coprocessor.
code the number of software instructions sent from the
size = processor to the coprocessor

The following assumptions for the model are made:

1. The FIFO controller interrupts the processor when the
control buffer is empty

2. Once an interrupt is signaled, the coprocessor continues
to complete its current instruction. It then waits for the
control buffer to be filled up again by the processor core
before resuming its instruction execution.

3. During the initialization cycles, the control and input
buffers are being filled up. The coprocessor executes its
first instruction once they have been filled.

To enable the coprocessor to consume its input data
continuously (i.e. data is always present in the buffer for
the coprocessor to process), the total time needed to pro-
duce all the data from the processor must be less than the
total time taken for the co-processor to consume them.
With this requirement, an inequality for the size of the in-
put buffer is established (proof is omitted here):

t

P
where codesize = 1+4+...+4" with 1 < L.
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The size of the data buffer at the interface is crucial to
the overall performance of the function. For instance, if S
is below the value determined by the inequality, the poten-
tial parallelism between the processor and coprocessor will
be severely reduced as the coprocessor has to stop and wait
for the processor to write data into the buffers. By selecting
the lower bound for S as the size of the data buffer in a
hardware/software partition, the execution time of the
function can be evaluated.

Case @: t 2 t;,, — this states that during the interrupt
cycles, if the control buffer has been filled up but before the
coprocessor finishes its current instruction (the one that
causes the interrupt), the coprocessor can continue to exe-
cute its next instruction without stopping. The overall exe-
cution time, t,,.. is equal to the time needed to initialize
the control and data buffers, t;;, plus the total coprocessor
execution time, teop:
tinit =tixQ+tp><S
bop = codesize X (coprocessor microcode execution time)
= (144+...+4"1 ) x (4'%9 + 4"1%9 + .. +4%%9)

Case @: toomp < tine— this states the reverse, which sug-
gests that the coprocessor must idle until the control buffer
has been refilled.

texec = tinit + teop + (refilling time of the control buffer)

= tinie + toop + (tiny - toomp)X (codesize/Q ~1)

exec

x10

execution time vs coprocessor level

) 2 4 6 8 10
coprocessor level

The graph above shows the relationship between the
coprocessor level, (1) and the execution time of the func-
tion, (t..) in cycles for N=1024. As expected, when the
grain size of the co-processor increases (at a higher I-
value), the execution time decreases. However, it levels off
near the half-way point and then decreases rapidly again.
This leveling off near the half-way point, (1 = 5) is caused
by the "buffering” effects. As functions are migrated from
software to hardware, the execution time of each coproces-
sor instruction increases. This in turn offsets the decrease
in the loading time of the buffers. As the migration moves
beyond that point towards higher 1-values, the loading time
becomes insignificant, and the overall execution time is
dominated by the coprocessor execution time.



4. Concluding remarks

This paper presents a codesign framework based on a
functional notation, form which supports unified specifica-
tion of system structures, joint design exploration, verifica-
tion, and system performance evaluation. The main objec-
tive is to find an appropriate partition of hardware and
software to efficiently compute a function. The methodol-
ogy here does not provide solutions to every class of com-
putational paradigms, but it does provide the means of en-
coding rules and transformation mechanisms to solve a
particular class of problem, thereby lifting the level of
traditional hardware synthesis (behavioral level) to allow
the early integration of algorithm design (function level)
with hardware design. The particular class of computations
being considered are the divide-and-combine data parallel
algorithms. The codesign flow starts with an executable
specification in form, and applies a divide-and-combine al-
gorithm derivation. This generates a set of possible partial-
order schedules (divide-and-combine tree) to run on a par-
tially defined coprocessor model. At the hardware level, a
set of structural hardware transformations can be applied to
yield a performance effective datapath. Each of the trans-
formation mechanisms is formally verified to preserve the
functionality of the initial structure. From the partial-order
schedule, an analytical performance evaluation technique is
used to locate the level of partitioning, that satisfies some
performance-cost constraints. Once the level of partitioning
is determined, the partial-order schedule can be converted
to a total-order-schedule to be implemented in software,
and the hw/sw interface is then generated. This case study
demonstrates this design process. Future work will include
the use of intelligent rules selection to assist in the algo-
rithm derivation and possible mixed-level transformations
that take into account the interaction between the algorithm
derivation and the structural hardware transformation.
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