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Abstract

This paper presents a system level design methodology
and its implementation as CAD tool for the optimiza-
tion of heterogeneous multiprocessor systems. These
heterogeneous systems, consisting of dedicated as well
as programmable processors, are highly suitable for
performing complex schemes of image processing al-
gorithms under real time constraints. It starts from a
speci�cation of the image processing scheme, explores
the design space based on a �nite set of parametrizable
processor modules, and by using mixed integer linear
programming as mathematical framework derives het-
erogeneous systems, being optimal in terms of area ex-
pense and throughput rate.

1 Introduction
Today's real{time image processing applications

are characterized by an increase concerning compu-
tational requirements and algorithm complexity. Ex-
amples can be found in CCITT visual telephony [1],
and JPEG, MPEG [2] image compression and cod-
ing schemes. The realization of such composite DSP
schemes calls for architectures, providing extremely
high computational and throughput rates, which can
only be achieved by massive application of parallel
processing and pipelining as provided by multiproces-
sor systems. These DSP schemes can be splitted into
several subtasks with di�erent requirements leading to
di�erent architectures appropriate for the single image
processing tasks of the whole scheme.
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Fig. 1: Heterogeneous Multiprocessor

One e�cient hardware realization is a heteroge-
neous multiprocessor system for the implementation
of the composite scheme, see Fig. 1. Such heteroge-
neous systems consist of di�erent, application{speci�c
processors like array processors for implementing low

and medium level tasks and programmable processing
elements on the other hand to provide the exibility
required by medium and high level tasks. Unfortu-
nately, for each single algorithm of the DSP scheme a
large multitude of dedicated as well as programmable
processor alternatives can be found. Thus, the ques-
tion arises, which combination of application{speci�c
and programmable processors leads to an optimal het-
erogeneous multiprocessor system for a given image
processing scheme. Due to the large multitude of pos-
sible heterogeneous systems, it is impossible for the
human designer to choose manually the best combina-
tion. Therefore, a systematic design methodology for
the optimization of heterogeneous systems is manda-
tory.

The remainder of this paper is organized as follows:
Section 2 reviews related research. Section 3 describes
our system level design methodology for the optimiza-
tion of heterogeneous systems. First results, using a
video encoding scheme as application example are pre-
sented in Section 4. Section 5 gives some hints on the
implementation as CAD tool. Concluding remarks are
provided in Section 6.

2 Related Research

Especially, in the �eld of high{level synthesis there
has been extensive research on mapping algorithms
onto multiprocessor systems. Examples concerning
methodologies for mapping one single algorithmonto a
dedicated datapath or even onto an array of processing
elements like systolic array processors can be found in
[3]{[4]. Furthermore, DSP environments like CATHE-
DRAL II, 2nd [5]{[6] were developed in order to derive
VLIW architectures consisting of synchronous DSP
units with dedicated datapaths connected via a bus,
addressing medium throughput applications. How-
ever, image processing applications demand for archi-
tectures providing extremely high computational and
throughput rates.

Therefore, these approaches provide no mean for
the derivation of heterogeneous systems, being opti-
mal in terms of area expense and throughput rate for
the execution of composite schemes of image process-
ing algorithms. So, we present a new methodology for
the optimization of these heterogeneous systems at the
system level.
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Fig. 2: Design flow of the system level design methodology

3 Design Flow
The design ow for the optimization of heteroge-

neous multiprocessor systems can be decomposed into
three main steps, i) the speci�cation of the composite
DSP scheme with all single image processing tasks or
algorithms and their dependencies, ii) the design space
exploration with respect to a set of suitable processor
alternatives, and iii) the optimization of the overall
multiprocessor system, see Fig. 2.

3.1 Speci�cation

The �rst step comprises the speci�cation of all tasks
or single algorithms for the composite DSP scheme as
well as the dependencies between the tasks. A suit-
able form for representing a DSP scheme at this level
is a task graph GT = (V;E) with each vertex vi 2 V
designating a single task mi or algorithm ALGO(mi),
and each directed arc ei;k 2 E designating a data de-
pendency between two adjacent tasks mi;mk.

3.2 Design Space Exploration

After all single tasks have been speci�ed, it is nec-
essary to explore the possible design space for the
composite DSP scheme, whereas for each single im-
age processing algorithm of the scheme a large set of
suitable architectures can be derived. Therefore, an
investigation of algorithms and processor alternatives
is mandatory. Our approach is to supply two libraries:

2 Algorithm Library
2 Processor Library

The algorithm library is intended to have the
user select all single image processing algorithms
ALGO(mi) of the DSP scheme as well as their pa-
rameters �i, whereas the processor library is intended

to provide di�erent processor alternatives suitable for
each algorithm and adapted to the algorithm's param-
eter set �i. This leads to an assignment f of a task's
algorithm ALGO(mi) to a set of parametrizable dat-
apaths or processor alternatives DPj. Thus, in the
sequel, the algorithm library, the processor library, as
well as the parametrizable assignment is described.

3.2.1 Algorithm Library

The algorithm library can be thought of as a hier-
archical tree, distinguishing between regular low{level
algorithms on one side and non-regular, data depen-
dent medium{level algorithms on the other side. Typi-
cal examples of low{ and medium{level algorithms are
given below:

Low{Level Algorithms

� �ltering (FIR, IIR, etc.)
� transform (DCT, DFT, etc.)
� motion estimation (BMA, etc.)

Medium{Level Algorithms

� adaptive quantization (Q, etc.)
� run length coding (RLC, etc.)
� variable length coding (VLC, etc.)

Since for composite DSP schemes all single image pro-
cessing algorithms are known in advance, there is no
need to represent each algorithm by means of a signal
processing language like SILAGE [5] and synthesize
it by means of a datapath compiler. On the contrary,
with respect to the design space exploration of hetero-
geneous systems, it is su�cient to characterize each
algorithm class by a prede�ned set of parameters.
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Fig. 3 shows the algorithm library as hierarchi-
cal tree, each node representing an algorithm class,
and inheriting its properties, or parameters �i, to all
its successor nodes, algorithm subclasses respectively.
Here, each leaf node corresponds to exactly one single
image processing algorithm of the DSP scheme.

����i
TW TH TL KW KH KL RW RH RL SW SH SL DW DH DL Example �i

Transform
X 1D–DCT �TL

�

Transform
X X 2D–DCT �TW, TH

�

Filtering
X X 1D–FIR �TL, KL

�

Filtering
X X X X 2D–FIR �TW, TH , KW, KH

�

Motion
Estimation

X X X 1D–BMA �RL, SL, DL
�

Motion
Estimation X X X X X X 2D–BMA �RW, RH , SW, SH , DW, DH

�

Table 1: Parameter set �i for some low-level algorithms

Table 1 shows the di�erent parameter sets �i for
some low{level algorithms, i.e. �ltering, transform,
and motion estimation. Each row of Table 1 corre-
sponds to one low{level algorithm class with a distinc-
tion between 1{ and 2{dimensional algorithms. The
columns indicate which parameters are necessary to
characterize one speci�c algorithm.
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Fig. 4: Parameter sets �i and their meaning

Furthermore, a typical representative for each al-
gorithm class is given, for example a 2{dimensional
discrete cosine transform (2D-DCT), belonging to the
transform class. The meanings of all parameters are
again visualized in Fig. 4. For example, in order to
characterize a 2{dimensional transform, two param-
eters TW ; TH are mandatory, whereas TW designates
the width and TH the height for an rectangle image

block of pixels to be transformed by a DCT or DFT. In
case of a 2{dimensional �lter algorithm like FIR, two
additional parameters KW ;KH are necessary to spec-
ify the width KW and height KH for the size of the
kernel window, to be passed over the rectangle image
block. Finally, motion estimation by blockmatching
algorithms (BMA) can be described by six parameters
as follows: The width RW and height RH for the ref-
erence block of pixels, the width SW and height SH
for the rectangular search area, as well as DW ; DH ,
designating the maximum displacement in horizontal
and vertical direction to look for the best matching
block within the search area region with respect to a
speci�c blockmatching criterion, like the MAD (mean-
of-the-absolute-di�erences) criterion. Concerning the
1{dimensional algorithms a similar set of parameters
can be derived.

Based on these algorithm speci�c parameters �i,
our aim is to explore the permissible design space by
deriving a set of parametrizable datapaths DPj(�i)
by means of a processor library as follows.

3.2.2 Processor Library

In order to restrict the possibly large design space
to a �nite set of parametrizable, architectural alterna-
tives, a processor library with �ve di�erent processor
types for each single image processing algorithm was
developed. The library contains di�erent templates
of processors, whereas the datapath DPj of each pro-
cessor is customized to the properties �i of any image
processing algorithm to be executed by one of the pro-
cessors.
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Fig. 5: Different processor types

Fig. 5 shows the di�erent processor types, called
SINGLE, PAR, PIPE, ARRAY, and PROG. For exam-
ple, SINGLE denotes a processor type, performing all
operations of the algorithm sequentially with one ded-
icated processing element (PE), thus leading to a low
area expense at the cost of a large execution time.
In contrast to this, the processors of type PAR and
PIPE provide the possibility to execute the operations
of the algorithm in parallel or in a pipelined mode.
Furthermore, the processor of type ARRAY provides
both, parallel and pipelined execution of operations
by a two dimensional grid of processing elements. Ad-
ditionally, a exible and programmable processor type
called PROG is supported, preferably suitable for per-
forming irregular medium{level algorithms.

Since we are interested in the best combination of
application{speci�c and programmable processors, it
is necessary to characterize each single processor alter-
native by some performance and expense attributes.
The most relevant attributes of any processor pj or
associated datapath DPj with respect to an optimiza-
tion of the overall multiprocessor system are 1) the ex-



ecution time �i;j for one speci�c algorithmALGO(mi)
to be executed by the datapath, and 2) the area ex-
pense of the datapath itself. Clearly, the area expense
can be estimated from the number and types of pro-
cessing elements (PE) or building blocks (BB) of each
datapath. This leads to the de�nition of a parametriz-
able datapath DPj :

DPj
def
= f�i;j ;Aj ; fPE1; : : : ; PEKg ; fBB1; : : : ; BBLg ; : : :g

We experienced, that all these attributes can be
calculated deterministically in advance, depending on
the parameter set �i of the algorithm class and on the
processor type. This is true, especially in case of reg-
ular low{level algorithms. For example, the execution
time � for a �ltering algorithm like FIR is given by:

� =

8<
:

1 +KH �KW � TH � TW : SINGLE

1 +KH � TW � TH : PAR

1 +KH +KW � TH � TW : PIPE

1 +KH + TW � TH + 2 � (KW � 1) : ARRAY

The expense of the four corresponding datapaths
is given in Table 2 in terms of number / type of pro-
cessing elements (PE) and building blocks (BB). As
can be seen, these datapath attributes, necessary to
estimate the area expense, can also be calculated de-
terministically with respect to the parameters �i of
the algorithm class.

PE BB
TYPE MULADD ADD MUL ADD REG

SINGLE 1 1 1 1

PAR KW KW KW

PIPE KH 1 KH 1� KH 1� KH

ARRAY KWKH KW KWKH KW(1� KH) 2KWKH� 2KW� KH

Table 2: Number of PEs and BBs for a FIR datapath

Consider, for example a �ltering algorithmFIRwith
an image block size of 8*8 pixels and a kernel window
of 3*3 �lter coe�cients, i.e. � = f8; 8; 3; 3g.
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Fig. 6: Processor architectures for FIR filtering

Then, the alternative processor architectures of
type SINGLE, PAR, PIPE, and ARRAY are sketched
as schematic on a register transfer level in Fig. 6 with
the two di�erent PEs (MA, A) emphasized. For the
other algorithm classes, similar architectures can be
derived; but they will not be presented here.
3.2.3 Assignment

The last step of the design space exploration is
denoted assignment, since, from a formal point of

view, it can be regarded as a one{to{many mapping
f from a task's algorithm ALGO(mi) to a �nite set of
parametrizable datapaths DPj as follows:

fassign : ALGO(mi)
type

�! DPj(�i; type)

This mapping is performed with respect to the pa-
rameter set �i of the algorithm class and the di�erent
processor types (SINGLE, PAR, PIPE, ARRAY) of the
supported processor library.

3.3 Optimization

After the possible design space for a given image
processing scheme has been explored based on the pro-
cessor library, it is necessary to select from the large
amount of feasible assignments of single tasks or algo-
rithms to processor types the one which leads to an
optimal overall multiprocessor system. Here, optimal-
ity means to derive a heterogeneous systems, meeting
the real{time constraint and achieving the highest pos-
sible computational and throughput rate with an area
expense as low as possible. So, for each task it has to
be determined, which is the most suitable processor
type, what is the best temporal order concerning task
execution and data transfer, taking into consideration
the data precedence between the tasks, the di�erent
availibility of input / output data depending on the
processor type, and the non overlapping usage of pro-
cessors and buses. It can be shown, that this leads
to a combinatorial optimization problem. One e�-
cient way to solve this kind of optimization problems
is derive a formulation using mixed integer linear pro-
gramming (MILP). That is the reason why we chose
MILP as mathematical framework. Nevertheless, it is
necessary to transform the given combinatorial opti-
mization problem to a MILP, as described next.
3.3.1 Transformation to MILP

Mixed integer linear programming problems either
minimize or maximize an objective function z of vari-
ables xj 2 ~x, subject to a set of linear equality and
inequality constraints

P
ai;j � xj = bi. MILPs di�er

from general LPs, because some of the variables are
restricted to be of integer range. This can be written:

z = minf~cI � ~xI + ~cR � ~xR j ~xI 2 PI; ~xR 2 PRg

where

PI = fAI � ~xI = ~bI ; ~xI 2 INm+ g

PR = fAR � ~xR = ~bR; ~xR 2 IRn+g

The use of MILP in order to tackle the scheduling,
allocation and binding problem in the domain of mul-
tiprocessor synthesis can already be fond in [7]. But,
we extended these models by two main aspects: First,
periodic and overlapped processing of tasks are taken
into consideration, which is of great importance, espe-
cially for real{time image processing. Furthermore, by
using a parametrizable library with �ve di�erent pro-
cessor types, it becomes possible to consider a large
set of alternative architectures. Since we aim at trans-
forming the combinatorial optimization problem to a
MILP, we are concerned with �nding i) a set of vari-
ables, ii) a system of linear constraints or restrictions,
and iii) an appropriate cost function for the MILP.



Concerning the variables ~x three main groups can be
found:

2 binary-valued decision variables
~xB = [: : : ; xi;j ; : : :]

2 integer-valued variables
~xI = [: : : ; Y; B; : : :]

2 real-valued timing/area variables
~xR = [: : : ; si; ei; : : :]

For example, the binary decision variable xi;j mod-
els the assignment of task mi to processor pj, the inte-
ger valued variable Y represents the number of di�er-
ent processors, and so on. Concerning the restrictions
A � ~x = ~b, the following groups can be distinguished:

2 task{processor restrictions
task execution start/end, etc.

2 transfer{bus restrictions
transfer execution start/end, etc.

2 general restrictions
area expense, number of processors, etc.

For example, the transfer execution end time cei;k
can be expressed as a linear constraint by means of
the number of data items Di;k to be transmitted from
task mi to task mk, the transfer rate BR of the bus,
and whether it is a remote (R

i;k
= 1) or a local (L

i;k
= 1)

transfer (cei;k = csi;k + R
i;k

�
Di;k

BR
+ L

i;k
�
Di;k

BL
). Finally,

an appropriate cost function z has to be determined:
It takes into consideration the computation time (la-
tency) T , the computation period P in case of over-
lapped and periodic execution, the number of proces-
sors Y and of buses B as well as the area expense A:

z = cT � T + cP � P + cA � A+ cY � Y + cB �B

By means of individual weights cT ; cP ; : : : ; cB di�er-
ent goals of the designer can be considered. A detailled
description of our MILP model, containing all vari-
ables, restrictions, and their meanings can be found
in [8], and thus, will not be discussed here.

4 Case Study: Video Encoding
To demonstrate the feasibility of the proposed sys-

tem level methodology, the hybrid video codec scheme
H.261 [1] was chosen a as case study. The H.261
scheme is used for video telephone or video con-
ferencing. It consists of several regular low level
tasks like motion estimation by block matching al-
gorithm (BMA), discrete cosine transform and its in-
verse (DCT, IDCT), and �nite impulse response �l-
tering (FIR). On the other hand, irregular medium
level tasks like quantization and its inverse (Q, IQ),
and variable / runlength coding (COD) belong to the
H.261 hybrid coding scheme. The corresponding task
graph is shown in Fig. 7a, the possible assignments
of the M = 12 tasks to N = 20 processors, based on
the processor library with four di�erent, application{
speci�c processor types (SINGLE, PAR, PIPE, ARRAY)
and two programmable processors (PROG) can be seen
in Fig. 7b. Based on these assignments the MILP
model was derived, leading to 117 variables and 208
restrictions. We experienced, that by use of branch-

and-bound the LP solver of the NAG 1 Fortran Library
delivers the optimal solution within a few cpu minutes.
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Fig. 7: Task Graph for H.261 and Possible Assignments

Four heterogeneous multiprocessor systems, result-
ing from the optimization, are sketched in Table 3, as-
suming di�erent design priorities with respect to the
weights of the system parameters A; T;P; Y .

Priority A�T,P�Y P�A�T�Y P�T�A�Y Y�A�T,P

Area Expense A [#trans.] 172902 726930 605820 184190

Computation Time T [#cycles] 7100 4514 4994 6134

Computation Period P [#cycles] 6324 1073 1073 5581

Processors Y [#proc.] 3 7 8 3

Table 3: Performance and area expense

In case the designers primary goal is for example,
to derive a heterogeneous system with minimum area
expense A and additionally small latency T and com-
putation period P , i.e. A � T;P � Y , the optimal
assignment is shown in Fig. 8a:
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Fig. 8: Optimal assignment, periodic-overlapped schedule

The corresponding architecture consists of Y = 3

processors: one of type SINGLE, PIPE, and PROG,
leading to an area expense of A = 172902 transistors
with an achievable throughput rate or computation
period of P = 6324 clock cycles. The periodic and over-
lapped multiprocessor schedule is sketched in Fig. 8b,
whereas the computation of each macro block (16*16
pixels) is shaded in a di�erent color. There is an
overlapping computation of two macro blocks for the
whole multiprocessor system, with white areas indi-
cating processor idle times. The four optimal hetero-
geneous systems given in Table 3, derived by solving

1The Numerical Algorithm Group, Limited



the corresponding MILP under di�erent design prior-
ities, are again visualized in the area{time plane:
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Fig. 9: Design space concerning A;P

Fig. 9 shows the four solutions in terms of area ex-
pense A and and achievable throughput rate P . The
dashed rectangle indicates the possible design space
with respect to the supported processor library and
the real{time constraint of the video encoder example.
By giving di�erent weights to the parameters A; T;P; Y
of the cost function, either time or area optimal solu-
tions can be derived.

5 Implementation
The presented system level design methodology is

currently under development as a prototype CAD tool
in COMMON LISP/CLOS 2 on Sparc Stations. Main
parts of the CAD system are shown in Fig. 10:

Processor
Library

Algorithm
Library

TaskGraph
Database

TaskGraphTo
MILP

MILP
Solver

TaskGraph

Graphical Interface

Fig. 10: Overview of the CAD tool

It starts from a user's speci�cation of the compos-
ite DSP scheme. With respect to the algorithm and
processor library, all feasible assignments are derived
and transfered to a specialized task graph, serving as
central database. The transformation to a MILP for-
mulation is performed automatically, taking the de-
signer's goal into consideration. Finally, the MILP
solver is invoked. The results of the optimization are

2CLOS Speci�cation, ANSI, X3J13

again transfered to the task graph data base. A graph-
ical user interface (GUI) developed in LISP and based
on CLUE/CLX 3 provides the possibility to visualize
the results by means of diagrams and gannt charts.

6 Conclusion
In this paper, a system level design methodology for

the optimization of heterogeneous multiprocessors is
presented. The main task is to �nd the best combina-
tion of application{speci�c and programmable proces-
sors for composite DSP schemes of image processing
algorithms. The approach chosen to solve this com-
binatorial optimization problem is based upon mixed
integer linear programming, mainly extended to han-
dle periodic and overlapped execution of tasks, taking
into consideration the availibility of input and out-
put data. First encouraging results could already be
derived for an application example taken from visual
telephony, proving the general feasibility of the devel-
oped system level methodology.
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