
System Level Veri�cation of Video and Image Processing

Speci�cations �

H.Samsom, F.Franssen, F.Catthoor, H.De Many

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract

A formal veri�cation method is presented to verify the

loop ordering of a high level transformed description

against its original speci�cation. The veri�cation is

done in an automatic way and its complexity is inde-

pendent on the sizes of the loops bounds. Any practical

structure of loop nests can be handled. The method is

especially suited for applications in the area of speech,

image and video processing, front-end telecom and nu-

merical computing systems which exhibit many loops

and complex multi-dimensional signals. The e�ciency

of the approach is demonstrated on several realistic ex-

amples.

1 Introduction
Practice shows that more than half of the total design

e�ort can be taken up by veri�cation or simulation at

present [1]. Application studies in the area of speech,

image and video processing, front-end telecom and nu-

merical computing systems indicate that many algo-

rithms operate on multi dimensional signals and exhibit

a large amount of related control 
ow, especially ex-

pressed in terms of loops. Memory is a severe bottleneck

in these applications. Recent research in optimizing the

background memory and global communication shows

that loop and index manipulations are crucial [2, 3].

Also in the compiler community, manual or automatic

loop manipulation plays an important role. There, loop

manipulation is usually performed in order to improve

parallelism or communication cost [4, 5].

Nowadays, designers use simulation to proof the

equivalence of two system level descriptions. In case

of many Multi-Dimensional(M-D) signals and com-

plex nested loops, veri�cation by means of pseudo-

exhaustive simulation on a workstation or (parallel)

DSP board can be impossible due to the large amount

of memory necessary [6]. In addition, veri�cation by

simulation is impossible when either the loops in initial

speci�cation or the intermediate description can not be

executed in a procedural way. Also synthesis is then

infeasible with the current methods.

�Research funded by ESPRIT Project SPRITE (2260)
yProfessor at K.U.Leuven

The formal techniques used in theorem provers are

capable of veri�cation at a high abstraction level but

need too much designer knowledge/interaction to come

to an automated proof. SFG Tracing, can automati-

cally verify the equivalence between a high level speci�-

cation and an implementation [7]. However, they start

from the assumption that ordering of the operations in

the speci�cation is not changed during synthesis. Un-

rolling of the loops is a possibility in this case, but be-

comes prohibitive for most practical applications. In

the array synthesis community, loop reorderings play

a very important role [8, 9]. A method that can han-

dle the veri�cation of simple stepwise loop reorderings

is given in [10] but it is restricted by the model used.

Several researchers [11, 12, 13] use a methodology which

guarantees correctness by construction. They use a for-

malmodel to prove their transformations. They restrict

the designer to a limited set of transformations which

cover most often only small steps in the synthesis pro-

cess. Moreover, the sequence of transformation steps

has to be known.

In this paper we present a system veri�cation method

which plays a crucial role in the formal veri�cation of

complex loop transformations like loop folding, loop dis-

tribution, typically applied in the design trajectory of

data dominated signal and data processing applications.

A novel formal model for a general applicative language

with sequential constructs is de�ned (section 3). It is

the basis for the veri�cation approach and it is not in-

tended as a new user speci�cation model. In case of

a fully procedural speci�cation, translation to an ap-

plicative description must be done �rst [4, 14]. With

the presented technique, any pair of arbitrarily ordered

descriptions can be proven to be behaviorally equiva-

lent if they exhibit the same I/O behavior in terms of

signal de�nitions, as long as the primitive operations

performed on the signals are not modi�ed.

In section 2, our novel veri�cation method is de-

scribed. The formal model, which forms the core of the

formal veri�cation is de�ned in section 3. In section 4,

the method is brie
y demonstrated on some examples.

Finally, section 5 gives the conclusions.



2 The Formal Veri�cation Procedure
The formal model used during the veri�cation, is re-

lated to the models used in the array synthesis domain

[8, 9]. There equations are valid under a set of con-

straints that are often represented in a geometrical way.

In our model each statement in the description is de-

�ned by a predicate. The predicate consists out of a

relation (R) which holds for a set of constraints on its

input arguments, de�ned by the precondition (P) (P:R).

In addition to the models used in the array synthesis

domain the presented model can also encapsulate indef-

inite iterations that are executed sequentially, a data-

dependent number of iterations. This is described by a

complex predicate whose relation (R) includes a set of

predicates as well:
P: DO (P1: R1 ^ P2: R2 :::::::::::::Pn: Rn) UNTIL R

The complete description is modeled by the AND of

all the predicates within the description [15]. The pre-

condition (P), de�nes the manifest constraints on the

indices of the loop bounds surrounding the statement

and the index domains for the signals in the statement.

The relation (R) is a unique representation of the non-

manifest parts in the description. The relation is made

independent from the index names from the original

description. The modeling in predicates is illustrated

by a small example speci�ed in the mixed procedu-

ral/applicative language DFL [16]. In the example (Fig.

1), the original speci�cation is shown on the left, the op-

timized description derived after loop folding is shown

on the right. The modeling in terms of predicates is

shown in Figures 2 and 3.

(i:0..N-1)::

begin

a[i] = in[i];

out[i] = a[i];

end;

)

a[0] = in[0];

(i:1..N-1)::

begin

a[i] = in[i];

out[i-1] = a[i-1];

end;

out[N-1] = a[N-1];

Figure 1: Original and Optimized Speci�cation

(8i1; i2 9i (0 � i � N � 1) ^ (i1 = i) ^ (i2 = i)):a(i1) � in(i2)

^

(8i1; i2 9i (0 � i � N � 1) ^ (i1 = i) ^ (i2 = i)):out(i1) � a(i2)

Figure 2: Modeling of the Original description

(8i1; i2 (i1 = 0) ^ (i2 = 0)): a(i1) � in(i2)

^

(8i1; i2 9i (1 � i � N � 1) ^ (i1 = i) ^ (i2 = i)): a(i1) � in(i2)

^

(8i1; i2 9i (1 � i � N�1)^(i1 = i�1)^(i2 = i�1)): out(i1) � a(i2)

^

(8i1; i2 (i1 = N � 1) ^ (i2 = N � 1)): out(i1) � a(i2)

Figure 3: Modeling of the Optimized description

In order to prove their behavioral equivalence, the

sets of predicates of two descriptions have to be proven

equal. In case of simple predicates, this is done by �rst

identifying the relations (R) that are the same in the

original description. The modeling of the relations is

done in a unique way. Under the obvious restriction

that during design, input/output signal names may not

change (index expressions and index names are allowed

to change), �nding the equal relations and equal indef-

inite loops is reduced to a direct pattern matching on

signal names and operations. In case of equal relations,

the two predicates are joined into one new predicate by

merging the constraints of the two relations, potentially

after some re-substitution steps of intermediate signals.

P1. R ^ P2. R ) P1 _ P2. R

In the optimized description of Fig. 3, two pairs

of relations are equal and their constraints have to be

joined such that �nally two predicates will result.

In case of inde�nite loop constructs (like WHILE

loops), the body of the inde�nite loop and the rest of

the description are separated. The domains of the equal

relations in the inde�nite body are merged, and the do-

mains of the equal relations outside the inde�nite body

are merged.

Then, for each relation R in the speci�cation, its

de�nition in the implementation is found. In case of

inde�nite loop constructs, again a separation between

the rest of the description and the body of the inde�nite

loop is made. Given the constraints from the surround-

ing loops, the bodies of equal inde�nite loops in both

descriptions must contain the same set of predicates.

Otherwise the sequential restrictions imposed by the in-

de�nite loop are violated during loop transformations.

Again, equal relations can be easily found by syntactical

pattern matching on the signal names and operations.

In the example of Fig.1-3, it can be seen that the re-

lations in the two descriptions can be matched by a

simple syntactical pattern matching. To prove that the

relations are de�ned under the same preconditions, it

has to be proven that any two related domains must de-

�ne the same index space. This can be done by taking

the di�erence of the two domains. Although the pat-

tern matching step has a quadratic dependency on the

size of the code, the most di�cult and also most time

consuming job is taking the di�erence of the domains.

The complexity of this step is linear with the size of the

speci�cation. During the domain operations, extensive

use is made of the OMEGA Test [17] toolbox.

3 Formal Model De�nition
In this section, a formal de�nition of the meaning of an

applicative language is given. The formalization will be

de�ned using: the syntactic domains which describe the

elements in the language, the semantic domains which



de�ne the di�erent elements in the formal model, and

the semantic functions which de�ne the denotation of

the syntactic domains in terms of the semantic domains.

The result will be a formal de�nition in terms of the

predicates used in the formal veri�cation method (sec-

tion 2). Note that we do not include the detailed (RT

level) timing behavior yet at this abstraction level.

3.1 Syntactic Domains

Table 1 de�nes the syntactic domains, in particular

function(f), statements(s), expressions(e), and manifest

expressions(n), that can be de�ned in the formalmodel.

The syntactic domains of the language given in Table

1 are based on the syntactic domains of the DFL [16]

language. It includes all elements necessary to map

in combination with data dependency analysis, most

applicative and procedural data 
ow languages like be-

havioral VHDL, DFL and SIGNAL [18], into the formal

model in an analogue way to the modeling for this ab-

stract syntax.

f ::= (id s) (function)

s ::= (e1 = e2) (de�nition)
j ((id: n1..n2):: s) (iteration)

j (s1 ; s2) (composition)
j (if (n � 0) ! e1 = e2) (manifest if)
j (if (e1) ! e2 = e3) (non manifest if)

j (do s until e1) (inde�nite iteration)
e ::= c (constant)

j x (variable)
j e@n (delayed signal)

j e@@n (initialize delayed signal)
j e[n] (array)
j e1 
 e2 (
 arithmetic operator)

n ::= cm (manifest constant)
j m (manifest value)

j n1 � n2 (� arith. manifest op.)

Table 1: Abstract Syntax

The basic data elements in the language are signals.

Each signal is an in�nite stream (ordered sequence) of

values indexed by discrete sequentially ordered values.

In each frame, one sample of the stream of values de�n-

ing a signal is computed. All input samples arrive at the

same time at a certain rate: the frame rate. Given the

input samples, the de�nitions in the program specify

the value of the signals in the description. The pro-

gram only speci�es what is to be computed and does

not �x an ordering (except for the inde�nite iteration

which has a �xed sequential ordering).

An inde�nite iteration repeats part of a program in a

sequential way, until a certain condition is ful�lled. Al-

though the iterations of the inde�nite loop are executed

sequentially, all signals for one execution of the indef-

inite loop are de�ned at the same time (in any order)

and are called a sub-frame. During loop manipulations,

the inde�nite iterator de�nes a �xed sequential order-

ing and should therefore remain unchanged. Signals

de�ned in the main frame (outside the inde�nite loop),

have an equal value for all sub-frames. The value of sig-

nals de�ned in a sub-frame (inside an inde�nite loop),

is equal to the value of the signal in the last sub-frame

for which such a value has been de�ned.

A delay construct (@) is used to refer to samples in

previous frames. A @ within an inde�nite loop refers to

the previous sub-frame. Within an inde�nite iteration,

no reference is possible to previous samples in the main

frame. The initialization construct (@@) initializes the

signals within a (sub)frame. Loop bound expressions,

and index expressions are restricted to a�ne expres-

sions on the loop indices.

3.2 Semantic Domains

In the previous section, we de�ned the di�erent syn-

tactic domains of the language whose formal denotation

will be given. This section gives the Semantic Domains

used for the formal de�nition. The de�nition of the se-

mantic domains consists of the following domain equa-

tions (only the most important ones are explained).

PredSet = Predicate+

(Predicate�PredSet! Bool) (1)

Predicate = (Precond�Relation! Bool) +

(Precond� Indef! Bool) (2)

Precond = Bool + (Matrix�Vector! Expr) (3)

Relation = (Expr�Expr! Bool) (4)

Indef = (PredSet�Relation! Bool) (5)

Expr = Value+ (Value�Expr! Value) (6)

Value = Num+Bool + Ide+ Sym (7)

Vector[n] = Value1 � :::Valuen (8)

Matrix[n,m] = Value11 � :::Valuenm (9)

A Predicate is a function from tuples (p,r) to Bool.

The Precond p, models the input arguments for the

function r (� Relation or � Indef ). A Precond is

constructed from a�ne constraints on integer variables

with the logical operators :, ^ and _, and the quanti�-

cations 8 and 9. The constraints can be either equal-

ity or inequality constraints and are de�ned as Ma-

trix-Vector tuples. The Precond models the man-

ifest loop bounds and arrays indices in a description.

A Relation is a function formed by (in)equality con-

straints between two Expr's. A Relation models the

non-manifest parts in a description. An Indef is a func-

tion used to model the inde�nite iterator construct.

3.3 Semantic Functions

The semantic functions de�ned in this section give a

procedure to translate the abstract syntax elements of

Table 1 in terms of the semantic domains of the formal

model. Especially loop constructs and indexed signals

which are our main concern are separated of the other



parts of the description. The semantic functions needed

for the denotation of the abstract syntax elements are

given in Table 2. If x is a phrase of the abstract syntax,

then [[x ]]y;z is the function de�ning the meaning of x in

terms of the formal model, with as inputs the syntactic

phrase x, and the semantic arguments y and z.

Other functions needed in the de�nition of the se-

mantic functions are: R(p,e) which takes the expres-

sion of a Precond-Expr tuple, P(p,e) which takes the

precondition of a Precond-Expr tuple, and # which

appends a new row to a Vector or Matrix.

[[f ]] : ! PredSet

[[s ]] : Vector�Matrix ! PredSet

[[e ]] : Vector�Matrix ! Precond� Exp

[[n ]] : Vector!Matrix

Table 2: Semantic Functions

3.3.1 manifest expressions [[n ]]

A manifest expression is a combination of constants,

arithmetic operators and iterator indices and is com-

putable at compile time. It is used in the de�nition

of array indices and loop bounds and restricted to uni-

modular a�ne expressions on the iterator indices. Each

manifest expression is modeled by a constraint Matrix

consisting out of one row. The product of this Matrix

with the inputVector imodeling its index vector, gives

the initial syntactical phrase. The �rst element of each

row of the constraintMatrix is a reference to the time,

the last element to a constant, the other values refer to

the surrounding loop indices.

e.g. [[ i+ 3j + 2]]� t

j

i

� def
= [0 3 1 2]

� A manifest constant results in a Matrix con-

sisting out of a row vector with all index elements

zero except for the constant place. This element is

equal to the value of the constant.

[[cm ]]
i

def
= [01:::::::0n cm] j n = length(i)

� A manifest variable. When the variable is not

one of the indices of the surrounding loops, then

the variable is a symbolic constant �lled in at

the last column of the Matrix de�ning manifest

variable. Otherwise, a one is �lled in at the place

according to the index element.

[[m ]]
i

def
=

�
[01:::1x::::0n 0] j i[x] = m;n = length(i)

[01:::0n m] j i[x] 6= m;n = length(i)

3.3.2 expressions [[e ]]

Expressions are represented by Precond-Expr pairs.

An expression is de�ned by its syntactical phrase, a

Vector i which is a vector modeling the surrounding

time and loop indices, and a Matrix IM which models

the relative time and index values.
e.g. [[a[2i]@1]]� t

i

�
;

�
1 0 0

� def
=

[[a[2i] ]]� t

i

�
;

�
1 0 �1

� def
=

[[a ]]� t

i

�
;

�
1 0 �1

0 2 0

� def
=

8t1; i1 (t1 = t� 1^ i1 = 2 � i); a(t1; i1)

� A variable is de�ned by a Precond-Expr pair.

The Precond is derived from the given constraint

Matrix IM , and the index Vector i. The Expr

is a function, de�ned by its variable name. The

arguments for the function are variables k.

[[x ]]
i;IM

def
= 8k k = IM � i; x(k1; :::; km) j m = length(i)

� A delayed signal(@) is de�ned by its expression

with as input argument the index Matrix (IM )

shifted in the time dimension by the factor of the

manifest delay value.

[[e@n ]]
i;IM

def
= [[e ]]

i;IM�[[n ]]
i

� An array is de�ned by its expression with the de-

notation of the manifest index appended as a new

row to the input argument (IM ).

[[e[n] ]]
i;IM

def
= [[e ]]

i;IM#[[n ]]
i

3.3.3 statements [[s ]]

Each statement is de�ned by a predicate set (PredSet).

Each statement has three inputs: a Vector i which

de�nes a vector with all iterator names surrounding the

statement, a constraint Matrix CM which models the

constraints de�ned by the surrounding loop indices and

the time dimension, and a Vector j which models the

bound iterator names of i.

� A de�nition is de�ned by a Precond-Relation

tuple. The Precond is de�ned by the constraint

Matrix for the loop bounds CM , and the con-

straint matrices generated by the left and right

operands of the de�nition. The Precond forms

the constraints for the arguments of the function

de�ned by the Relation between the expressions

of the left and right operands.

[[e1 = e2 ]]i;CM ;j

def
= 9j CM � i � 0 ^

P([[e1 ]]i;IM
) ^P([[e2 ]]i;IM

):R([[e1 ]]i;IM
) � R([[e2 ]]i;IM

)

where : m = length(i); IM = [1 01:::::::0m]

e:g: [[a[2i] = a[2i]@1]]� t

i

�
;

�
0 1 0

0 �1 N

�
;(i)

def
=

8t1; i1; t2; i2 9i (0 � i � N) ^ (t1 = t ^ i1 = 2 � i)

^ (t2 = t� 1^ i2 = 2 � i): a(t1; i1) � a(t2; i2)



� The composition of two statements form a Pred-

Set de�ned by the logical conjunction of the two

statements.

[[s1; s2 ]]i;CM ;j

def
= [[s1 ]]i;CM ;j

^ [[s2 ]]i;CM ;j

� An iteration is de�ned as the PredSet de�ned

by its body ([[s ]]) with as inputs the new index

Vector, the new constraint Matrix, and the new

bounded index Vector.

[[ (i : n1 :: n2) :: s ]]i;CM ;j

def
=

[[s ]]
i#i; CM#([[i�n1 ]]i#i

#[[n2�i ]]i#i
);j#i

� An inde�nite iteration ([[do s until e1]]) is a

loop which �xes a sequential ordering. It is de-

�ned by a Precond-Indef tuple. It is modeled

by the DO ... UNTIL function in the Indef with

constraints on its inputs (Precond) formed by

the outer loops of the inde�nite iteration (CM ),

and the constraints imposed by the until condition

(P([[e1 ]]k;IM )). The body of the inde�nite iteration

de�nes a PredSet. The sequential interpretation

of the DO ... UNTIL construct, introduces a hier-

archy in the set of predicates.

[[do s until e1 ]]i;CM ;j

def
=

9j; tsub CM � i � 0^ tsub � 0 ^P([[e1 ]]k;IM
):

DO [[s ]]
k;[];()

UNTIL (R([[e1 ]]k;IM
))

m = length(i); k = tsub#tail(i); IM = [1 01:::::::0m]

4 CAD Implementation and Results
The proposed approach has been implemented and

tested on several examples. In our test-vehicles, the

descriptions are given in applicative DFL [16].

Key results of applications taken from several do-

mains are shown in Table 3. In the left column the dif-

ferent alternative descriptions are cited which are val-

idated against their original speci�cation. The second

column gives the values of parameters used in the ex-

ample. The last column gives the CPU times needed

to do the veri�cation. The veri�cation has been done

for the example of Fig. 1 for both symbolic values of N

and M, and instances of N and M. For none of the val-

ues of N and M, a di�erence in value for the CPU time

could be measured. This result is expected since the

complexity of the method and its CAD implementation

are independent on the sizes of the loop bounds.

Another example includes an inde�nite loop (Fig.

4). The test vehicle is a LU decomposition algorithm,

extended with a construct that does a check on the pro-

cessed result of the LU decomposition. If the �nal result

does not satisfy the until condition, the LU decomposi-

tion has to be done again on an updated matrix until a

spec. vs. altern. descr. parameters CPU(s)

example1 N=N,M=M 0.2

N=10,M=10 0.2

N=10000,M=10000 0.2

LU optimized 0.3

interch.L1,L2,L3 0.3

split.L3,L1,S2 0.3

CRD optimized 0.3

non-procedural 0.3

Int.Video optimized 1.3

non-procedural 1.7

Table 3: Results on HP715 workstation

�nal value is derived. The delay in the body of the in-

de�nite loop is local to the inde�nite loop and refers to

the previous execution of the loop. The translation step

into the domain based model, of the current CAD im-

plementation can not yet handle the inde�nite iterator.

Therefore a minor manual intervention in the front-end

was currently necessary.

do(

a[][][0] = G(a_new[][]@1);

L1: (k : 1 .. N)::

begin

L2: (i : k + 1 .. N)::

begin

S1: a[i][k][k] = a[i][k][k + -1] / a[k][k][k-1];

L3: (j : k + 1 .. N)::

begin

S2: a[i][j][k] = a[i][j][k + -1] -

a[k][j][k-1] * a[i][k][k-1];

end;

end;

end;

a_new[][]= H(a[][][N],b);

until (F(a_new[N][N]) > 0)

Figure 4: LU decomposition speci�cation

Using transformations such as imperfect loop inter-

change, loop distribution and loop split, a new loop or-

dering for the LU description can be derived [17]. New

orderings can result in descriptions that are very dif-

ferent from the original description. The optimized de-

scription has been validated for the separate steps with

the current CAD tools (Table 3). As indicated in the

column with the CPU times, the complexity of our veri-

�cation approach is independent on the number or type

of transformation steps. Moreover, it has to be empha-

sized again that the CPU times are independent on the

size of the loop parameter N.

A third demonstrator is a Contour Regularity De-

tector (CRD) application. This algorithm is used in

a robot vision application where robust contour trac-

ing has to be performed on complex images corrupted



by the presence of noise. The example contains data

dependent array expressions.

The fourth example describes an interlaced video

reformatting where indices of the form [a�i+b] are

present.

The last two examples have been validated for

two alternative descriptions: an optimized descrip-

tion in terms of memory usage, and a non-procedural

executable initial description. Because of the non-

procedural code, veri�cation by means of simulation

would be impossible in these cases, even if large CPU

times would be acceptable.

5 Conclusion

In this paper, a formal veri�cation method of sys-

tem level transformations for arbitrary loop nests is pre-

sented. The method is based on a formal model related

to regular array synthesis models but extended with se-

quential constructs. The method is especially suited

for applications which exhibit many complex loops and

arrays, like image and video applications. The results

obtained on many realistic test-vehicles show that our

approach is independent on the size of the loops, or the

number of transformations that have been done. More-

over the CPU times are negligible. Two descriptions

are proven behaviorally equivalent by a combination of

pattern matching and domain operations (partly imple-

mented with the OMEGA Test[17] toolbox).

The veri�cation method can be e�ciently combined

with SFG tracing [7]. The latter can prove the equiva-

lence over di�erent abstraction levels, as long as index

and loop ordering at each of these levels is equivalent.

In combination, the two complementary approaches

provide a very powerful formal veri�cation approach.

Acknowledgments Thanks go to our colleges at

IMEC and the partners in the SPRITE (ESPRIT 2260)

and NANA2 (BRA632) projects for their cooperation.

References
[1] B.J.S. De Loore, P. Crombez, A. Delaruelle, P. Sheri-

dan, R. Woudsma, C. Niessen, J. Biesterbos,
W. Gubbels, and W. Repko. The design of a competi-

tive asic for the consumer market using the PIRAMID

design system. In Proc. IEEE ASIC 92 Conference,

pages 520{524, 1992.

[2] P. Lippens, J. van Meerbergen, A. van der Werf,

W. Verhaegh, B. McSweeney, J. Huisken, and O. McAr-
dle. Phideo: A silicon compiler for high speed algo-

rithms. In Proc. EDAC, pages 436{441, Amsterdam,

Feb. 1991.

[3] F. Franssen, F. Balasa, M. van Swaaij, F. Catthoor,
and H. De Man. Modeling multi-dimensional data and

control 
ow. IEEE Trans. on VLSI systems, 1(3):319{
327, Sept. 1993.

[4] U. Banerjee. Loop transformations for restructuring

compilers : The foundation. Kluwer, 1993.

[5] M.E.Wolf and M.S. Lam. A loop transformation theory

and an algorithm to maximize parallelism. IEEE Trans.

on Parallel and Distributed Systems, 2(4):452{471, Oct.

1991.

[6] F.Franssen, L.Nachtergaele, H.Samsom, F.Catthoor,

and H.De Man. Control 
ow optimization for fast

system simulation and storage minimization. In Proc.

EDAC, pages 20{24, Paris, March 1994.

[7] L. Claesen, F. Proesmans, E. Verlind, and H. De Man.
SFG-tracing: A methodology for the automatic veri-

�cation of MOS transistor level implementations from

high level behavioral speci�cations. In Int. Workshop

on Formal Methods in VLSI Design, 9 - 11 Jan. 1991.

[8] P. Quinton and Y. Robert (eds.). Algorithms and par-

allel VLSI architectures II. Elsevier, 1992.

[9] F. Catthoor and L. Svensson (eds.). Application-driven
architecture synthesis. Kluwer, 1993.

[10] Z. Chamski, H. Le Verge, C. Mauras, and P. Quin-

ton. Interactive design of parallel algorithms using the
ALPHA du Centaur environment. In Int. Workshop

on Compilers for Parallel Computers, pages 399{410,

Paris, Dec. 1990.

[11] Simon Finn, Michael P. Fourman, Michael Francis, and

Robert Harris. Formal system design - interactive syn-
thesis based on computer-assisted formal reasoning. In

Int. Workshop on Applied Formal Methods for Correct

VLSI Design, pages 97{110, Nov. 1989.

[12] M.C.Mc. Farland. Formal analysis of correctness of

behavioral transformations. Formal Methods in System

Design, 2:231{257, 1993.

[13] P.F.A. Middelhoek. Transformational design of digi-
tal circuits. In Proc. of the Seventh Computersystems

Workshop, pages 57{69, Eindhoven, Nov. 1993.

[14] P. Feautrier. Data
ow analysis of array and scalar refer-

ences. Int. Journal of Parallel Programming, 20:23{53,

1991.

[15] H. Samsom, F. Franssen, F. Catthoor, and H. De Man.

Veri�cation of loop transformations for real time signal
processing applications. In VLSI Signal Processing VII,

pages 208{217. IEEE, Oct. 1994.

[16] Mentor Graphics Corp. DSP Architect DFL User's and

Reference Manual, Software Version 8.2 5, 1993.

[17] W. Pugh. The Omega Test: a fast and practical integer
programming algorithm for dependence analysis. In

Proc. Supercomputing'91, Nov.

[18] P. Le Guernic. The SIGNAL programming environ-

ment. Algorithms and parallel VLSI architectures II,

pages 347{358, 1992.


	Compendium95
	ISSS95 
	Front Matter
	Table of Contents
	Session Index
	Author Index


