
1

WWW Based Structuring of Codesigns

P. G. Plöger+, J. Wilberg+, M. Langevin+, R. Camposano*
+ GMD-SET, Schloß Birlinghoven, D-53757 Sankt Augustin, Germany, {wilberg, ploeger}@gmd.de
* Synopsys Inc., 700 East Middlefield Road, Mt. View, CA 94043-4033, USA, raul@synopsys.com

Abstract.
This paper describes a codesign environment based on the
WWW (World Wide Web) and its implementation. Tool invo-
cations and their respective results are linked using hyper-
text documents. We show how to configure a WWW browser
for spawning design tools and how frequent tasks like docu-
mentation generation and retrieval are facilitated. The de-
sign flow can be adopted to the given application very easily.
In addition we introduce the concept of a work flow called
‘design by documentation’. A WWW link to the results is giv-
en and experience using it in a codesign project is described.

1. Introduction

A design flow for complex embedded systems depends
strongly on the application domain [3] [19] [20] [22] [28].
Each domain requires a particular design strategy with em-
phasis on different, often contradicting, design aspects. Ex-
amples of such codesigns are described in [6] [8] [11] [13]
[26]. This diversity is difficult to support with a unique rigid
design flow. The problem is aggravated if the design flow is
based on one large monolithic tool such as synthesis. An al-
ternative is a codesign workbench [3] with a number of
small tools. Each of these tools has a limited functionality.
They serve as building blocks for configuring complex, ap-
plication specific design flows. This allows to combine gen-
eral-purpose tools like editors with highly specialized tools
like dedicated filter synthesis systems for a particular de-
sign.

An approach to implement design flows were so called
‘design frameworks’, e.g., CFI [4]. Some of them relied on
strong coupling of tools and design data, which makes them
complex and not very flexible. This is evidenced by the
change of focus in CFI. A framework [9] [14] [15] [16] con-
trols the design tools, encapsulates tool operations, manages
access to design databases, etc. Examples range from “tradi-
tional” version management tools like RCS, CVS, to tools
for design information management, like Nelsis [10], JCF
[17], etc. Performing complex codesigns adds a number of
new facets to the already rich spectrum of framework servic-
es. One example is the cosimulation of complex systems

such as in Ptolemy [14].
Especially relevant to complex designs is information

management and the documentation of the design. Informa-
tion is shared by groups of designers from different disci-
plines. Consider for example the design of a video
compression system [1][3][27]. Typically, the best system
performance is achieved by selecting the most suitable com-
bination of algorithms, software implementation, and hard-
ware design. This requires close cooperation among
engineers of different domains [19]. The hardware designer
needs to know about the results of an evaluation of different
compression algorithms, since different software implemen-
tations will impose different requirements on the datapath.
E.g. multiply operations may be favorably replaced by shifts
in some implementations, while others are tailored to have
exactly one multiplication in each basic block. Providing ac-
cess to these results is not enough, since the data must be ex-
plained and relevant background material must be provided.
In other words, the raw data will be useful only to an expert
on that particular topic, while other members of the design
team need annotated data. Sophisticated codesign systems
typically aggravate this situation since they allow to explore
many different alternative solutions in a short time. Subop-
timal system solutions arise since each designer focuses on
his/her particular design part, while a multi-disciplinary ap-
proach is difficult due to the lack of information.

One solution to this problem is the tighter coupling of
design process and documentation [24], i.e., adesigning by
documentation. Hypertext documents are ideal for this pur-
pose since they allow to select background material on de-
mand by following hyperlinks. Furthermore, tool invocation
can be coupled to a link, and design data can be connected
in almost arbitrary ways reflecting the complex interdepen-
dencies between the design data. In [24] a framework was
proposed which integrates design and documentation by
means of a commercial text processing system and a special
navigator designed for a special ‘Active Document Descrip-
tion Language’.

In this paper, we propose an implementation of a simi-
lar design by documentation approach but based on the
WWW (World-Wide Web) [2] and its powerful HTML lan-

2

guage [12]. This offers a number of significant advantages.
First of all, widely used WWW browsers, like NCSA’s Mo-
saic [21], are available. The designer does not need to learn
a new tool. Hyperlinks can be resolved on a global scale.
This allows to integrate material from other WWW sites.
The system is scalable, starting from a small implementation
mainly based on native WWW features up to a distributed
design environment that manages design teams at remote lo-
cations. Due to the client/server approach of WWW, the da-
tabase management of the design can be directly integrated
into a server. For example, tool invocation and access privi-
leges can be controlled by using a WWW server even on a
global scale! Finally, the design documentation or parts
thereof can be published immediately in WWW, allowing
the sharing of information among different design groups.
Our approach is completely informal, i.e. it is not covered by
a formal model or formalism.

This paper is organized as follows. The next section
outlines the idea of an HTML based codesign framework
based on the problems encountered during the design of a
video compression system and gives a brief description of
some WWW features. Section 3. describes the basic steps
for setting up the framework. Section 4. discusses an exam-
ple implementation and section 5. concludes the paper with
a discussion of the main results.

2. Organizing complex codesign tasks

First, we describe the design of a video compression system
with a group of designers. In this example a number of dif-
ferent implementations were analyzed to determine the most
suitable system solution. A large amount of design data was
produced, which initiated the development of an HTML
based codesign framework for organizing it. After outlining
the main design flow problems encountered, we summarize
some important mechanisms of the WWW, give an over-
view on these features and how they can be exploited to or-
ganize the codesign.

Our sample codesign task is the development of a PC
board employing a special processor, which is able to de-
compress an input stream of compressed motion pictures in
real time. The board should be able to handle different com-
pression methods like MPEG [7] and h.261 [18] sequences
or JPEG [23] pictures (first level in Fig. 1). We can choose
among different implementations of critical routines (sec-
ond level Fig. 1). In our proposed design flow [3] [27] we
experiment with a specification under various operating
conditions. First, performance for several characteristic in-
put data streams is simulated with a fixed initial implemen-
tation of the application program (third level, upper half). In
an analysis phase, the processor description is varied and
parallel code and execution profiles are produced. Finally,

transformations will change the C source code of some crit-
ical modules, thus yielding new executables (third level,
lower half). To make a systematic investigation of the ex-
pected performance, one usually has to vary a multitude of
different parameters. In the discussed example, these areap-
plications, implementations andinput data, symbolized by
the three levels. Designer A has the task to play with differ-
ent input sequences using an implementation suggested by
Chen [5], which is symbolized by the pathcodesign->
MPEG->Chen->{anim, flower, tennis, zoomxing}(direc-
tory nodes in bold font) in Fig. 1. After that she checks the
Jrev andJrevOpt implementations. Simultaneously a sec-
ond designer B starts to work on different implementations,
namelymatrix andbutterfly , to evaluate the influence of
code transformation techniques on the performance of the
implementation, like tree height reduction, unrolling nested
loops on different levels and memory disambiguation. She
places the results of the experiments at the same level where
designer A has placed her results. Both initial directory
trees, except for the personalized third levels, are private
copies and generated by a checkout of the CVS version con-
trol system. This ensures, that only local copies are altered.

Now we want to compare some results from different
implementations to draw some conclusion w.r.t. the datap-
ath. E.g. a diagram like Fig. 2 comparing the cycle counts of
different implementations using 1 to 6 adders results. B can-
not be sure which results of designer A might be useful for
her since this will depend on the fact that all experiments
were conducted, e.g., on the same input sequence. Before
any conclusions, like discard butterfly altogether or use
more then 4 adders in the datapath, can be drawn, one has to
check on the validity of the results. What is needed is a
glimpse at the most recent results of each designer, i.e. the
current state of the design. Quick access to different loca-

JPEG...
anim
flower
tennis
zoomxing

Chen

flowerJrev
flowerJrevOpt
alloptibyhand
loadcolonce
many_tmp_var
one_tmp_var
treeredu
unrollj

butterfly

simple
unjtreered
unkloadi
unkthrldi
unktreered
unrollj
unrollk
worst

matrix

MPEG

h261...

codesign

appli-
cations

imple-
menta-
tions

inputs
OR
trans-
form.

designer A

designer B

Fig. 1 A sample directory hierarchy to keep
intermediate results during the design flow;

all nodes are directories.

3

tions and transparent information retrieval is required.
From this example it can be seen that the design flow

entangles the directory hierarchy and spreads results all
over. These problems are aggravated by consistency assur-
ance for collaborative work or history management. A prac-
tical solution for the problem of reproducible deposition of
files and information about them in a complex design con-
text is to place meta information in the directories and/or ad-
jacent to the files in question. However, reliable information
recovery depends decisively on the documentation disci-
pline of all participants which is usually rather low. In sum-
mary, the designer needs to know where to find valid result
files of coworkers, documentation about them, and which
tools need to be used at what step of the design flow. In this
situation our work contributes a solution.

2.1 HTML, WWW and Mosaic

Before describing the technical details of setting up a per-
sonalized server daemon and browser for the codesign tasks,
we briefly review the basic WWW [2] concepts. The under-
lying communication pattern for all WWW related commu-
nication is based on a client and a server exchanging mail
(Fig. 3). A WWW browser, like Mosaic [21] is a client. It is
a text viewer displaying text files written in a special lan-
guage called ‘Hypertext Markup Language’ (HTML)[12].
Two characteristics make this the cornerstone of multimedia
communication. First of all, it can followhyperlinks. These
use a range of addressing modes and protocols, from ad-
dressing a local text file or directory to local HTML files to
HTML files offered by an http server daemon on a foreign
internet host. Other protocols like ftp or gopher are also in-
tegrated. The host serves document requests by running an
http daemon process. Secondly, a WWW browser allows the

Fig. 2 Cycle counts of implementations for
different number of adders

invocation of anexternally spawned viewer. The viewer to
be spawned depends on the context type of the document
and a mapping of this type to a certain program. This ability
turns a WWW browser into a multimedia environment,
since picture viewers, motion picture playing programs or
audio players can all be spawned from a single environment.
A viewer may also be a shell. In this case ‘viewing’ a docu-
ment means to execute it.

2.2 A codesign framework using HTML

To solve the problems mentioned at the end of section 2, we
enhanced our example hierarchy of Fig. 1 with HTML files
documenting the contents of each directory and/or some of
the contained files. The hypertext links in the HTML files

superimpose an arbitrarily meshed structure (Fig. 4) on the
hierarchy. This decouples the original location semantics
from the design flow. E.g. when the comparison of two re-
sults at different directory nodes is needed, two links may be
placed on one HTML page, which was written specially for
this comparison purpose. Browsing different results for
comparison purposes is very easy with the appropriate links.
To integrate tools WWW viewers can enable external tool
execution. To facilitate matching of documentation and va-
lidity of results, an HTML sensitive editor and a special
makefile target were integrated into the HTML files. Assum-
ing that the designer always accesses her HTML linked files
using the proposed browser, she is reminded to wrong or

WWW
browser

trigger

mail

Fig. 3 Communication flow when executing
a hyperlink

hyperlink

HTML file

http
daemon

Fig. 4 HTML files meshing directory nodes in
an arbitrary way, dashed lines denote ‘links to’

4

missing links whenever she tries to follow them.
Three additional advantages of this HTML based ap-

proach are worth mentioning. First of all, work may be ex-
ported to the research community via a single push button:
publish the address of your master HTML page on the net,
and they have instantaneous access to your current results
and projects. Secondly, it is very easy to implement a run-
ning demonstration of a particular design: replace the tool
instantiations on each individual HTML page by screen
shots of the invoked tools and your demo is ready. Lastly the
approach scales up very easily. In principle one can start out
to document a single directory, integrating more at demand.
Ultimately the underlying directory structure is completely
hidden from the designer, who only navigates along those
links needed.

3. Implementation

While navigation features are built into every WWW brows-
er, tool invocation must be specially enabled. Furthermore,
some mechanism to pass arguments to the invoked tools
must be provided. Finally, the setup and configuration files
for the WWW codesign environment itself need to be orga-
nized.

3.1 Starting tools

The browser must be enabled for tool execution. The Mosa-
ic manual [21] explains how this can be achieved. This can
be done for other browsers in a similar way. Every WWW
mail has a contents type. Depending on this contents type,
the appropriate viewer for displaying the message is chosen.
In some cases, the HTML browser spawns an external view-
er. There is a special context type, where a c-shell is the
viewer. The browser will spawn a subshell executing the
text file sent to it, which must be a valid shell script in this
case. Therefore, each contents type can be associated with
the appropriate viewer for displaying the contents.The map-
ping of context types to viewers is specified in a parameter
file, which can be personalized to special needs

A second parameter file maps file extensions to view-
ers. Each tool used during the codesign task has to be
wrapped into a tool execution script with the correct exten-
sion. Then the browser needs the two personalized parame-
ter files to map the WWW mails received to the right tool
instantiation. We embedded the original Mosaic into a shell
script, which automatically supplies the adapted configura-
tion files. Global environment variables like library paths
are set in this shell file also. The technical details of this set-
up process may be found in [25].

Tool execution is possible now but no argument can be
passed to the execution shell in this way and no checking of

permissible tool invocations is performed. The global envi-
ronment variables are fixed when starting the browser but
the tool invocation arguments usually depend on the last re-
cently displayed HTML file which triggered the hyperlink.

3.2 Passing arguments to tools

To allow passing arguments to tools we set up our own http
daemon. Any such server process is able to resolve a valid
WWW hyperlink into a pathname and a filename. It usually
mails back the requested file. In addition, a data base query
may be performed on a WWW server. In this case, the server
generates an HTML document on the fly which contains the
query result.

This facility can be used for creating start up scripts
containing the tool calland the tool arguments. The server
mails this script back to the browser which executes it to
start the design tool with the appropriate arguments. For ex-
ample, when the user selects the hyperlink with address ‘ht-
tp:// alcatraz.gmd.de: 9422 /designbin/call? $DESIGN +
display.csh + simSpeedUp.tab’, the server executes the pro-
gram ‘call’ with the string found after the after the question
mark, the query string. The ‘call’ program forms a c-shell
script which will invoke the design tool ‘display.csh’ in di-
rectory ‘$DESIGN’ with the argument ‘simSpeedUp.tab’.

This script is mailed back to the browser which exe-
cutes it. The ‘call’ program also checks if the requested tool
is permitted. Only start up scripts for allowed tools are cre-
ated, otherwise an error message is returned. To summarize,
only one setup step is necessary for the daemon: supply a
program for creating start up scripts from query strings and
let the http daemon execute it.

It is interesting to note that this simple strategy may be
used as an entry point to form full-fledged design data base
management. In this case the small ‘call’ program is re-
placed by a system for design information management [15]
[10]. In the hyperlink example above take ‘$DESIGN’ as
design object name, ‘display.csh’ as desired tool and ‘sim-
SpeedUp.tab’ as design data. In addition, the users address
can be used to determine access privileges. After finishing
the transaction, the http daemon can take the responsibility
to update an underlying design data base. This concept
works even on a global scale due to the powerful features of
WWW.

3.3 Putting it all together: organization of the
codesign framework and HTML files

On the server side, we set up a directory with the perl pro-
gram ‘call’ and a number of template cshell files that encap-
sulate the invocation of the codesign tools. On the client
side, we use an HTML browser that is enabled for executing

5

c-shell scripts. The underlying directory hierarchy of the
original design was not changed. Instead, we followed some
conventions for adding HTML files which overlay the direc-
tories with the desired meshing of related results. For each
directory node, there is a ‘README.html’ file containing a
brief description of the contents of each file. This is meant
as a fast entry point for an expertuser. In addition, there are
documents that explain the data in a more verbose way.
These files can be used by other designers who are not com-
pletely familiar with the specific data. These documents also
provide links to background material which allows a novice
designer to inform herself about general concepts.

Templates are used for the HTML pages. This contrib-
utes to uniform appearance of the design documents and
links to frequently used tools are directly included into this
template. A single root directory is used as anchor for the de-
sign directory. Within this tree, relative addressing is used
for the hyperlinks. This supports a reuse of design docu-
ments since the directory can be moved to another location
without destroying the internal linking.

4. Results

Since this article deals with HTML pages the results are best
described by a hyperlink. We offer two anchors, namely ‘ht-
tp://alcatraz.gmd.de:9422/sydisdoc/’ and ‘http://alc-
atraz.gmd.de:9422/designenv/’. While the first is very much
a traditional tree-like hierarchy of user and reference docu-
mentation, the second has a link ‘video compression system’
in ‘Design example’. This link is the entry point for the de-
sired mesh of HTML files described in Fig. 4 for the exam-
ple of Fig. 1. There is also a link to a demonstration which
displays screen shots of our tools. If you like to see the pro-
posed HTML environment at work with real tool invoca-
tions, you need to get the CASTLE tools first and install
them on your local machine. You find a link how to get these
tools in the pages above.

We have used the HTML based system for three
months, and it has proven to be an invaluable help. It greatly
facilitates visualization tutorials and demonstrations.

Since our WWW setup interweaves documentation and
design activities closely, it also influences the work flow.
When a designer starts with a codesign task, she will write
an initial HTML master page first, describe the goals on it
and collect links to frequently needed tools. Other tools can
be added on demand, exactly at the time needed. Since all
pages are in use from the very beginning, the meshing is per-
manently being verified. We call thisdesign by documenta-
tion. To minimize the overhead and the learning curve for
the designer to document her design activities on HTML
pages, we use an EMACS editor initialized in HTML mode
[12]. We supplied a default template HTML reference page

shown in Fig. 5. This page contains links to the most fre-
quent activities, namely visiting the source directory via
‘xterm’, spawning the editor via ‘editor’, and updating the
current directory via a special makefile target ‘update’. Fur-
thermore, standard sections like ‘Introduction’ or ‘Results’
are included.

Several other aspects of designing in a group were not
described, e.g., revision management, reusable makefiles
and overall context setup for a follow-up design project.
These aspects have been successfully integrated into our de-
sign environment and are described elsewhere [25]. Al-
though our WWW based approach cannot compete with a
full-fledged framework, it will help the designer to achieve
reproducible, documented results in a shorter time. Further-
more the HTML based solution is fully scalable, since one
can start out with as little as some readme files and end up
with the integration of other frameworks into the HTML
pages. The professional looking interface in a modern, up-
to-date tool will inspires the designer during her work.

5. Conclusions

An environment for complex codesign tasks was proposed.
It is based on HTML, supports parametrized tool instantia-
tion and simultaneous documentation of design steps. All
designers have common access to the most recent results
which are embedded into HTML files. Information flow in a
group context is facilitated by merging of production of re-
sults and their simultaneous documentation. Finally, the de-
sign data can be made available to the world simply by
posting an address in the WWW.

Acknowledgments
This work would not have been possible without the CAS-
TLE design team, H. Veit, M. Theissinger and P. Stravers.

Fig. 5 HTML default page structure

6

Clarifying discussions with H. U. Kobialka about frame-
works are also acknowledged. This work was sponsored by
the German administration, ‘Bundesministerium für Fors-
chung und Wissenschaft’ under contract number
01M2897A SYDIS.

References
[1] B. Ackland: “The Role of VLSI in Multimedia”, IEEE J.

Solid-State Circuits, vol. 29, no. 4, pp. 381-388, April
1994.

[2] T. Berners-Lee, et al.: “The World-Wide Web”, Comm.
ACM, vol. 37, no. 8, pp. 76-82, Aug. 1994.

[3] R. Camposano, J. Wilberg: “Embedded System Design”, to
be published.

[4] “CFI Home Page”, http://www.cfi.org

[5] W.H. Chen, C.H. Smith, S.C. Fralick: “A Fast Computa-
tional Algorithm for the Discrete Cosine Transform”, IEEE
Trans. Commun., vol. 25, pp. 1004-1009, 1977.

[6] R. Ernst, J. Henkel, Th. Benner: “HW/SW cosynthesis for
microcontrollers”, IEEE Design & Test, pp. 64-75, Dec.
1993.

[7] D.J. Le Gall: “MPEG: A Video Compression Standard for
Multimedia Applications”, Comm. ACM, vol. 34, no. 4, pp
46-58, 1991.

[8] D. D. Gajski, F. Vahid, S. Narayan: “System-Level Meth-
odology and Technology”, E-DAC Tutorial, 1994.

[9] D.S. Harrison, A.R. Newton, R.L. Spickelmier, T.J. Bar-
nes: “Electronic CAD Frameworks”, Proc. IEEE, vol. 78,
no. 2, pp. 393-417, 1990.

[10] A. van der Hoeven, O. ten Bosch, R. van Leuken, P. van der
Wolf: “A Flexible Access Control Mechanism for CAD
Frameworks”, EuroDAC’94, pp. 188-193, 1994.

[11] X. Hu, et al.: “Codesign of Architectures for Automotive
Powertrain Modules”, IEEE Micro, vol. 14, no. 4, pp. 17-
25, August 1994.

[12] “HyperText Markup Language (HTML)”, HyperText
Markup Language (HTML): Working and Background
Materials, http://www.w3.org/hypertext/WWW/MarkUp/
MarkUp.html.

[13] A. A. Jerraya, et al.: “Linking System Design Tools and
Hardware Design Tools”, in D. Agnew et al.(eds.): “Com-
puter Hardware Description Languages”, IFIP Trans., vol.
A-32, 1993.

[14] A. Kalavade, and E. A. Lee, “A Hardware/Software Code-
sign Methodology for DSP Applications,” IEEE Design
and Test, vol. 10, no. 3, pp. 16-28, September 1993.

[15] R.H. Katz, M. Anwarrudin, E. Chang: “A Version Server
for Computer-Aided Design Data”, 23rd DAC, pp. 27-33,
1986.

[16] H.-U. Kobialka, C. Meyke: “View on an Object-Oriented
Software Engineering Environment”, Proc. 6th Int. Work-
shop on Computer-Aided Software Engineering,
CASE’93, 1993.

[17] D.C. Liebisch, A. Jain: “JESSI Common Framework De-
sign Management - The Means to Configuration and Exe-
cution of the Design Process”, EuroDAC’92, 1992.

[18] M. Liou: “Overview of the px64 kbps video coding stan-
dard”, Comm. ACM, vol. 34, no. 4, pp. 59-63, April 1991.

[19] H. De Man: “Design Technology Research for the Ninties:
More of the Same?”, EuroDAC’92, pp. 592-596, 1992.

[20] G. De Micheli: “Computer-Aided Hardware-Software
Codesign”, IEEE Micro, vol. 14, no. 4, pp. 10-16, August
1994.

[21] “NCSA Mosaic FAQ: Other Mosaic/WWW Software”, ht-
tp://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/faq-
software.html

[22] P.G. Paulin, C. Liem, T.C. May, S. Sutarwala: “DSP Tool
Requirements for Embedded Systems: A Telecommunica-
tions Industrial Perspective”, J. VLSI Signal Processing,
vol. 9, pp. 23-47, 1995.

[23] W. B. Pennebaker, J. L. Mitchell: “JPEG Still Image Data
Compression Standard”, Van Nostrand Reinhold, New
York, 1993.

[24] M.J. Silva, R.H. Katz: “Active Documentation: ANew In-
terface for VLSI Design”, 30th DAC, pp. 654-660, 1993.

[25] “The CASTLE Analysis Environment”, CASTLE Analysis
Home Page, http://alcatraz.gmd.de:9422/designenv/hel-
lo.html, in preparation.

[26] D. E. Thomas, J.K. Adams, H. Schmit: “A Model and
Methodology for Hardware-Software Codesign”, IEEE
Design & Test, vol. 10, no. 3, pp. 6-15, Sept 1993.

[27] J. Wilberg, R. Camposano, W. Rosenstiel: “Design Flow
for Hardware/Software Cosynthesis of a Video Compres-
sion System”, 3rd Int. Workshop on Hardware/Software
Codesign, Sept. 22-23, Grenoble, pp. 73-80, 1994.

[28] W. Wolf: “Hardware-Software Co-Design of Embedded
Systems”, Proc. IEEE, vol. 82, no. 7, pp. 967-989, July
1994.

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

