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Abstract
Automation of the Hardware/Software Codesign

methodology brings with it the need to develop
sophisticated high-level profiling tools.  This paper
presents a profiling tool which uses execution profiling
on standard C code to obtain accurate and consistent
times at the level of individual compound code sections.
This tool is used in the ASP Hardware/Software
Codesign project.  The results from this tool show that
profiling must be performed on dedicated hardware
which is as close as possible to the final implementation,
as opposed to a workstation.

1  Introduction

Automated design methodologies in digital systems
have until recently been limited entirely to the design of
hardware.  Automated Hardware/Software Codesign
(HSC) offers a design methodology for a total system (ie.
both hardware and software).  The ASP (Automated
Synthesis & Partitioning) codesign environment is an on
going project at the University of Queensland on
Hardware/Software Codesign.

For a totally hardware oriented design (eg. ASICs) the
development time is prohibitive in bringing fresh and
affordable products to the market.  Equally restrictive is a
totally software based solution which will perform slowly
due to the use of a generalised computing architecture (ie.
a RISC based microprocessor).  This is where designing
for a hybrid between a hardware and software based
implementation can be of particular advantage.

A codesign methodology enables the specification of an
algorithm totally in software.  Through an automated
design process the algorithm is optimally partitioned into
both hardware and software, thus allowing the designer to
be distanced from the hardware specific techniques of
improving an algorithm's performance.  This in turn
allows the designer to concentrate on the algorithm's
design.

Algorithm bottlenecks are usually limited to a small
portion of the actual code.  By converting these critical
code segments into hardware, an ideal partitioning of the
algorithm's execution into both hardware and software is
achieved.  An overview of the automated
Hardware/Software Codesign methodology is briefly
outlined in Figure 1.  This automated partitioning process
initially identifies the critical code segments within the
software.  These code segments are then used to provide a
near optimal partition between hardware and software
implementations.  By next applying the process of
synthesis to the partitioned code it is possible to achieve
significant acceleration of the algorithm.
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Figure 1 - Automated hardware/software
codesign methodology

The automation of this partitioning process also permits
the design to be independent of the final hardware
required for execution.  The actual hardware
implementation is determined through cost and resource
constraints.  This easily allows the designer to take
advantage of emerging technologies without the requisite
redesign of the system from the ground up.  An example
of a proposed hybrid architecture is outlined in Figure 2.
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Figure 2 - Hybrid architecture configuration

Acceleration of the algorithm can be achieved by
implementing critical sections on dedicated hardware
accelerators or on FPGAs.  Execution on FPGAs is
performed by converting the high-level standard C
language description of the hardware partition into
VHDL [2] code.  By then passing the VHDL code through
the MEBS [3] package, we have both a hardware
description of the partition, as well as feedback on the cost
in terms of chip area, and execution time.  This cost is
related to implementing the algorithm on a XILINX
FPGA.



To achieve an ideal partitioning between hardware and
software execution of a given algorithm, a profile of the C
code must be generated.  Ideally this profile should outline
execution tendency and data transfer within the various
sections of the C code under consideration.  Until now,
most methods have tended toward estimation, or
simulation techniques to achieve these profiles.  Smith [20]

presents  an overview of execution graphs from which
performance is estimated.  Ein-Dor and Feldmesser [21]

give a method for predicting performance on a system,
while techniques are developed by Shaw [22, 23, 24] for
reasoning about the execution time of processes.  The co-
synthesis system COSYMA [19] presents a processor
simulator for run time analysis and target system
verification at the register transfer level.

 Problems with worst-case behaviour, excessive
simulation time, as well as pipelining anomalies exist with
these current techniques.  The ASP profiler is able to
construct profiles of C code in near real-time.

In order to achieve profiles of C code execution that
were as close to reality as possible under the ASP system,
a new profiling methodology was developed.  As our
system is specified in C, a tool was constructed to profile
the C code description of an algorithm in order to
determine the appropriate partitioning between hardware
and software.

The profiling tools described here consist of both
hardware and software components.  Section 2 outlines
the software developed, while Section 3 details the
hardware aspects of the design.  Section 4 compares
results obtained using the profiling tools on several
platforms.

For a complete description of the HSC process as it is
applied above, please refer to [1], [4] and [5].

2  Profiling software

There are several key factors which affect the ability to
perform both accurate and consistent profiling of any
given C code.  Those attributable to software are outlined
below along with the methods used to attain results which
are more than satisfactory for the partitioning process of
Hardware/Software Codesign.

2.1  Timing resolution

One major factor in attaining satisfactory profiling
results is the timing resolution available.  On standard
workstations a limit of one-hundredth of a second is
imposed, even though the software times returned are
specified in micro-seconds.  The rounding is a direct result
of the hardware limitation of the timers.

Not only is this resolution unacceptable, but there is
also the problem of accumulating time from other
processes, running on the same machine.  This is
overcome by calling only those timing routines which
activate the timers while our process's context is active.
Even so, on a standard workstation, the timers are not
able to be stopped at any given point within the code,
which is a requirement for obtaining consistent and
meaningful times.

With this approach, the times returned for many
sections of code are zero.  Couple this with the recursive
nature of loops, and an accumulative effect is seen.  This
often renders results which don't reflect the type of code
being executed.

In the context of Hardware/Software Codesign, it is
crucial to determine the true extent of execution of any
code segment.  With the embedded systems architecture
of our design, we attain the needed resolution directly
with the hardware that will finally execute it.  The
resolution we obtain with this method is exact, to the level
of individual clock cycles, as the software is executed on
our target architecture.  Futher aspects of the hardware
design are discussed in Section 3.

2.2  Software tagging

Implementing a timing resolution at the level of
individual clock cycles doesn't by itself satisfy the
requirements of the Hardware/Software Codesign
process.  While it does exhibit a timing resolution five
orders of magnitude better than present methods, it can
only be of benefit if the appropriate software techniques
are employed.  Discussed below are the software tagging
techniques used to take full advantage of the hardware
design.

Another resolution limitation identified in the profiling
process is that of segmentation granularity.  This is the
minimum resolution imposed on the identification of
candidate segments within the C code being profiled.  The
profiler limits segmentation granularity to compound
statements.  These are further referred to as compound
code sections.

In order to identify the compound code sections within
the original C code being profiled and further, to obtain
detailed timing information about these sections, software
tagging is used before the final compilation process.
Software tagging consists of two stages, parsing and
insertion.  These two processes are now discussed
further.

The first stage consists of parsing the original C code to
identify procedures and functions and record variable
usage.  The location of compound statements is also
recorded at this point.  These include standard loop
constructs, conditionals, and all statements enclosed in
braces.

The locational information obtained from this first
parsing stage is used in the insertion process of the second
stage.  The second stage consists of inserting profiling
code in the original C source.  This provides an execution
trace and permits an iteration count to be maintained, with
the identity of each section being recorded.  Timing
information is also recorded for each compound code
section as each section is entered and again on leaving.  It
is also seen that a previous aim, that of being able to stop
the timer, while these details are being recorded, is now
able to be fulfilled.

Stopping of the timers during house-keeping is essential
to maintaining consistent timing results.  Time allocated
to these tasks is not uniform from one invocation to the
next.  If included in overall timing figures, bias is
introduced, with smaller routines potentially returning
times containing large variation.



By itself the timing of house-keeping tasks appears to
be of little consequence when applied to the HSC process,
due to the small execution time under consideration.
However, coupled with the recursive, and loop-based
nature of algorithms, it leads to potentially meaningless
results, regardless of the high resolution of the timers
employed.  It effectively short-circuits an overall aim of
profiling, that of obtaining consistent results from one
invocation to the next.

The insertion process avoids timing unnecessary tasks
by placing code to inhibit the timers on entry to each new
compound code section.  After house-keeping is
performed, the timers are re-enabled.  All time attributed
to these last two operations is deducted in the recording
process of house-keeping.

The initial parsing stage identifies all points in the
original C code where a given compound code section
may be terminated.  Consequently, the second stage also
inserts code to stop the timers, wherever the execution
trace may leave each compound code section.  Once
again, house-keeping is performed at this stage.

With the parsing and insertion stages completed, the
resulting code is next compiled in preparation for
execution on the target architecture.  This final process
yields a dynamic model which is representative of the
execution flow structure, timing information and data flow
of the algorithm during execution.

The aim of execution profiling is to build this dynamic
model.  For a statistically accurate model, the designer
must ensure that any testing data is representative of the
general data set the algorithm will encounter during
normal operation.  In this way, every branch within the
algorithm may be exercised.

An example of a typical piece of code containing a
single entry point and multiple exit points, along with
inserted profiling calls, is detailed in Figure 3.

2.3  Comparison with other systems

Previous efforts [9] such as the ‘proof of concept’
system PRISM-I have failed to address the areas of the
design process discussed above, preferring to rely on the
hand-selection of code to be converted to hardware.  The
resolution of the system presented in [9] is also limited to
converting entire functions into hardware, compared with
the compound code sections handled automatically by the
system presented in this paper.

Commercially available profilers were found to be
inadequate for the ASP design process.  They either had a
poor timing resolution (e.g. GCC's profiling option),
provided no structural information about the code, or were
not portable over varying target architectures.

In designing a profiler the opportunity was available to
develop an entirely theoretical approach through the use
of simulation.  The other alternative was that of
performing real-time analysis of algorithms as they
executed on various target architectures.  The advantages
of execution profiling over simulation arise from the
nature of the ASP project.

void mov(int n, int f, int t)
{

int o;

*((char *) CNT_STOP) = 0;

Comp_Beg(1, 1);
*((char *) CNT_START) = 0;

if (n == 1) {

*((char *) CNT_STOP) = 0;

Comp_Beg(3, 0);
*((char *) CNT_START) = 0;

 {

   num[f]--;

   num[t]++;
   count++;

{

*((char *) CNT_STOP) = 0;

Comp_End(3, 0);

Comp_End(1, 1);
*((char *) CNT_START) = 0;

return;

}

}

}
o = (6 - ( f  +   t )) ;

mov(n - 1, f, o);

mov(1, f, t);

mov(n - 1, o, t);

{

*((char *) CNT_STOP) = 0;

Comp_End(1, 1);

*((char *) CNT_START) = 0;

return;
}

}

void mov(int n, int f, int t)

{

int o;

if (n == 1) {

   num[f]--;

   num[t]++;

   count++;

   return;

}

o = other(f, t);

mov(n - 1, f, o);

mov(1, f, t);

mov(n - 1, o, t);

return;

}

Compound IF statement
given unique ID 3

Figure 3 - Profile call insertion

During this project many target hybrid architectures
will be encountered.  The prohibitive expense associated
with developing models for the simulation of these
architectures was crucial.  The profiler merely requires a
cross compilation to change the architecture under
consideration.  Another inhibiting feature of simulation is
its slow execution speed, which in turn results in a
lengthy development cycle time.

With the accuracy, consistency, and speed of execution
with which profiling fulfils the requirements of the ASP
project, the alternative of simulation is no longer a
consideration.

3  Profiling hardware architecture

There are several hardware features of the design which
attribute to the success of execution profiling.  These are
outlined below.

3.1  Timing architecture

By designing dedicated timers into the architecture
performing profiling, timing is suspended and resumed
through the software being profiled.  Advance knowledge
of the time associated with toggling the timing status
ensures exact times are recorded in all cases.

Clocking rate of the timers is identical to that of the
processing element under consideration.  For
microprocessor execution, timer clocking rate is identical
to CPU speed.  This ensures an exact representation is
maintained at all times during profiling.
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It is possible that the code used to start and stop the
timer's will be compiled into assembly instructions which
vary throughout the code being profiled.  This is a direct
result of differences in register allocations.  These
variations are of the order of clock cycles, and appear
infrequently.  The extent to which profiling results are
effected is extremely minimal.  Consistent profiling results
are still produced from one run to the next.

The timer interface is extremely simple.  The software is
required to clear, start, stop, and read the counter values
of the timer.  Some of these software operations are
detailed in Figure 3.  The timer interface is shown in
Figure 4.

A 48-bit timer is presently used to avoid overflow
problems.  This ensures continuous profiling at our
current CPU speed of 12.5 MHz for a period of over 8
months.

3.2  Timing accuracy and consistency

The critical timing sections occur when the clock is
stopped and once again when it is started.  By themselves
these timing situations are not difficult.  But, when
coupled with external events, such as DRAM refreshes,
and the subsequent bus requests associated with these
events, they become a serious timing concern.

It is necessary to deduct all time associated with
DRAM refresh cycles, in order to maintain consistent and
accurate times for all code on each invocation of the
profiler.  And importantly, any overlap between the
starting and stopping of the timers, and DRAM refresh
bus requests, must be resolved.

These objectives have been achieved, resulting in a
profiling system which successfully returns identical times
for the same C code, on separate invocations of the
profiler.  Not only has this consistency of times been
achieved, but an accuracy of timing has been achieved
whereby all code is timed with absolute precision.  The
times returned by the profiler for any section of C code are
accurate down to the level of each individual clock cycle.

The timing is both exact in terms of accuracy and
perfectly consistent in terms of the variation from one
invocation of the profiler to the next.

4  Results

The software techniques employed for profiling (the
timing of code sections, as well as procedures) were also
tested on the standard timing hardware of a workstation.
The results from these software techniques for profiling
were superior to the results from profiling tools which
were available on the system.  They do however lack the
accuracy and consistency obtained with the dedicated
hardware developed for the ASP project.  Consequently,
the usefulness of profiling on a workstation is limited to an
initial measure of a program's execution tendency.

Ten common benchmark programs were tested with the
profiling tools which have been developed.  The
benchmarks were tested both on the 68k based dedicated
hardware designed for the ASP project, as well as on
standard workstations.  The workstations included a
Sparcstation 10, and a 68k based workstation.  The only
difference between the profiling performed on the
dedicated hardware, and that performed on the
workstations is in the timers used to record the execution
time at a given point in the code.

The workstation is unable to turn off it's timers.
Consequently, the time for house-keeping tasks is
included in its timing.  Various random events, such as
DRAM refresh, may also be included in these times.  The
timing routines used are those which only run in process
virtual time (ITIMER_VIRTUAL - under "man
getitimer").  The timer only runs when the process is
executing.  The frequency of the workstation timers was
100 Hz, compared with 12.5 MHz for the dedicated
hardware.

The example benchmarks profiled on the workstation
were each run 20 times, with a standard deviation being
calculated across the 20 invocations.  A standard
deviation was calculated for each compound code section,
of each example benchmark.
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Figure 5 - Towers of Hanoi benchmark
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Figure 6 - Heapsort benchmark

Section Number

%

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Dedicated Hardware

SPARC Workstation

68k Workstation

Figure 7 - Fast Fourier Transform benchmark
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Figure 8 - ADPCM Coder/Decoder benchmark
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Figure 9 - Livermore Loops benchmark

Section Number

%

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

SPARC av SPARC av
- std.
dev.

SPARC av
+ std.
dev.

Dedicated
Hardware

Figure 10 - Fast Fourier Transform - SPARC
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The charts of Figures 5 through 9 represent a comparison
between the exact percentages, as calculated on the
dedicated hardware, compared with execution on a SPARC
workstation, and a 68k based workstation.  Figures 10, 11
show the workstation results, represented by the average
percentage calculated, along with marks one standard
deviation either side of this average, for the FFT
Benchmark.  The average and standard deviation results are
calculated over 20 independent runs on the workstations,
and are calculated on the % of overall time taken.  The first
few percentages on each graph represent procedure
execution time.



5  Future research

As our Hardware/Software Codesign project achieves
its goals with respect to synthesizing hardware, the
profiling techniques presented will be extended to timing
sections of code as they execute in hardware.  This will
allow further decisions to be made regarding the
suitability of placing particular sections of code in either
the hardware or software partitions of a given design.

Timing granularity is another profiling issue associated
with the timing of hardware execution.  As it is possible
for the synthesized hardware to execute with a faster
clock than the software partition as it runs on a
microprocessor, the granularity required for the hardware
partition may have to be increased to attain the desired
comparisons.

The possibility of variations in timing, through starting
and stopping the timers, will require further attention.

6  Conclusions

We have presented a tool which profiles standard C
code on several platforms.  This tool was developed as
part of the ASP Hardware/Software Codesign project at
the University of Queensland.  As such, it facilitates our
need to separate a software specification into both
hardware and software executable components.  This is
partially achieved through the timing of individual
compound code sections with both accuracy and
consistency.

Profiling was performed on 3 platforms.  These
consisted of our own dedicated hardware containing a 68k
CPU, a SPARC processor based workstation and a 68k
based workstation.  It was shown that the profiling of
benchmarks on workstations was not accurate, and indeed
returned results with large standard deviations, when
performed over 20 runs.

A further comparison between times obtained from the
68k based dedicated hardware and the 68k based
workstation revealed significant differences.  Based on the
fact that timing performed on our dedicated hardware is
both accurate and consistent, we therefore conclude that it
is both practical and necessary to perform profiling on the
same architecture that will be used in the final
implementation of the Hardware/Software Codesign
process.
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