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Abstract

One of the key issues in hardware/software—cosynthesis
is precise estimation. The usual local estimation tech-
niques are inadequate for globally optimising compilers
and synthesis tools. We present a path based estima-
tion technique which allows a computation time/quality
tradeoff.  The results show acceptable computation
times while revealing much more potential parallelism
than local list scheduling.

1 Introduction

System level design becomes more important since the
time to market (e.g. about 18 months for complex
HW/SW systems [Keu94]) decreases at a continuously
increasing complexity of mixed hardware/software sys-
tems. As a consequence, uniform specification of
HW/SW systems, HW/SW partitioning, HW synthe-
sis, SW synthesis, cosimulation etc. become important
research areas.

In the ambitious area of cosynthesis, hardware soft-
ware partitioning plays a key role. There are
some constraint—driven approaches which focus on
this problem: The VULCAN system [GuMi92] is a
hardware—oriented approach to HW/SW-cosynthesis.
In [VaGaGo94] a software-oriented approach (start-
ing with an all-software-solution) decides about the
HW/SW tradeoff using a binary search algorithm.
The approach described in [KaLe94] uses an algorithm
called GCLP that takes into consideration a global time
critical measure and a set of local criteria in order to de-
termine the HW/SW tradeoff. COSYMA [ErHeBe93]
also belongs to the class of software—oriented ap-
proaches and uses the simulated annealing algorithm
for automating the HW/SW partitioning process.
Other approaches [BaRoXi94], [JaEIOb+94] also focus
on HW/SW partitioning but still need some user in-
teraction.

All these approaches have in common that they
need sophisticated techniques for estimating param-
eters (time, area,...) that will decide on the hard-
ware/software partitioning.

We present a precise hardware runtime estimation
technique that can even evaluate global optimization
potential and that has acceptable computation time.

The next section introduces to the estimation problem
in the context of the COSYMA system. In section 3 the
use of the path-based technique for estimating hard-
ware runtime is presented. The results are discussed in
section 4 while section 5 gives a conclusion.

2 Estimation in COSYMA

A very simplified design flow of COSYMA is shown in
figure 1. Input is a real-time system description in a
superset of C that is translated to an internal repre-
sentation, the extended syntax graph (ESG).

HW /SW-partitioning in COSYMA is solved with sim-
ulated annealing [0G89]. The iterative annealing pro-
cess is called Inner partitioning Loop (IPL). Simulated
annealing generates several thousands of designs that
must be evaluated by the cost function. The cost func-
tion is based on estimation of hardware and software
runtimes, HW/SW-communication time and on trace
data. The path—based estimation technique presented
in this paper provides the hardware runtime estima-
tion. After partitioning, hardware and software syn-
thesis are executed and the actual values for hardware
runtime, chip area, ... are fed back. For more details
on COSYMA see [ErHeBe93]. If the constraints (CS)
have not been met, the whole procedure is repeated.
Reason for a deviation from the given constraints is
that estimation cannot predict all local and global op-
timization effects in the computation intensive hard-
ware and software synthesis processes.

As shown in figure 2, COSYMA takes those effects into
account by correcting the set of estimation values E;
when the real values C; have been determined. The
result is a set of rules from which a set of new esti-
mation values Ejy; is derived. Then, again a hard-
ware/software partition P; is generated and so on. We
call this process the Outer Partitioning Loop OPL. It-
eration through the OPL should be done until all con-
straints are met.

As shown in [HeHeEr94] a convergence — i.e. meeting
all constraints — can be achieved after a few itera-
tions. Prerequisite are sophisticated estimation algo-
rithms: the closer the result of an estimation to the
real value the faster the convergence and the final re-
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Figure 1: Simplified design flow of COSYMA.

sult (see [HeHeEr94]). This estimation is only executed
once in the beginning of inner loop computation to de-
rive all estimation values including high order values
as Eij [HeHeEr94].

The requirements for developing an adequate algorithm
that estimates the hardware runtime, are (implied by
the arguments above):

e high precision
e low computational effort
e completely automatic

The first requirement excludes all estimation ap-
proaches that are limited to the scope of basic blocks
because they are not able to identify the global opti-
mization potential in hardware synthesis. Path—based
scheduling could be used for estimation instead as it
reveals global optimization potential of basic block se-
quences.

The scheduling algorithm described in [Cam91] fur-
thermore promises a high flexibility since the handling
of resource constraints is integrated into the global
concept. Nevertheless the major disadvantage is that
some of the steps in path—based scheduling are NP-
complete thereby preventing its use for larger programs.
In [ObRaJe93] an approach is presented that uses an
algorithm in order to avoid a path explosion. There
paths end if a wait statement is encountered or a node
is found that has already been inserted in a path. This
approach is not able to decide between different alter-
natives to limit a path since the conditions are fixed
(i. e. always end a path if the conditions are true).
We present a path—based estimation technique that re-
duces the number of paths drastically with a minimum
loss of quality! (schedule) since our algorithm can de-
cide where to end a path (given a set of possibilities
from which only that subset is taken that leads to a

IThe original path-based scheduling by [Cam91] does not
consider a re—ordering of operations in a path during scheduling.
‘We have overcome this problem by executing a pre-scheduling
phase. We do not focus on this problem here due to lack of space.
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Figure 2: The role of estimation in the Outer Parti-
tioning Loop.

small loss of quality) A further advantage is that the
user can decide on the quality/computation time trade-

off-
3 A Path—Based Estimation Technique

Path—based scheduling consists of the following passes:
I. Transforming a CDFG into a directed acyclic
graph.
II. Collecting ALL paths.

III. Scheduling all paths As—Fast—-As—Possible
(AFAP see [Cam91]).

IV. Overlapping all paths.
Computation time intensive steps are III and IV as a
consequence of step II.
The AFAP schedule in step III makes use of a clique
partitioning algorithm [TsSi86] that has been proved
to be NP—complete. The computation time depends
on the number of operations per path No.
Assuming the worst case i.e. each path has at least one
basic block with each other path in common the com-

putation effort for step IV results to O(Np?) with Np
the total number of paths found.

So the goal is to minimize the total numbers of paths as
well as the number No of operations (or basic blocks)
per path. Therefore the whole graph representation of
an application is split and each part is scheduled by it-
self. This section deals with determining the so called
cut points in a sophisticated way.

Let G = {V, E} be a directed acyclic graph DAG where
each node v; € V represents a basic block that contains
at least one single operation and where a directed edge
e; € E specifies the direction of the control flow. Fork
nodes correspond to an if-else statement in the ori-
gin program code. Feedback edges denoting loop state-
ments are already removed. Each node v; has two at-
tributes: it (i. e. iterations) is the number of times this
node has been visited at simulation time. The nesting
level nl of a node increases by one if the predecessor is
a fork node and it decreases accordingly if the prede-
cessor is a join node.

Example 1:

Calculating all paths in the graph representation given
by figure 3 leads to a number of Np = 10 paths. Each
path P contains a number of No = 3 No, opera-

tions.

v, €V



Example 1:

P1={1,2,3,5,6,7,9,11,12,13,15}
P2={1,2,3,5,6,7,9,11,12,14,15}
P3=(1,2,35,6,8,9,11,12,13,15}

P10=. ..

Example 2: using CP1
P1=({1,2,3,5}

P2=(1,2,4,5}
P3={1,10,11,12,13,15}
P4={1,10,11,12,14,15}
P5={6,7,9,11,12,13,15}
P6={6,7,9,11,12,14,15}
P7={6,8,9,11,12,13,15}
P8=(6,8,9,11,12,14,15}

Example 3: using CP2
P1={12,13,15}

P2={12,14,15}
P_3:{1,2,3,5,6,7,9,11,12,13,15}

P8=...

Figure 3: Calculating the number of paths with differ-
ent cut points set.

Example 2:

Now assume the graph has been split into two parts
split by a cut point CP1. Determining all paths for
each subgraph? leads to a total number of Np = 8
possible paths.

Example 3:

Instead of CP1 cut point CP2 is set and all possible
paths are calculated again. Hereby there is Np = 8
also.

Compared to example 1, example 2 and 3 are expected
to gain a near optimum scheduling result because a
cstep (control step) ends at each cut point and a new
cstep starts behind the cut point.

The loss in quality measured in terms of an additional
number of csteps depends on the data dependencies of
operations before and behind a cut point. Assuming
that the operations have already been optimally or-
dered, there is no way to influence this effect.
Another aspect are the hardware constraints (number
of available hardware resources). The larger the num-
ber of resources the larger is the additional number
of control steps since a potential high parallelism is
prevented (see example in figure 4). Calculating the
number of additional csteps as a result of cut points
would require a data flow analysis through the accord-
ing cut point. The computation time saved by reducing
the number of paths would have to be re-invested and
nothing is gained.

A better measure for the loss of quality is the increase
of execution time (measured in clock cycles) implied
by the schedule. Let ¢t; be the number of times an

2A subgraph is part of the origin graph G with a cut point
before the first node and after the last node set but without any
cut point inside.
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Figure 4: Comparison of schedules without (top) and
with (bottom) cut points for different constraints.

operation scheduled in control step ¢; (C' is the set of
all control steps) is executed. Then

ter_cut = Z Z Zt] (1)

gCG c;eC

gives the total execution time of an program whose
graph representation G has been cut into subgraphs g.
In spite of the fact that example 2 and 3 lead to the
same (reduced) number of paths, example 2 is expected
to imply a smaller execution time (only 4 iterations at
cut point CPI against 10 iterations at CP2). That
leads to the formulation of rule 1.

Rule 1:

Locate the cut points at positions in the graph repre-
sentation where a minimum number of additional clock
cycles At., compared to a non—cut graph is expected.

Ateaz = min(tem_cut - tea:_org) (2)

There are te;_cut and tez_org the execution times with
and without cut points set. Preferred candidates are
those with the lowest iterations (executions).

When rule 1 is executed it is assumed that a selection
of cut points has already taken place. In order to sim-
plify the optimization procedure the total number of
possible cut points should be minimized by limitation
to those cut points that will really reduce the complex-
ity:

Rule 2:

A possible cut point C'P; is located behind a node v; €
V if v; is a join point and if there exists a path P where
v; is the starting node and where

\/ (vjis join point) A /\ nl(vy) > nl(v;).
vj;ﬁ’u,jﬂ}jep vn €P

Here nl(v) is the nesting level of node v. The nesting
level increases by one after a fork node and decreases
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Figure 5: a) Searching for possible cut points. b) Hi-
erarchical reducing of cut points.

when a join node is reached (see figure 5 a) attribute
“nl”). The path P ends if a node vy is encountered
with nl(vg) < nl(v;).

Figure 5 a) shows the result of rule 2 for a small ex-
ample. Only node 5 fulfills all conditions and therefore
a cut point is set accordingly. It is obvious that cut
points behind nodes 9 and 13 would not reduce the
number of paths.

For the case rule 2, rule 1 and an AFAP schedule have
been applied and the user wants to improve the result®
a reduction of cut points is necessary.

Rule 3:

Search for subgraphs g C G that could possibly contain
(according to rule 1) more than one cut point at the
same nesting level. Find that cut point that would split
such a subgraph best, i.e.the resulting 2 pieces are of
same length (a measure is the number of operations).
Handle each piece in the same way etc. A binary tree
is built up where each node represents a cut point and
each edge represents a piece of the subgraph of the orig-
inal program graph G. Then step by step, beginning at
the leafs of the binary tree, the cut points are removed.
The user determines how many cut points are removed
since reduction of cut points implies an increase of com-
putation time (quality/computation time tradeoff).

Figure 5 b) shows this procedure for a small subgraph
with only 3 cut points. Step 1 would remove cut points
1 and 3 and step 2 would remove cut point 2.

The hierarchical reduction of cut points takes into ac-
count that a minimum quality loss at a maximum re-
duction of complexity (number of paths) shall be guar-
anteed.

Figure 6 shows how rules 1 to 3 are applied within
the path—based estimation technique. The set of cut

3The user does not interact with the individual scheduling
process but defines the maximum number of cut points as a
control parameter.

(1) path_based_estim_tech()
(-) A
((?j CP :=A{};
(3) collect_profiling-data(CDFQG );
(4) DAG := convert_-to-DAG(CDFG);
(5) #paths := compute_num_of-paths(DAG);
(-)
(6) if (#paths < mazx_paths ) {
(7) CP := compute_cutpoints(DAG);
(8) DAG := split_DAG(DAG, CP);
(-) b
(-)
(9) for each dag; € DAG {
(10) P := calculate_all_paths(dag; );
(11) CS :={};
(12) for each p € P {
(13) CS :=CS U do-AFAP_schedule(p);
(-) }
(14 ) superpose-all_schedules(P, CS);
(-) b
(-) %
(-)
(15 ) compute_cutpoints(DAG)
(-) A
(16 ) CP_list.initialize();
(-)
(17) for each v; € V { /* apply rule 2 */
(18 ) if ( fulfills_rule2(v;)) {
(19) CP_list.insert(v; );
(-) }
I
(20) sort_by_profiling(CP_list); /* apply rule 1 */
(-)
(21) #cut_pts := input();
(22) if (len(CP_list) < #cut_pts) {
(23) if ( ambiguous_cut(CP_list, #cut_pts) )
(24) CP_list := apply-rule3(CP_list, #cut_pts);
(-) }
(-) b
(-)
(25) return(CP_list);
(-) 1}

Figure 6: Path—based estimation technique applying
rule 1 to 3.

points is initialized with the empty set, profiling data
are collected and written to the CDFG-representation,
the CDFG is transformed into a directed acyclic graph
DAG and the number of a all paths #paths is com-
puted (lines 2-5). If the number of paths would exceed
the computation time (table 2 says that a number of
~ 1000 leads to acceptable computation time of a few
minutes only) cut points are calculated (1. 7, 1. 15ff,
see below). Then the DAG is split at the according
locations (1. 8) and for all dag’s in DAG a path based
scheduling is executed. First all paths are calculated
and for each path a AFAP-schedule is performed (1. 9-
13). Then the set of all constraints CS is taken in order
to superimpose all constraints of all paths (1. 14).

Cut points are computed in the function com-
pute_cutpoints. It starts with scanning all nodes v; of
the DAG (1. 17). If a node fulfills the conditions for-
mulated by rule 1, the node is inserted to the list of
potential cut points CP_list (1. 18,19). Now the cut
points are sorted in such a way that those that are lo-
cated at less often executed parts of the graph have the
highest priority since they lead to the smallest devia-
tion from the optimum schedule (1. 20).

Now the user can determine the quality/computation-



benchm 1oC List-Schedule
[cycles]

fuzzy 100 80,353

distance 695 256,680

contour 127 360,524

median 302 26,680,323

table 664 17,623,269

Table 1: Benchmarks scheduled with a simple List-
Schedule using 4 ALUs, 4 Multipliers.

—time—tradeoff by choosing the number of cut points
to apply (1. 21). If the number of potential cut points
found exceeds this number (1. 22) a selection is neces-
sary: for the case there are more than one cut points in
the list which would lead to the same loss of quality —
assuming only rule 1 and 2 have been applied — rule 3
will decide (1. 23,24) which of them to delete from the
list in order to hit exactly the user—defined #cut_pts.

4 Experimental Results

For the experiments 5 benchmarks have been selected:
fuzzy is a fuzzy controller, distance, contour and ta-
ble are parts of a complex chromakey-algorithm (dig-
ital image processing) and median is a median noise
reducer. The variety in lines of C-code (“loC” in
table 1) allows to find the optimum solution for the
smaller benchmarks (since the computation time is
small enough even if all paths are scheduled and su-
perposed) and by means of the larger benchmarks the
functionality of heuristics described in chapter 3 can
be shown. As a reference, all benchmarks have first
been scheduled using a simple List-Schedule*. Table
1 shows the result in terms of clock cycles. This is
possible since a profiling has already taken place. Re-
member that one of the ideas is to reduce the total
execution time (equation 1). Reducing the number of
control steps will possibly not lead to the best result.

First result is that the number of clock cycles for a
specified benchmark using the path—based estimation
technique (column “schedule” in table 2) in all cases
is smaller than the according minimum for a List—
Scheduling — independent from the number of cut
points set.

This is mainly due to the principle of a path—
based schedule. In terms of HW/SW-cosynthesis in
COSYMA it means that the hardware/software trade-
off can be computed more precisely.

The remaining question is, how close the described esti-
mation method approaches the optimum (path—based)
schedule. If the number of cut points ( “cpt” in table
2) is chosen to 1 the estimation technique is identi-
cal to the path-based schedule®. So, the line in bold
face letters for benchmark “contour” represents the op-
timum solution. The number of total paths detected
(2,430) is still acceptable since the computation time

4Hardware constraints have been selected to 4 ALUs and 4
multipliers in order to achieve a fast schedule.

5By definition, a single cut point means that the according
program graph is not split since in every case one cut point is
set behind the last node in the graph. This comes from the
algorithm of the implementation.

schedule ctime

benchm #pth | #cpt [cycles] [sec]
21 11 72,321 2

fuzzy 22 8 69,567 3
27 6 67,049 7

41 3 64,445 12

43 2 57,562 12

123 41 184,255 697

distance 403 10 178,864 957
148 9 178,876 | 1,558

2,463 8 178,876 3,728

25 9 261,441 4

contour 102 3 231,583 82
813 2 231,654 | 1,257

2,430 1 231,653 | 3,426

14 21 | 21,980,162 5

55 16 20,321,282 6

72 11 19,077,122 16

i 74 10 | 18,662,402 16
meaian 80 9 18,247,682 19
93 8 | 17,832,962 20

437 7 17,832,962 317

8190 6 | 17,418,242 823

1,585 5 16,588,801 1,732

3,119 1| 16,174,082 | 3,640

140 45 10,108,341 363

table 146 43 [ 10,100,459 399
183 36 10,076,203 748

238 27 | 10,076,236 749

309 25 | 10,076,257 946

Table 2: Benchmarks scheduled with path—based esti-
mation technique using 4 ALUs, 4 multipliers.

using a SPARC20 is about 1 an hour (3,426 seconds).
For most of the other benchmarks an optimum solution
(cpts = 1) could not be computed (too many paths).
The goal is to find a solution that results in a good
schedule for a given amount of paths.

Each cut point should reduce the complexity, it should
lead to a smaller computation time. Figure 7 reflects
the result implied by rules 1 to 3 described above. For
each of the benchmarks an increase of cut points (hor-
izontal axis) leads to a reduction of computation time
(vertical axis). A drastic reduction is gained when the
first cut points are set. A saturation is reached when
more cut points do not lead to a profitable reduction
of computation time. Such points (marked by arcs)
are assumed to lead to a good compromise between
precision and computation time. Therefore figure 8
shows the quality of a schedule (deviation of a speci-
fied schedule from the according best schedule of this
benchmark) as a function of the number of paths (a
measure for the complexity). Assuming that e.g.a de-
viation of 15% for estimation during partitioning phase
in HW/SW Cosynthesis is acceptable, 4 of the 5 satura-
tion points are within this limit. The figure shows fur-
thermore the non—linear dependency of precision and
number of paths: the small improvement when passing
the saturation point does not justify the large increase
in computation time (number of paths).

Even quite large benchmarks could be scheduled with
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Figure 7: Computation time (using a SPARC20) versa
number of cut points.

the path—based estimation technique and lead to better
results than a simple list schedule. So, real benchmarks
like distance and table can make use of a path—based ap-
proach whereas the computation time of a pure path—
based schedule would (in most cases and especially in
HW /SW Cosynthesis) not be acceptable (> 1 day since
the number of paths > 10000).

5 Conclusion

The advantage of a good schedule as well as the
flexibility makes path—based scheduling interesting for
HW /SW-cosynthesis. The disadvantage of large com-
putation times for real benchmarks could be overcome
by the described path—based estimation technique. We
demonstrated that with a few heuristic rules a sophisti-
cated placement of cut points can reduce the complex-
ity with only a small loss of quality. As a result the
path—based estimation technique provides a reasonable
tradeoff between quality and computation time.
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