
Power Analysis and Low-Power Scheduling Techniques for

Embedded DSP Software

Mike Tien-Chien Lee, Vivek Tiwari�, Sharad Malik�, and Masahiro Fujita

Fujitsu Laboratories of America, Inc. �Department of Electrical Engineering

77 Rio Robles,San Jose, CA 9513 Princeton University, Princeton, NJ 08544

flee,fujitag@fla.fujitsu.com fvivek,malikg@ee.princeton.edu

Abstract

This paper describes the application of a measurement
based power analysis technique for an embedded DSP
processor. An instruction-level power model for the
processor has been developed using this technique. Sig-
ni�cant points of di�erence have been observed between
this model and the ones developed earlier for some
general-purpose commercial microprocessors [1, 2]. In
particular, the e�ect of circuit state on the power cost
of an instruction stream is more marked in the case
of this DSP processor. In addition, the DSP processor
has a special architectural feature that allows instruc-
tions to be packed into pairs. The energy reduction
possible through the use of this feature is studied. The
on-chip Booth multiplier on the processor is a major
source of energy consumption for DSP programs. A
micro-architectural power model for the multiplier is
developed and analyzed for further energy minimiza-
tion. A scheduling algorithm incorporating these new
techniques is proposed to reduce the energy consumed
by DSP software. Energy reductions varying from 11%
to 56% have been observed for several example pro-
grams. These energy savings are real and have been
veri�ed through physical measurement.

1 Introduction
Embedded computing systems are characterized by

the presence of application speci�c software running
on specialized processors. These processors may be
o� the shelf digital signal processors (DSPs) or appli-
cation speci�c instruction-set processors (ASIPs). A
large fraction of these applications are power critical.
However, there is very little available in the form of de-
sign tools to help embedded system designers evaluate
their designs in terms of the power metric.

Recently an instruction-level power model was de-
veloped for two general-purpose commercial micropro-
cessors [1, 2], which is based on the base cost and the
overhead cost of an instruction, obtained by physical
current measurements. The base cost of a given in-
struction is de�ned as the average current drawn by
the processor during the repeated execution of the in-
struction. The \overhead cost" was needed to account
for the e�ect of circuit state change for an instruction
sequence consisting of di�erent instructions. How-
ever, the impact of this e�ect on the overall power
cost of programs was found to be limited for these

large general-purpose microprocessors. The aim of
this study is to analyze this and other issues related
to software power consumption, in the context of a
smaller, more specialized processor.

A Fujitsu embedded DSP processor, referred to as
the target processor from here on, is used for our
study. This processor is used in several Fujitsu embed-
ded applications and is representative of a large class
of DSP processors. The analysis results are used in
this paper to develop an instruction-level power model
that makes it possible to evaluate the power cost of
programs that run on the target DSP processor. It is
observed that the e�ect of circuit state is more marked
for this processor. This suggests that changing the
instruction order by an appropriate scheduling of in-
structions can lead to a reduction in the power cost of
a program. This issue has been explored to a limited
extent in earlier works [3, 4]. In [3], the study shows
that faster programs consume less energy. So optimiz-
ing software performance through instruction schedul-
ing can minimize the energy consumption. In [4], only
the power consumed by the controller of a processor is
targeted for minimization. The power cost of di�erent
instruction schedules is estimated by counting transi-
tions on an RTL level model of the control-path. As
is well recognized by now, such an estimation method
is only a rough measure of the actual power cost. Fur-
thermore, the increase in energy cost due to longer
schedules is not considered. The scheduling approach
that we propose overcomes these limitations since it is
based on actual energy costs obtained through physi-
cal measurements.

The DSP processor has a special architectural fea-
ture that allows instructions to be packed into pairs.
The energy reduction possible through the use of this
feature is studied as well. Furthermore, since the
on-chip Booth multiplier is a major source of energy
consumption for DSP programs, a micro-architectural
power model for the on-chip Booth multiplier is devel-
oped and analyzed for further power minimizations.
Based on this microarchitecture model, an e�ective
technique of local code modi�cation by operand swap-
ping is proposed to further reduce power consumption.
A low-power code scheduling method is then presented
to automatically apply the above techniques to any
given piece of code. Experimental results on several
example DSP programs show energy reductions rang-

ing from 11% to 56%. The energy savings have been
veri�ed through physical measurement. It should also
be noted that the energy reduction essentially comes
for free. It is obtained through software modi�cation,
and thus, entails no hardware overhead. In addition,
there is no loss of performance since the running times
of the modi�ed programs either improve or remains
unchanged.

2 Target DSP Processor Architecture
The target embedded DSP processor used for our

study is a Fujitsu 3.3V, 0.5um, 40MHz CMOS proces-
sor. Special architectural features relevant to the rest
of the paper are: (1) 4 24-bit data registers (A, B, C,
D), (2) a fast MAC (Multiply-and-ACcumulate) unit
using a Booth multiplier, (3) latched operands for the
Booth multiplier to reduce unnecessary switching, (4)
two on-chip RAM banks for simultaneously reading
into two registers, and (5) instruction packing.

3 Current Measurement
The applications of the target DSP processor run

on the limited energy available in a battery. Thus, en-
ergy consumption is the focus of attention. Since V dd
(supply voltage) and � (the cycle period) are known
and �xed, energy (E = (I � V dd) � (n � �)) is pro-
portional to the product of I (average current) and n
(number of cycles). Given n for a program, we just
need to measure the average current, I, to calculate
E. The product, I �n, is the measure used to compare
the energy cost of programs in this paper.

The target processor is part of a personal computer
evaluation board. It can be programmed through a
monitor program running on a personal computer. Us-
ing the monitor, the DSP instructions can be down-
loaded to the o�-chip instruction memory, while the
input data can be stored in the on-chip RAM of the
DSP processor. The current drawn by the DSP pro-
cessor is measured through a standard o�-the-shell,
dual-slope integrating digital ammeter, in the same
way as discussed in detail in [1].

4 Instruction Packing for Low Power
A special architectural feature of the target DSP

processor is the capability of packing an ALU-type
instruction and a data transfer instruction into a single
instruction codeword for simultaneous execution. This
feature is called instruction packing.

We found that using the packed instruction always
leads to a reduction in energy. The reason for this
is that the average current for the packed instruction
is only slightly more than the average current for the
sequence of the two unpacked instructions. Thus, the
reduction of one execution cycle, more than o�sets
the slight current increase, leading to a large overall
energy reduction.

This is graphically illustrated in Figure 1 for a cer-
tain set of operands. The area under the solid and
dotted graphs is proportional to the energy consump-
tion for the packed and unpacked instructions, respec-
tively. As can be seen, the average current drawn for
the packed instruction is only marginally higher than
for the unpacked instructions. However, since the un-
packed instructions complete in twice the number of
cycles as the packed instructions, the total energy con-
sumed by the unpacked instructions is much larger,

packed

I

T
2nn

unpacked65.1
60.4

Figure 1: Comparison of energy consumed by packed
and unpacked instructions.

Table 1: An example of a sequence four instructions
where the overhead cost between 1 and 3 cannot be
ignored.

number instruction base cycles
1 MUL:LAB (X0+1),(X1+1) 37.2 1
2 NOP 14.4 1
3 MUL:LAB (X0+1),(X1+1) 36.6 1
4 NOP 14.4 1

about twice as much as the packed instructions.
The explanation for the above observations may

lie in the fact that there is a certain underlying cur-
rent cost associated with the execution of any packed
or unpacked instruction, which is independent of the
functionality of the instruction. This is the cost asso-
ciated with fetching the instruction, pipeline control,
clocks, etc. This cost gets shared by two instructions
when they are packed. In addition, the circuit-state
overhead current between the two adjacent unpacked
instructions (LAB and MSPC) is eliminated. Since min-
imizing the total energy consumption is our objective,
instructions should be packed under the packing rules,
as much as possible.

5 E�ect of Circuit State Overhead
The primary components of the models developed

in [1, 2] are base costs of instructions and overhead
costs between adjacent instructions. The base current
of an instruction is measured by putting several in-
stances of the target instruction in an in�nite loop. If
a pair of di�erent instructions, say i and j, is put into
an in�nite loop for measurement, the current is always
larger than the average of the base costs of i and j.
The di�erence is called the overhead cost of i and j,
and is considered as a measure of the change in circuit
state from instruction i to j, and vice-versa. So the
total energy consumed by a program is the sum of the
total base costs and the total overhead costs, over all
the instructions executed.

However, the overhead cost for the above proces-
sors only considers the circuit state change caused by
adjacent instructions. In the case of the target DSP
processor, this can underestimate current, especially
for multiply instructions.

Table 1 gives an example program consisting of a
sequence of multiply instructions (MUL:LAB) followed
by NOPs. The associated base cost (in mA), and the
number of execution cycles is also shown. The over-
head cost of instruction pairs are: 1&2: 18.4, 2&3:
18.4, and 1&3: 13.9. The sum of measured current
for the four instructions is 204.0 (which equals I � n
for the sequence). The sum of the base costs (37.2 +
14.4 + 36.6 + 14.4) and the overhead costs of adjacent
instructions (18.4 + 18.4 + 18.4 + 18.4) is only 176.2,

which underestimates the actual cost by 13.6%.
The di�erence, 27.8, in the two estimates actually

comes from the circuit state overhead between non-
adjacent instructions 1&3. This is due to a special
design at the inputs of the multiplier. A latch for
each input operand is put between the multiplier and
the operand bus to retain the old values until the next
multiply instruction is executed. Therefore, the state
change at such input latches cannot be accounted for
by the overhead of adjacent instructions 1&2 or 2&3.
It is given by the overhead of instructions 1&3. So
2 times the overhead of 1&3, (2*13.9mA), can com-
pensate for the above di�erence, leading to a more
accurate estimate1.

As a result, the new power model needs to include
the overhead caused by non-adjacent multiply instruc-
tions. Now, this overhead is dependent on the previous
and current values of the input latches for each multi-
ply operation. But these values are typically unknown
until runtime. So for the purpose of program energy
evaluation, the state of the input latches is considered
unknown, and an average overhead current penalty is
added to the base cost of each multiply instruction.
This average value was determined to be 12.5mA for
MUL (and MAC) instructions. So in a way, the above ef-
fect is handled by using an enhanced form of base cost
for multiply instructions. The enhanced base cost is
the base cost as de�ned earlier, plus an average over-
head penalty. While most instructions in the instruc-
tion set did not show the same e�ect, some other in-
structions involving the ALU data-path did.

6 Power Analysis of DSP Processor
The instruction-level power modeling technique de-

scribed in Section 5 suggests that accurate current es-
timation for a program can be obtained if a table that
gives the base cost for each instruction, and a table
that gives the overhead cost for each instruction pair
can be derived. Such tables can be empirically con-
structed through appropriate experiments using the
measurement based power analysis technique. How-
ever, there are some practical issues to be considered
in this regard. First, the power cost of some instruc-
tions can vary depending on the operand value. Ex-
tensive experimentation can lead to the development
of accurate models for this variation. A practical ap-
proximation in this case is to use average costs for
these instructions. The average costs are then tabu-
lated. The other issue is one of table size. For proces-
sors with rich instruction sets, assigning power costs to
all instructions and instruction pairs can lead to large
tables. Creation of these tables may require a lot of
work. However, it has been observed that instructions
can be arranged in classes such that the instructions
in a given class have very similar power costs. Instruc-
tions with similar functionality tend to fall in the same
class. Assigning an average cost to an instruction class
can lead to more compact tables. Thus, while having
greater detail or resolution in the tables can lead to
more accurate cost estimation, for most practical pur-
poses, the use of compact tables su�ces.

1Because these four instructions are put in an in�nite loop

for measurement, the overhead will occur twice, between 1 and

3 as well as 3 and 1.

Table 2: Six instruction classes.

class addressing
LDI immed! reg

(load immediate data to a register)
LAB mem1! reg A and mem2! reg B

(transfer memory data to registers A, B)
MOV1 reg1 ! reg2

(move data from one register to another)
MOV2 mem! reg, or reg ! mem

(move data from memory to a register, or
from a register to memory)

ASL reg speci�ed implicitly
(add/sub, shift, logic operations in ALU)

MAC reg speci�ed implicitly
(multiply and accumulate in ALU)

Table 3: Average base cost for unpacked instructions.

LDI LAB MOV1

range 15.8 - 22.9 34.6 - 38.5 18.8 - 20.7
average base 19.4 36.5 19.8

MOV2 ASL MAC

range 17.6 - 19.2 15.8 - 17.2 17.0 - 17.4
average base 18.4 16.5 17.2

For the target DSP processor, the instructions most
commonly used in DSP applications were categorized
into classes. Six classes were used for unpacked in-
structions, as shown in Table 2. The principal packed
instructions were similarly classi�ed. Extensive cur-
rent measuring experiments were then conducted to
verify for each class the characteristics of current con-
sumption. Furthermore, the e�ect of di�erent operand
values on the variation of current consumption was
studied for each class. The average base and overhead
costs were also assigned. All these analysis results
are discussed in detail in the remainder of this sec-
tion. Packed and unpacked instructions are discussed
separately. A scheduling algorithm that has been de-
veloped to use this information for energy reduction
will be described in Section 7.

6.1 Unpacked Instruction

Table 3 gives for each unpacked instruction class,
the range of base costs for di�erent operand values.
The exact operand values are often unknown until
runtime. Thus, average values are used during pro-
gram energy evaluation. These are also shown in Ta-
ble 3. Since the range of variation in the base costs of
each class is reasonably small (less than 10%) for most
classes (LDI being the exception), any inaccuracy re-
sulting from the use of averages is limited.

The overhead costs between instructions belonging
to di�erent classes are shown in Table 4. The entry in
row i and column j gives the overhead cost when an
instruction belonging to class j occurs after an instruc-
tion belonging to class i, or an instruction belonging
to class i occurs after an instruction belonging to class
j. This table is symmetric, since the method used for
calculating overhead costs assumes that the costs in
these two cases are the same. There is a variation in
the value of each entry for di�erent operands and for
the choice of instructions in each class. This variation

Table 4: Average overhead cost for unpacked instruc-
tions.

LDI LAB MOV1 MOV2 ASL MAC

LDI 3.6 13.7 15.5 6.3 10.8 6.0
LAB 2.5 1.9 12.2 20.9 15.0
MOV1 4.0 18.3 10.5 3.8
MOV2 25.6 26.7 22.2
ASL 3.6 8.0
MAC 12.5

Table 5: Average base cost for packed instructions.

instruction ASL:LAB ASL:MOV1 ASL:MOV2

range 34.5 - 38.7 15.7 - 17.4 18.7 - 20.4
average base 36.6 16.6 19.6

instruction MAC:LAB MAC:MOV1 MAC:MOV2

range 33.9 - 39.9 15.9 - 18.9 19.0 - 21.2
average base 36.9 17.4 20.1

is again limited, and it is reasonable to use average
values. The entries in Table 4 represent the deter-
mined average values. The value in the MAC, MAC

entry represents the overhead that can occur even if
the two instructions are non-adjacent, as described in
Section 5. An alternative way to look at this case is
to use the enhanced base costs of Section 5. The base
cost forMAC in Table 3 can be increased by 12.5 and
the MAC, MAC entry in Table 4 can be changed to
0.

An important observation fromTable 4 is that there
is signi�cant variation across the various entries in the
table. This suggests that choosing an appropriate or-
der of instructions can lead to an energy reduction.
An algorithm for doing so is described in Section 7.

6.2 Packed Instruction

Table 5 shows for each packed instruction class,
the range of base cost variation caused by all possi-
ble operand values. Again, the variation is reasonably
small (less than 10%) for most classes. An average
value is assigned as the base cost, which is also shown
in Table 5.

For the overhead cost, experiments showed that ex-
cept for instructions that have a packed MAC, most
packed instructions have small ranges of variation. So
an average value can be assigned as the overhead cost
for these packed instructions. These results are pre-
sented in greater detail in [5].

As to the overhead cost ofMAC instructions, when
MAC is packed with a data transfer instruction, es-
pecially LAB, which changes data values in registers
A and B used by MAC as inputs, signi�cantly wide
variation of overhead cost is observed (from 1.4 mA
to 33.0mA). Such wide variation is mainly due to the
complex Booth multiplier implemented in the MAC
unit.

For a typical DSP application,MAC:LAB instruc-
tions are usually applied to a sequence of data for �l-
ter operations, such as

P
ci �Xi. Ideally, the pairwise

overhead cost can be used to arrange the data order-
ing such that the total overhead cost, or the sum of
individual pairwise overhead costs, is minimized. But
the problem is thatXi is usually not available until ex-

register A

product register

re
co

di
ng

 lo
gi

c

re
gi

st
er

 Bshift/add
array

Figure 2: Microarchitecture model for the Booth mul-
tiplier.

ecution time. Hence, for our estimation purpose, the
average value, 17.2mA, is used as the overhead cost for
MAC:LAB instructions, due to the unavailability of
execution-time operands.

However, for the purpose of minimization, this sin-
gle overhead cost value cannot guide the search proce-
dure to a better schedule for a sequence ofMAC:LAB
instructions. In any case, for �lter applications such asP

ci �Xi, instruction scheduling of existing code may
not be the best alternative. The reason is that the ar-
rival order of operands Xi is determined by the envi-
ronment of the embedded processor, and is not under
the control of a scheduler. Thus, the overall design
of the system or algorithm may have to be changed
to produce more favorable signal statistics. This may
not always be possible. Therefore, under such environ-
mental constraints, in order to still reduce the energy
consumption due to MAC's, a more e�ective tech-
nique of local code modi�cation is proposed in Section
6.3, based on exploiting the architecture of the Booth
multiplier.

6.3 Operand Swapping for Booth Multiplier

The Booth multiplier implemented in the MAC unit
takes the data in registers A and B as operands for fast
multiplication. The fundamental idea behind Booth
multiplication is to recode B by a so-called \skipping
over 1s" technique [6]. For instance, for a 7-digit
B value 0011110 that would need four additions of
shifted A, it can be recoded to 01000�10 (�1 denotes
-1, for simplicity), which now requires only one addi-
tion and one subtraction. However, in the worst case,
B may have alternating 1s and 0s, and each bit in B
selects a shifted version of A to add or subtract. In or-
der to determine howmany additions and subtractions
are needed by the Booth multiplier, we can de�ne the
weight of B value as the number of non-zero digits in
its recoded representation. For instance, the weight of
0011110 is 4, while the weight of 01000�10 is 2.

A simple model of the microarchitecture of the
Booth multiplier is depicted in Figure 2. The Booth
multiplier does not treat A and B symmetrically. The
weight of recoded B determines the number of times
A is added or subtracted while generating the prod-
uct. So if the weight of A is smaller than that of
B, we can reduce the number of additions and sub-
tractions by just swapping the operands in registers A
and B, which can potentially result in current reduc-
tion. Table 6 gives three experiments where swapping
the operands of the Booth multiplier reduces current
signi�cantly. This observation points out that an ef-
fective way to reduce current forMAC instructions is
to just swap the operands in A and B.

Table 6: Variation of measured current by swap-
ping operands op1 and op2 in registers A and B for
MAC:LAB instructions.

operands measured current
op1 op2 op1 * op2 op2 * op1 %saving

7FFFFF AAAAAA 58.9 46.9 20.4%
000001 AAAAAA

7FFFFF 666666 68.5 47.9 30.1%
000001 AAAAAA

7FFFFF AAAAAA 65.7 49.1 25.3%
000001 000001

A simple power consumption model based on
the microarchitecture model of the Booth multiplier
in Figure 2 was empirically derived and validated
through extensive current measurement experiments.
In this power model, the switching activity of the mul-
tiplier is characterized mainly by the contents of regis-
ters A and B. Since circuit state is a signi�cant factor
for the multiplier, pairs of consecutive values in the
registers are considered. For register A, the bit switch-
ing between consecutive values is considered, which
can determine the complete switching activity in reg-
ister A and part of the activity in the shift/add array.
For register B, two factors are considered. First, the
bit switching between consecutive values, and second,
the weight of the Booth recodings of the values, which
determines the number of additions and subtractions
in the shift/add array. Table 7 shows the average cur-
rent drawn byMAC:LAB for di�erent characteristics
of the pair of consecutive values in A and B. An index
(1 to 10, shown in the square parentheses) is assigned
to each entry to identify the data characteristics of
A and B that the entry represents. For example, en-
try 8 represents the case where there is high switching
between the pair of consecutive values in A, and lot
switching between the values in B. In addition, both
values in B have high Booth recoding weights. In Ta-
ble 6 the �rst pair of data is such an example with
such characteristics.

It can be seen from Table 7 that average current
for the entries where B has high recoding weights is
consistently higher than that in other corresponding
entries. Moreover, we can see that entry 9 incurs the
highest average current. This is the case where both
A and B switch signi�cantly and B has high recoding
weights. The second pair of data in Table 6 is an
example of such a case. If we swap the two sets of
operands in A and B, the characteristics of A and
B are now changed. One of the new possibilities is
that A still has high switching, but B, which takes the
values originally stored in A, can have high switching
but low Booth recodings. So it is possible that after
swapping, the values of the operands now fall under
the case represented by entry 7 in Table 7. Thus, the
current drawn may be sharply reduced.

For �lter operations such as
P

ci � Xi, the value
of the constants ci is usually known at the time of
instruction scheduling. So the scheduler can calculate
the weight of the Booth recoding of ci, and then decide
to load ci into register A, if the recoding weight is high,
and into register B, if the recoding weight is low. But
the decision about the placement of operands is being
made based on the knowledge of the value of just one

Table 8: Current reduction by swapping A and B,
which changes the operand characteristics from one
entry to another in Table 7.

swapping
before after %saving before after %saving
3 1 16.2% 9 7 26.7%

3 0.0% 9 0.0%
4 6 23.2% 10 5.4%

8 -0.7% 10 7 22.5%
5 6 20.5% 9 -5.7%

8 -4.3% 10 0.0%
8 1 30.1%

3 16.6%

of the operands. Thus, sometimes the wrong decision
may be made. However, on the average, determining
the placement of operands based on the knowledge of
even one operand will lead to current reduction. A sys-
tematic investigation was conducted to determine the
possible improvements, and the results are shown in
Table 8. The known operands are initially assumed to
be in register B. If the recoding weight of the value in
B is high, the operands are swapped. This means that
in case the initial data characteristics fall under the en-
tries in the last 3 columns of Table 7, the operands will
be swapped. Table 8 gives the average current reduc-
tion when swapping changes the operand characteris-
tics from one entry to another. The columns under the
heading \before" show the entries in Table 7 that will
result in an operand swap. The column \after" shows
the new cases that can arise when the operands in the
A and B registers are swapped. The average percent-
age reduction in the current after operand swapping is
shown under the column labeled \% saving". In a few
cases there is either no current reduction, or a minor
increase. But in a great majority of the cases, we can
see that operand swapping can signi�cantly reduce the
current. Thus, on the average, the current drawn by
MAC:LAB instructions can be reduced, even though
only one operand, for instance, ci is known at schedule
time. Operand swapping is easily achieved by locally
modifying the given instruction, e.g., from MSPC:LAB
(X0+1),(X1+1) to MSPC:LAB (X1+1),(X0+1). In ad-
dition, there is no performance or code size penalty
associated with it.

7 Low-Power Instruction Scheduling

Based on the power analysis discussed in the pre-
vious sections, a low-power scheduling algorithm has
been developed. The algorithm is described in greater
detail in [5]. The algorithm schedules one basic block
of a DSP program at a time. It looks up overhead cost
tables and Table 7 to swap operands. Given the reg-
ister allocation for each basic block, a data ow graph
(DFG) is obtained for each block. Then a greedy as-
soon-as-possible packing procedure is applied to pack
instructions, if data dependency and packing rules al-
low. So an ALU-type instruction will be packed with
a data transfer instruction as soon as the operands of
both instructions are ready. The DFG is updated as
well, according to the instructions just packed. The
goal here is to reduce the number of execution cycles,
and therefore, the total energy. Because the exact ex-

Table 7: Average current drawn by MAC:LAB for di�erent characteristics of consecutive values in A and B.

B
low!low weight high!high weight high$low weight
low high low high high

switching switching switching switching switching

A low switching 40.9 [1] 46.4 [2] 48.8 [3] 58.1 [4] 56.1 [5]

high switching 44.6 [6] 49.9 [7] 58.5 [8] 68.1 [9] 64.4 [10]

Table 9: Comparison of I � n for 5 DSP programs by
di�erent scheduling techniques.

benchmark un p p p+o p+o+s

FJex1 338.0 297.6 256.8 n/a
(1.00) (0.88) (0.76)

FJex2 474.0 380.7 342.9 n/a
(1.00) (0.80) (0.72)

LP FIR60 6987.5 3731.0 n/a 3100.5
(1.00) (0.53) (0.44)

IIR4 1228.5 906.0 822.0 772.0
(1.00) (0.74) (0.67) (0.63)

FFT2 1174.4 1133.9 1087.5 1046.9
(1.00) (0.97) (0.93) (0.89)

ecution order of the packed and unpacked instructions
is not determined until the following scheduling step,
the e�ect of overhead cost is not considered during
instruction packing.

Then the scheduler attempts to construct an execu-
tion order for the instructions that obey data depen-
dency, while minimizing the total overhead cost. The
implementation for this step is based on the popular
list scheduling algorithm [7], with the overhead cost as
the objective function to be minimized. Pipeline stall
conditions due to resource constraints or data hazards
can also be handled during list scheduling, to avoid
penalties due to extra cycles.

Finally, if the code contains multiply operations
where at least one of the operands is known, e.g., �lter
operations like

P
ci �Xi, where ci's are available, the

scheduler can swap the operands based on Table 7 to
further reduce the current.

8 Experimental Results
Table 9 shows the experimental results for �ve DSP

programs to demonstrate the energy reductions possi-
ble by the above scheduling method. Column 1 lists
the name of each benchmark program. The remaining
columns show the energy comparisons by applying dif-
ferent scheduling techniques: up p for the original un-
packed code, p for packing alone, p+o for both packing
and overhead cost reduction, and p+o+s for the com-
bined application of packing, overhead cost reduction,
and operand swapping.

The �rst two programs FJex1 and FJex2 were real
Fujitsu applications for vector preprocessing, where no
MAC instructions are used (so operand swapping is
not applicable). The third program LP FIR60 is a
length-60 linear phase FIR �lter; the fourth program
IIR4 is a fourth-order direct form IIR �lter; and the
�fth program FFT2 is a radix-2 decimal-in-time FFT
buttery. The last three programs were taken from the

TMS320 embedded DSP examples in [8] and trans-
lated into native code for our target processor. For
each benchmark program, the product I � n (which
is proportional to energy) is given. The values in the
parentheses are the relative values when the products
in column un p are normalized to 1.

The results show that about 3% to 47% energy re-
duction can be achieved by instruction packing alone.
The reason that FFT2 has only 3% reduction is due to
a certain data dependency imposed by the unpacked
code that prevents a MOV2 instruction from being
packed with the precedingASL instruction. TheASL
instruction generates a new register value for MOV2

to transfer in the next cycle. After packing, the list
scheduling algorithmbased on overhead cost reduction
can further reduce energy by 4% to 14% for the packed
codes. In the cases of IIR4 and FFT2, operand swap-
ping is applicable, and additional 7% and 4% energy
can still be saved, respectively. So the overall energy
reduction is seen to be 11% to 56% if the source code
is originally unpacked, and 8% to 17% if it is originally
packed.
Acknowledgment: The authors would like to thank
Fumiyasu Hirose, Hirohisa Gambe, and Hirokazu
Fukui of Fujitsu Ltd. for their assistance on exper-
iment setup and technical discussion.

References
[1] V. Tiwari, S. Malik, and A. Wolfe. \Power analysis

of embedded software: A �rst step towards software

power minimization". In IEEE Trans. VLSI Systems,

Dec. 1994.

[2] V. Tiwari and Mike T.-C. Lee. \Power analysis of a

32-bit embedded microcontroller". To appear in Asia

and South Paci�c DAC, Aug. 1995.

[3] V. Tiwari, S. Malik, and A. Wolfe. \Compilation tech-

niques for low energy: An overview". In Proc. Symp.

on Low Power Electronics, Oct. 1994.

[4] C.-L. Su, C.-Y. Tsui, and A. M. Despain. \Saving

power in the control path of embedded processors". In

IEEE Design & Test of Computer, winter 1994.

[5] Mike T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita.

\Power analysis and low-power scheduling techniques

for embedded DSP software". Technical Report FLA-

CTM-02, Fujitsu Labs. of America, 1995.

[6] Kai Hwang. Computer Arithmetic - Principles, Archi-

tecture, and Design. John Wiley & Sons, 1979.

[7] Mike Johnson. Superscalar Microprocessor Design,

chapter 10. Basic Software Scheduling. Prentice Hall,

1990.

[8] Texas Instruments. Digital Signal Processing Applica-

tions - Theory, Algorithm, and Implementations. 1986.

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

