
1

On the use of VHDL–based behavioral synthesis
 for telecom ASIC design.

Mark Genoe Paul Vanoostende Geert Van Wauwe

Alcatel–Bell, Advanced CAD for VLSI
F. Wellesplein 1, B–2018 Antwerpen, Belgium

VHDL–based behavioral synthesis is appearing on the
market but it still has to prove that it can have a significant
impact. In the past, most applications for behavioral syn-
thesis came from the DSP area and from the academic
world. In contrast, this paper describes the results of an in-
vestigation and evaluation of several behavioral synthesis
tools, carried out on recent designs of Alcatel–Bell, lead-
ing to a more detailed study of relevant industrial telecom
non–DSP circuits, that were suitable for behavioral syn-
thesis.

From our expertise in telecom system hardware design, we
can conclude that, taking into account that today world–
wide about 6,000 licenses for logic synthesis are in use,
there is distinctly a market potential for design–entries at
higher levels of abstraction, due to the still increasing de-
sign complexities that can be expected in the near future.
Behavioral synthesis can play a key role in this prospect, as
stand–alone hardware CAD tool, or integrated in a global
system design flow strategy for HW/SW–codesign. Howev-
er, we experienced that efficient use of behavioral synthesis
tools for telecom non–DSP circuits requires functionality
that goes beyond simply generating an RTL–synthesizable
description. This functionality is discussed, together with a
system level design methodology for efficient use of behav-
ioral synthesis tools.

1. Introduction.

Electronic design has moved since long from transistor–
level to gate–level design, followed the last few years by a
second transition from schematics to register–transfer (RT)
level design entries. Examples of common–use commer-
cial products in this context are the Synopsys Design Com-
piler, Mentor’s AutoLogic, ViewLogic’s ViewSynthesis,
Cadence’s Synergy, and Exemplar Logic’s Core Synthesis
System. Behavioral synthesis has been an active field of re-
search for about one decade [1][8], leading in particular to
a number of academic demonstrators (see e.g. [2], [5]). The
main trend towards higher and higher levels of abstraction
has one and the same origin, and is heavily influenced each
time by smaller technologies and growing complexities of
IC’s

Today, designers are confronted with very time–consum-
ing description efforts at the RT–level, including debug-
ging and design–iteration activities. Due to the fact that
time–to–market is a key issue, many designers are looking
for new software tools to bridge the gap from a register
transfer to a behavioral entry level. Currently, based on ear-

lier expertise from mostly academic research, a number of
commercial behavioral synthesis tools are appearing [3].
Examples of this first generation of commercial behavioral
synthesis tools, are e.g. Behavioral Compiler from Synop-
sys Inc., the Mistral–2 DSP Compiler of Mentor Graphics
Corp., the SYNT compiler of Synthesia AB of Sweden, and
the LAMBDA system design tool of Abstract Hardware
Limited. However, they still have to prove that they can
have a significant impact, i.e. that they reduce the design
time for a significant portion of an average design.

In the past, confrontation with industrial practice has often
led to unexpected applications for CAD technologies. We
believe the same holds for behavioral synthesis. The pur-
pose of this paper is therefore to describe the lessons we
learned during initial experiments with behavioral synthe-
sis for our telecom applications. These applications are
non–DSP, which means that they don’t process signals, but
consist of actions like bit manipulations, counting, detect-
ing specific word–values, storing/retrieving datawords etc.

More specifically we will discuss the following questions:

�� For which telecom applications can commercial behav-
ioral compilation tools be used, with the current state–
of–the–art? What additional functionality is needed to
handle ”real–life” ?

�� What functionality does the user need to control and un-
derstand the results of the synthesis ? Which trade–off
can be made between automation and necessary inter-
action ?

�� Where and what do we gain by applying behavioral syn-
thesis in the design flow strategy, compared with fig-
ures of a more traditional register transfer approach ?

�� What is the next step after behavioral synthesis, and how
does this fit into a global strategy for future hardware–
software heterogeneous systems ?

Our conclusions follow from an investigation of several
designs that have been implemented at the RTL–level and
that are possible candidates for implementation with be-
havioral compilation. Typical complexities considered are
about 10 to 30 K gates of logic (excluding RAM).

Our initial impressions on VHDL–based behavioral syn-
thesis for telecom ASIC design have been reported in [9].
These impressions have been consolidated over the past
months, and are described in this paper. An important ob-
jective of this presentation is to spawn a lively interaction
between academic researchers on advanced synthesis,
commercial CAD companies providing this functionality,
and potential users from system houses.

2

The paper itself is organized as follows: section 2 describes
the traditional design flow, and indicates the disadvantages
of this approach for current design complexities. In section
3 we present a typical telecom application, and illustrate
the impact of behavioral synthesis for such designs. In sec-
tion 4, we describe a number of premises, additional re-
quirements and improvements for behavioral synthesis. In
section 5, the most important features that can be expected
from next generation system synthesis tools – beyond be-
havioural synthesis – are summarized, which will extend
largely the productivity gain.

2. Why there is a definite need
for behavioral synthesis.

Traditional design entries (at RT–level) cannot deal any
more with complex systems, due to the extremely huge ef-
fort to describe the desired functionality at the entry–level.

2.1. Traditional design entry

Traditional design entries become more and more re-
stricted, but can still be used. The RT VHDL design–entry
and the graphical state–diagram entry are two of them:

�� RT VHDL design–entry : for a block whose behavior is
roughly the same for each clock cycle, traditional RT–
based logic synthesis remains the optimal design–entry
paradigm. This behavior can be influenced by a state,
but the main part of the blocks consists of a number of
pieces of combinational logic that are separated by
flip–flops. The complexity of the block is dominated
by this ”data–pipeline”.

�� Graphical state–diagram entry (e.g. [6]) : for a block
whose behavior depends on its state, and whose state–
transition diagram does not contain a dominant linear
flow. Although it is not easy for a synthesis tool to sub-
divide the flip–flops of a design into flip–flops that
store state–information and flip–flops that store data
values, the designer usually makes a conceptual dis-
tinction between them, when he is designing a FSM.
Only a few flip–flops store state–information : the
number of states is typically less than 50, and the num-
ber of data flip–flops is hence much larger than the
number of state flip–flops.

There is no doubt that state–diagram synthesis and even
more RTL synthesis have provided already an enormous
productivity gain in the last few years with respect to earli-
er schematic–entry approaches. However, with the still in-
creasing silicon technologies densities (0.35 micron ...),
resulting in a continuous multiplication factor of about 1.2
each year for the total amount of transistors and functional-
ity on silicon, combined with the still growing influence of
the time–to–market aspect for new IC’s in telecom on the
sales profit, abstraction to higher levels is mandatory in the
near future. This will result in ”easier” functional design
descriptions, without detailed control aspects, and tools

which can perform an exploration in the design space, with
essential tasks such as scheduling, allocation and resource
sharing across multiple clock cycles.

2.2. Main problems with the current ap-
proach

To implement a design that implements a multi–cycle al-
gorithm, the designer today typically writes two kinds of
VHDL, one for the data computation part and one for the
sequencing part :

For the computation unit, the VHDL code typically de-
scribes the structure, consisting of datapaths, registers,
busses or multiplexers, augmented with a behavioral de-
scription per datapath (e.g. an adder). To develop such
code, an analysis is needed of the operations that must be
performed (e.g. finding the first zero in a bitvector). The
resulting code contains a limited number of VHDL–lines,
is structured, and easy to become re–acquainted with dur-
ing redesign.

For the sequencer, the VHDL code typically has the fol-
lowing structure :

case Counter is
when 10 =>

if mode = do_command1 then
connect_regA_ramAddressPin <= ’1’

...
when 11

 ..

To develop such code, the elementary actions (e.g. write–
to–memory) must be scheduled, and, for each control–
step, the micro–actions (e.g. set a register load signal to
true) must be written explicitly. Writing such code is error-
prone. The resulting code contains a lot of VHDL–lines
that describe the design with high detail. They are hard to
debug and error–prone, and don’t allow reusability. Rede-
sign of such code is particularly difficult : the code is hard
to understand, and rework.

As a consequence, we believe that the main potential for
behavioral synthesis lies in avoiding straight implementa-
tion of the controller. In addition, synthesis can help during
the design of the processor, by requiring from the user only
the definition of the key features of the processor architec-
ture (e.g. the application–specific datapaths) and by opti-
mizing the resource usage.

The most important synthesis steps that can be found in
commercial behavioral tools to bridge the gap between the
register transfer description and a behavioral description,
are the following (see also [8]): dependency graph
construction, resource allocation, scheduling, register as-
signment, and datapath interconnection. These tasks allow
fast exploration of the global design space in contrast with
the traditional approaches, especially for re–design pur-
poses. However, with current state–of–the–art commercial

3

tools, restrictions exist still in e.g. the computational com-
plexity size of the algorithms to implement, in describing
and implementing multiple entities and processes, and in
defining complex pipelined designs.

3. Behavioral synthesis applied
on industrial telecom designs.

In telecom, the digital circuitry can be roughly subdivided
into 3 classes :

�� logic that implements the interface with the on–board
controller or that stores the state of the ASIC (e.g. the
number of errors of a certain type).

�� logic that is basically doing the same job each cycle, e.g.
a scrambler/descrambler.

�� logic that starts processing once every X clock cycles.
This processing takes a certain number of clock cycles.
Note that telecom data is typically structured into cells
or frames, e.g. the ATM cell of 53 bytes, and the SDH
STM1–frame of 2430 bytes. Per cell or frame, a num-
ber of tasks must typically be performed.

We believe that it is this last class that is suited for imple-
mentation with behavioral synthesis. It is considered in the
sequel. Inside this class, datapath–dominated DSP–sys-
tems have been the main focus of research (see e.g. [5]).
However, as mentioned above, our applications are mostly
non–DSP and we investigated the applicability for behav-
ioral synthesis outside the DSP area.

3.1. A typical telecom design example

The Alcatel Connectionless Transport Server (ACTS) ar-
chitecture [4] provides the necessary connectionless ser-
vice functions for the direct provision and support of e.g.
switched multi–megabit data services (SMDS) in a
B–ISDN environment through a high–speed ATM–cell
based transport network. In order to meet the requirements,
all packets (ATM–cells) have to be switched on segment/
cell basis, and their appropriate functions have all to be
executed in a cell–time unit. In its current implementation,
the ACTS consists basically of three ASICs. The Preven-
tive Congestion Controller (PCC) is one of them. It is used
to control the resource allocation for out–going link con-
nections, such as MID and bandwidth allocation.

The MID–manager block keeps track of the message iden-
tifiers (MIDs) that are allocated by a user of the considered
telecom system. Each user can allocate up to 1024 MIDs.
The status of each MID is represented by one bit in a bit–
map arranged as a matrix of 32 rows by 32 columns. Each
row is stored in one word of an external memory array.
When a MID is requested, one must scan the bit–map to
find a free MID. To reduce the number of memory ac-
cesses, the bit–map is augmented by a summary word (see
figure 1). Each bit in this word gives the status of the corre-
sponding row, i.e. if all MIDs in this row are allocated or

if at least one MID is still free. When a MID is requested,
the summary word is read and one searches for a bit equal
to zero. The column number of this bit gives the row num-
ber of a row containing a free MID. This row is read and
one searches a bit equal to zero. This algorithm can find a
free MID using two reads and two searches. After the al-
location, the row is updated, and, if needed, the summary
is updated.

Figure 1 MID allocation principle

MID (de)allocation bitmap

Summary
word

Each user has two bit–maps. A bitmap can be active or in-
active. When a bit–map is active, it is used to allocate and
deallocate the MIDs. The two bit–maps can be both active.
In this case, a MID can be allocated if and only if it is
marked as being free in the two bit–maps. This can be im-
plemented easily by taking the bit–wise OR of the two
summary words and of the two selected bit–map rows.

The reason for two different bit–maps for each user is gar-
bage collection. Normally, the MID’s are always deallo-
cated by a MID deallocation request. However, such a re-
quest can be lost in the switch fabric or under abnormal
conditions it is not generated at all. So, some MID’s can be
lost, i.e. never deallocated. The goal of the garbage collec-
tor is to bring them back into the free pool of MID’s. The
proposed method takes into account that the packet life–
time is bounded. By continuously switching the bitmaps
from active to inactive – and vice–versa – , and by re–ini-
tializing each inactive bitmap after having reached the
maximum life–time, the negative effect of losing MID
deallocation request can be solved.

This example highlights what we believe to be typical
characteristics of non–DSP telecom applications for be-
havioral synthesis :

�� the behaviour contains usually already a number of
”high–level” state machine descriptions, such as e.g.
the state of the bitmaps (active, reset, idle, ..) and the
resulting actions in the PCC–example.

�� the data throughput (cells, timeslots, frames, ..) is in
most of the applications rather high, which results in a
rather small amount of available clock cycles (typical
10 – 100).

�� at the other hand, the input–output delay of the data is
not that crucial. This allows synthesis of different pipe-
lined sections.

�� the most critical resource is often the RAM. The RAM–
accesses are typically the limiting factor when sched-

4

uling an individual block. Often several blocks share
the same data, which complicates the synthesis task.

3.2. Behavioral synthesis results

The algorithmic description for the PCC–chip can be sum-
marized as follows: within each frame of 53 cycles at 20
Mhz, two allocation/deallocation commands have to be
processed. Normally two bitmaps have to be updated for
each command, except when one of them is in reset–mode
(garbage collection). The most frequent operations of the
algorithm are specific memory address computations and
accesses, and a number of bit–manipulation functions
(such as finding a first zero bit in a 32–bit word; changing
the value of a single bit of a 32–bit word; concatenation of
several fields in order to obtain correct RAM addresses,
etc.)

3.2.1. Behavioral VHDL versus RT–VHDL

VHDL is a strongly typed general language (meaning that
every object must be declared before use) intented mainly
for simulation and documentation purposes, in order to im-
prove the specification and validation process of complex
integrated circuits. Predefined types and conversion rules
are declared in Standard packages, but new types can be
defined based on them. VHDL is being used to support a
number of automated CAD synthesis tools.

To provide a basis for the discussion, the basic functional-
ity of VHDL–based behavioral synthesis is shown in Fig-
ure 2. We like the use of VHDL as design–entry language,
because VHDL has most constructs required for a behav-
ioral description and the use of VHDL fits nicely into the
existing design methodology : it allows to use the installed
base of VHDL–simulators, and the know–how built up in
the past by the designers. As a consequence, the threshold
for introducing behavioral synthesis is reduced.

Figure 2 VHDL–based behavioral synthesis.

Behavioral VHDL description

min/max delay
between particular
operations
(”compilation
script”)

library of operators
(with mappings to
hardware blocks)

RTL VHDL description

Behav.
synthesis

To be suitable for design–entry, VHDL should offer sup-
port for structured programming. This seems to be the case.
When writing a C–like description, we only encountered
the limitation that in a procedure call, the signal actual
must be a static signal : for example, tab(i) can not be
passed on as argument, one must use a static signal like
tab(0).

In addition, the synthesis tool can impose limitations on the
VHDL (cf. logic synthesis tools), e.g. by forbidding the use
of multi–dimensional variables as arguments of proce-
dures, which will lead to a less structured design descrip-
tion.

Following table gives an indication of the size of the differ-
ent VHDL descriptions. Typically we measured that the
manual RT–VHDL description size was a factor 2–4 larger
than the behavioural one, while the synthesized RT–VHDL
was about 5–10 times larger. However, these figures are in
some sense misleading, because the description effort to
obtain the manual RT–VHDL is much more complicated
than the one to write the behavioral VHDL. Some tools
provide the RT–VHDL only for examination, not for logic
synthesis purposes: the synthesized RT is than far from op-
timal compared with the manual one.

lines VHDL

behavioral VHDL 550

RT–VHDL (manual) 1400

RT–VHDL (synthesized) 3300

It is clear that syntactic invariance does not exist for the
current state of behavioral synthesis: the way the designer
writes the specification has severe consequences for the re-
sult and quality of the final synthesized description. Some-
times, the advantages of the more natural description style
at a higher level of abstraction, will completely disappear
due to implementation details. The designer has to be
aware of the underlying synthesis algortihms!

3.2.2. Validation and performance evaluation

Due to the high data–throughput requirements, the follow-
ing hardware architecture is typically used to implement
typical designs applicable for behavioral synthesis:

�� an application–specific computation unit. It consists of
tuned datapaths, registers and busses or multiplexers to
implement the connectivity.

�� a controller for the processor. Traditionally it is a simple
sequencer, that describes the actions during each
counter–step. These actions are executed conditional-
ly. These architectures typically use very long instruc-
tion words (VLIW).

Validation of the synthesis results can be done with the help
of the generated RT–VHDL code, and the information
from the synthesis reports. The tools provide usually a
state–machine description of the controller, and an over-
view of the operation schedule across clock cycles, togeth-
er with the register assignment. A useful feature that is not
implemented by many vendors was the computation of the
(worst–case) number of clock cycles needed to implement
the complete behavioral description, or some statistics
about it. Related to this problem, in almost all tools the
overhead of loop boundary computations could only be de-
tected by simulating the resulting RT–VHDL code, with-
out any knowledge in the synthesis reports.

5

In the table below some figures are mentioned in order to
give the reader an idea about the quality of existing behav-
ioral synthesis tools. They express the overhead that can be
extrapolated out of the experiments we did. In some cases
better or worser results can be obtained. These figures are
also largely dependent on the tool and on the specific de-
sign constraints, and cannot be generalized.

overhead by synthesis

area (# of gates) 15–20 %

cycle–count (flat code) 10–20 %

timing 10–15 %

3.2.3. Synthesis CPU and Memory usage

Considering the PCC–design, a single iteration through all
behavioral synthesis steps takes CPU–efforts from about
half an hour to one day, depending on the tool, the
constraints and the amount of effort that is asked for doing
the job. The experiments were done on a SPARC 5
workstation with 64M RAM.

4. Premises, additional function-
ality and improved synthesis.

A number of premises for using today’s behavioral synthe-
sis tools can be extracted from the design experiences with
the available tools. They will be summarized first, and fol-
lowed by some additional functionalities that are really
needed for efficient use of such tools, as a complement to
the basic synthesis tasks.

4.1. Synthesis premises

Behavioral synthesis includes some premises, which have
to be taken into account before applying it :

�� Estimations of low level aspects such as timing and area
characteristics are necessary in an early design phase,
in order to steer the synthesis and to obtain cost–effi-
cient hardware solutions. This requires access to li-
braries, containing both predefined and user–defined
blocks.

�� A practical requirement before applying behavioral syn-
thesis, is the ability to partition the system specifica-
tion into reasonable chunks of interacting behaviors or
processes. Allowing multiple entities, several concur-
rent processes within an entity, loop hierarchy, and
user–defined bit–level arithmetic components can
make this partitioning problem feasible, although all
tools in our study had limitations in this context.

�� An important aspect of behavioral synthesis, is knowl-
edge of the built–in cost–functions of each tool, and the
way the user can interactively influence the synthesis
results by putting constraints or defining pragma’s. The
design–community can not live with push–button solu-

tions, but needs tools that allow full exploration of the
design space. Not all tools are today in that stage.

�� Syntactic invariance seems not realistic for behavioral
synthesis. In all tools under investigation for this evalu-
ation the results of behavioral synthesis are heavily de-
pendent on the way the VHDL specification was de-
scribed. Eliminating such a syntactic variance would
ensure that also those designers who have no real ex-
pertise in hardware description languages or do not
know underlying synthesis algorithms, can obtain sat-
isfactory designs. But, if this will ever occur, behavior-
al synthesis needs to mature a lot.

4.2. Additional functionality needed for effi-
cient use.

Basically, it is sufficient for the behavioral synthesis tool to
generate from an algorithmic description a description that
can be read into a logic synthesis back–end tool. However,
for real–life use the following additional characteristics are
needed :

�� The generated solution must be easy to understand,
meaning clear and concise RT–VHDL.

�� Apart from the RTL–VHDL, the tool should provide
complete reporting. In case of implemented loop con-
trol constructs the designer expects a specific knowl-
edge about the cycle overhead for the exit–continu pro-
cedure, in order that he can compute the exact
cyclecount of the synthesized design in advance.

�� The user must be able to have impact on the solution,
without having to modify the behavioral description:
specifying constraints and providing key elements of
the processor. This is related to the fact that in telecom
usually the behavioral VHDL contains a mix of low–
level RTL–statements (to describe the detailed behav-
ior of the operations used, e.g. finding the position of
the first zero in a bitvector) and high–level constructs
(e.g. perform, under certain conditions, a complex op-
eration on certain data).

4.3. Improved synthesis

During our investigation we also encountered more com-
plex issues that intervene sometimes, such as :

�� the use of a resource external to the VHDL–entity that
is being considered by the behavioral synthesis tool
(e.g. single RAM shared by many processes). This is
also related to the remaining problem to drive signals
in more that one process.

�� a behavioral synthesis environment should allow map-
ping of multiple operators on the same resource, even
if the cyclecounts and bitwidths of the operators can
differ (e.g. a 8 and 12 bit divisions on the same block).

�� the use of (bit–level) user–defined components, to im-
plement specific functions and procedures, is crucial to
reduce the computational complexity.

�� the need for advanced transformations, such as e.g loop
folding, can have a large impact on synthesis results.

6

�� especially for telecom applications, the efficient han-
dling of control flow is extremely important. Indeed,
most of the applications are control–oriented.

5. Beyond behavioral synthesis.

When discussing tools that raise the level of abstraction of
ASIC design, it is also interesting to identify what these
tools do not yet do. The following tasks must currently still
be done manually, and are topics for further research,
which are necessary for a more global methodology for ef-
ficient use of behavioural synthesis.

�� Partitioning problem is not solved by behavioral synthe-
sis: e.g. in telecom applications several tasks share the
same data in memory. For reasons that the computa-
tional complexity of behavioral synthesis limits the
size of the descriptions, partitioning, communication,
synchronisation and memory sharing has still to be
done manually.

�� Mixing behavioral synthesis with other tools that go be-
yond RT–VHDL, e.g. graphical FSM design–entry
tools.

�� Memory synthesis : At the conceptual level, variables
have abstract datatypes. At the design–entry level for
behavioral–synthesis, they are placed in RAMs with a
specified wordlength and address range. Tasks to be
performed are : choice of the optimal datastructure
(linked list, hash–table, ...), choice of the number of
RAMs and their size,...

�� Derivation of complex datapaths : The mapping of mul-
tiple related operations on a single datapath (i.e. a cal-
culation unit that is part of the processor) is typically
still done manually. Automatic derivation of the struc-
ture of a datapath that has different ’modes’ is still a
topic of research.

�� Large–scale design : A more general problem in system
synthesis is to start with a behavioral description of the
complete ASIC (or board), written e.g. in C++, and to
refine, with user interaction, this description until an
implementation is obtained consisting of a number of
modules that exchange data with each other, use a
shared resource, and whose processing is initiated and
stopped by a top–level controller. This will lead to het-
erogeneous systems, with both hardware (behavioral
synthesis) and software (e.g. embedded RISC Cores)
components. After having integrated behavioral syn-
thesis in the design flow, this can be expected to be the
next step in elevating the design entry level.

6. Conclusions.

This paper has described our experiences with VHDL–
based behavioral synthesis for non–DSP telecom. The con-
clusion is that in this area there is distinctly a market poten-
tial. Behavioral synthesis leads to reduced design effort
complexities, more natural specifications, easier valida-

tion and redesign, more exploration possibilities, and less
danger for inconsistencies in behavior. Our impressions are
based on a number of design experiences with state–of–
the–art commercial tools in behavioral synthesis, applied
on existing in–house complex telecom applications, and
compared with our expertise of traditional design ap-
proaches.

However, we indicated that it is not sufficient for the be-
havioral synthesis tool to simply generate an RTL–synthe-
sizable solution : this solution should be easy to understand
(clear RTL–VHDL and complete reporting) and the user
must be able to have impact on the solution (specifying
constraints and providing key elements of the processors).

It is our belief that commercial behavioral synthesis tools
will become general use. For our telecom applications we
expect that a potential market of half the size of RTL–syn-
thesis tools will be reached in a few years. However, wide
acceptance will depend on improvements of the mentioned
shortcomings of todays first generation tools, on the ade-
quate designer trainings, and on clearly defined methodol-
ogies for using the tools.

7. Acknowledgments.
The authors would like to acknowledge the interesting dis-
cussions with our colleagues at Alcatel–Bell, and with K.
Croes of IMEC (Leuven, Belgium).

8. Bibliography.
[1] McFarland M.C., Parker A and Camposano R. ”Tutorial on High–Level
Synthesis”. Proc. Design Automation Conf., June 1988.

[2] Owall V., Andreani P., Brange L., Nilsson P., Wass A. and Torkelson M.
”Custom DSP implementation of a GSM speech coder”., Proc EDAC/Eu-
roAsic user forum, pp. 162–165, 1993.

[3] Schultz S. ”Behavioral synthesis : concept to silicon”. ASIC & EDA,
pp. 12–26, Aug. 1994.

[4] Therasse Y, Petit G.H. and Delvaux, M. ”VLSI architecture of a SMDS/
ATM router”. Annals of telecommunications, 48, nr. 3–4, pp. 166–180.
1993.

[5] Vanhoof B., Bolsens I., De Troch S., Philips L., Vanhoof J. and De Man
H. ”Design of a voice coder ASIC with the CATHEDRAL II silicon com-
piler”, Proc EDAC/EuroAsic user forum, pp. 150–153.

[6] Vanoostende P., Moerman E. and Van Wauwe, G. ”Graphical design–
entry above VHDL : myth or reality?” Proc EDAC/EuroAsic user forum,
pp. 189–193, 1994.

[7] Handouts 1st Workshop on code generation for embedded processors,
Schloss Dagstuhl (D), Sept. 1994.

[8] Gajski D.D., Ramachandran L.,”Introduction to High–Level Synthe-
sis”, IEEE Design & Test of Computers, Winter 1994.

[9] Vanoostende P., Van Wauwe G., ”VHDL–based behavioral synthesis:
can it pay off for telecom ASIC design ? , IFIP Workshop on Logic and Ar-
chitecture Synthesis, Grenoble, 1994.

[10] IEEE Standard VHDL Language Reference Manual, IEEE, New
York, 1988.

[11] Jerraya A.A., Park I., O’Brien K., ”AMICAL: an interactive, high–lev-
el synthesis environment”, Proceedinge EDAC, Paris, France, pp 58–62,
Febr. 1993

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

