Optimal Register Assignment to Loops for Embedded Code

. *
Generation

David J. Kolson

Alexandru Nicolau

Irvine, CA 92717-3425

Abstract

One of the challenging tasks in code generation for
embedded systems is register assignment. When more
live variables than registers exist, some variables are
necessarily accessed from data memory. Because loops
are typically executed many times and are often time-
critical, good register assignment in loops is exceed-
mgly important since accessing data memory can de-
grade performance. The issue of finding an optimal
register assignment to loops, one which minimizes the
number of spills between registers and memory, has
been open for some time. In this paper we address
this issue and present an optimal, but exponential, al-
gorithm which assigns registers to loop bodies such that
the resulting spill code is minimal. We also show that
a heuristic modification performs as well as the expo-
nential approach on typical loops from scientific code.

1 Introduction

Currently, much research has focused on code gen-
eration for embedded systems [13, 14, 15]. One of the
challenging tasks in generating code for an embedded
processor is that of register assignment. In this as-
signment process, program values are mapped to the
processor’s registers so that values are available and in
the appropriate registers for computation. When the
number of simultaneously live variables is larger than
the number of registers available, some of these values
will have to reside in the data memory (i.e., “spilled”
to memory), requiring data transfers between mem-
ory and registers when those values are updated or
necessary for computation.

Typically, embedded processors or processor
“cores” have a small number of registers. Any map-
ping of variables to registers which contains poor
choices for spill code will adversely affect performance.

*This work supported in part by ONR grant N000149311348.

Nikil Dutt
Dept. of Information and Computer Science
University of California, Irvine

Ken Kennedy
Dept. of Computer Science
Rice University

Houston, TX 77251

Thus, quality register assignment is exceedingly criti-
cal, especially for innermost loops which are executed
many times and often time-critical.

In the compiler domain, optimal register assign-
ment solutions have been extensively studied [7, 8, 9].
Although these approaches are effective for straight-
line code, they do not address the issue of an opti-
mal assignment of registers to loops—innermost loops
probably being the only place such extreme methods
are practical. Thus, adaptation and extension of this
work to the problem of assigning an embedded pro-
cessor’s registers to program values requires that we
overcome the fundamental difficulty that these previ-
ous techniques did not address satisfactorily—that of
matching the register usage at the entry and exit of
loop iterations. That is, for loop code to be correct,
the mapping of variables to registers at the beginning
of an iteration and at the end of that iteration must
be equivalent (i.e., the “right” values must be in the
“right” places) in order to correctly iterate over that
loop code.

In this paper we demonstrate that the algorithms
for register assignment to basic blocks given in [8, 9]
can be extended to assign registers to loops by incor-
porating loop unrolling techniques into the algorithm.
Thus, a distinguishing characteristic of our approach is
that the register assignment produced may span mul-
tiple iterations of the original loop. We also present a
heuristic derived from our algorithm that, in practice,
seems to perform as well as its exponential counter-
part.

2 Related Work

In the compiler domain, the predominant approach
to register assignment is the heuristic graph coloring
approach [1, 3]. Heuristics for selection of spill candi-
dates have received attention [2] along with coloring
methods [4]. Also, [6] addresses loops but without
regard to the number of register transfers potentially

required by their technique at iteration boundaries to
match register usages. In contrast, optimal assign-
ments have been studied for particularly critical code
segments, such as the innermost loops of time-sensitive
applications. Horwitz et al. present a method in [7] for
obtaining an optimal register assignment to index reg-
isters which minimizes the number of loads and stores
in a basic block. Further work extends this algorithm
to deal with simple loops [9], but in doing so, loses
optimality. More recent research [8] extends the basic
block algorithm to include the assignment of general
purpose registers to straight-line code.

In High-Level Synthesis the problem of register as-
signment traditionally refers to determining the num-
ber of registers necessary to save values between time-
steps [12]. To reduce the interconnect and multi-
plexor cost of scattered registers, some researchers
have focused on grouping registers into memory mod-
ules [5, 10]. Other research has addressed the assign-
ment of registers to loop variables [16, 17] by splitting
each cyclic variable into two variables. Register-to-
register transfers are inserted at loop end when these
“coupled” variables are not assigned to the same reg-
ister. These traditional techniques were developed for
register allocation, and thus, do not consider the stor-
age of variables within various levels of a memory hi-
erarchy.

Work in code generation for embedded systems
has extended the left-edge algorithm and incorporated
register classes for register assignment [14] or formu-
lated the problem of register assignment as an ILP
formulation [18]. However, these techniques intro-
duce register-to-register transfers at loop boundaries
to match register usage in subsequent iterations. Also,
[13] uses a complex searching scheme to navigate a
large search space with many trade-offs, one of which
is register assignment.

None of this previous work has addressed the issue
of finding an optimal assignment of registers to loops
(i.e., an assignment of variables to registers which re-
quires no register-to-register transfers to match usages
at loop top and bottom and minimizes the cost due to

added spill code).

3 Problem Description

In our approach the task of register assignment fol-
lows that of code selection and scheduling of opera-
tions. We define the problem of register assignment as
determining a specific mapping of variables to an em-
bedded processor’s registers. When resource shortages
occur, spill code (explicit data transfer operations) be-
tween the registers and data memory are necessary.

Function OPT-Assign (REGS : Initial mapping;
VA : Variable access stream)
Begin
Set currstates set to REGS
Foreach variable access V in VA do
Foreach mapping N in curr_states set do
If V € N then
Copy N to new_states set
Otherwise
Forall registers R do
N’ = copystate(N)
Replace variable, V', currently in R with V
Cost(N’) = Load-Cost(V) + Store-Cost(V’)
+ Cost(N)
Add N’ to children of N
Add N’ to new_states set
Enddo
Endif
Enddo
Set curr_states set to new_states set
Enddo
Return new _states set

End OPT-Assign

Figure 1: A register assignment algorithm.

Our goal is to minimize the number of these spill op-
erations repeatedly executed within a loop.

Using a variant of the algorithm presented in [8], we
can derive an optimal (i.e., spill minimizing) algorithm
that assigns variables to registers for a straight-line
code stream. This algorithm is found in Fig. 1. Given
a scheduled flowgraph, the variable access stream is
derived and corresponds to the accessing of variables
in execution—a read is denoted by the variable it-
self while a write is denoted by the variable concate-
nated with a ‘“*’. For example, for the operation
a = b + c the variable access stream is bea* (reads
before writes). A wvariable mapping or configuration
corresponds to a particular assignment of variables to
registers at a particular point in the code. For ex-
ample, if there are two registers and the variable a*
occupies register RO, the configuration is {a*, ¢}.

OPT-Assign takes as input the variable access
stream for a code segment and the register mapping
immediately preceding that segment. Then an assign-
ment tree is built where the root is the given (initial)
configuration, and each path from the root to a leaf
represents a (unique) mapping of variables to registers.

The algorithm proceeds by a breadth-first expan-
sion of the assignment tree, examining each mapping
in the current level to determine if it contains the vari-
able(s) accessed by the code in the current step. After
the last variable accesses are considered, the leaves
are examined to find the lowest cost node. Tracing

the path from the root to this node gives an assign-
ment of registers to variables that results in the mini-
mal cost of generated spill code as it has exhaustively
generated every possible assignment. Heuristics can
be (and have been) used to prune this search space

[7, 8, 9].

4 Assigning Registers to Loops

By applying the OPT-Assign algorithm to the body
of a loop, we get an optimal assignment for a single
ezecution of that code. Since this code i1s contained
within a looping construct, the register mappings at
the beginning and end of that code must match to
iterate correctly. However, in general, the assignment
produced by OPT-Assign will not satisfy this criteria.
To remedy this, register-to-register transfers and/or
spill code can be added to enforce a match. However,
since the cost of this additional spill code may vary
greatly from each conceivable leaf node to the root,
and would vary further by unrolling the loop some
number of times, OPT-Assign’s results, which ignore
this effect, cannot be optimal.

4.1 Our Algorithm

It is not immediately obvious how many iterations
suffice to produce an assignment which results in the
minimal amount of spill code. In fact, this is why
this problem has been an open issue. If the process
of unwinding a loop and applying OPT-Assign is con-
tinued, the cost may be decreased. By iteratively un-
rolling one loop iteration and applying OPT-Assign
to the resulting code, we can find a new loop body,
potentially spanning several iterations of the original
loop, such that: a) the cost of spills per iteration in
the loop body is minimal; and b) the entry and exit
register mappings of the new loop match.

Our algorithm for assigning registers to loop code,
called OPT-Assign-LOOP, is found in Fig. 2. The
general structure of our algorithm is to iteratively un-
roll the loop one iteration and to apply OPT-Assign
to that new iteration using, as initial mappings, the
register mappings found at the end of the previous it-
eration. The resulting mappings are checked against
those generated previously. Matching mappings cor-
respond to legal register assignments over the unrolled
loop and are, thus, removed from future consideration.
The process of unrolling and assignment is repeated
with those mappings which did not match.

When matches are found, the average cost per it-
eration 1s computed. Note that, if the loop were fully
unrolled, the assignment with the lowest average cost
per iteration would be the optimal assignment for the

Function OPT-Assign-LOOP (REGS : Initial mapping;
VA : Variable access stream;
K : number of iterations)
Begin
Set MIN to an empty configuration with oo average cost
Set ¢ to 0
Set currstates set to REGS
Loop
Set save_states set to null
Foreach state S in the curr_states set do
new_states set = OPT-Assign(S, VA)
Foreach state N in new_states set do
If N matches an ancestor A then
Direct N to A

Delete N from new_states set

AUBOOSt(N) _ Cost(N)—Cost(A

T Iter(N)—Iter(A)
If AveCost(MIN) > AveCost(N) then
MIN=N
Endif
Endif
Enddo
Set save_states set to save_states set U new_states set
Enddo
Setttoi+1
Set currstates set to save_states set
Until: = K
Return MIN
End OPT-Assign-LOOP

Figure 2: A loop register assignment algorithm.

loop. Since full unrolling of the loop is not necessar-
ily practical, the parameter K denotes the maximum
number of unrollings to perform. The lowest cost map-
ping found with this “cut-off” scheme is a local mini-
mum, but is “global” over K iterations.

Note that this algorithm must always derive an av-
erage cost less than or equal to what OPT-Assign
would derive because we deal strictly with the costs
calculated by OPT-Assign and add nothing more—
beyond unrolling.

4.2 Heuristic Pruning

Although our algorithm may be computationally
prohibitive even for moderately long loops, it does
provide a strong starting point for determining good
heuristics. The computational complexity in this al-
gorithm arises from the replacement of each register in
the current configuration when a variable read or write
miss occurs. Our heuristic modification is a simplistic
pruning strategy where only the m best configurations
are kept for future expansion once all mappings at a
particular level are generated.

5 Convergence and Optimality

Previously it was not known whether optimal reg-
ister assignment for a loop could be accomplished, re-
gardless of the efficiency of the algorithm. The diffi-
culty was due to the fact that in order to ensure opti-
mality for the overall loop, matching of register usages
at the top and bottom of the loop body may require
additional spills. To optimally minimize these spills,
loop unwinding with different register assignment in
each unwound iteration may be needed. Furthermore,
it was not known whether any finite unwinding can
be guaranteed to converge and result in an optimal
assignment.

To answer these questions, in [11] we introduce the
notion of a configuration graph. Essentially, a node in
this graph corresponds to a specific mapping of vari-
ables to registers and weighted, directed edges corre-
spond to the minimal cost of using the source node as
an initial mapping to an iteration and the sink node is
a resultant exit mapping. Fig. 3 illustrates the notion
of a configuration graph.

In this simple example, there are two registers for
the loop variable access stream in (a). Using an initial
mapping of register one containing a and register two
containing b*, the assignment tree with root {a,b*}
in (b) is produced. Note that, since this algorithm ex-
haustively generates all possibilities, one would expect
six mappings corresponding to all of the permutations
of the variables in the registers. However, the map-
ping {b*,a} does not appear due to the nature of the
variable accesses and the initial mapping.

A partial configuration graph is constructed from
the assignment tree in (b). Traversing a path from
the root configuration, labelled P, to each leaf con-
figuration gives directed edges from P to those nodes
with a weight equal to the cost of the respective paths.
For instance, the path from the root to the leftmost
leaf node, also labelled P, has a cost of two. Thus,
an edge in the configuration graph from P to itself is
added with a weighted-edge of two. Other edges are
added similarly and the partial configuration graph in
(¢) results. To construct the complete graph requires
that the assignment trees for each possible exit con-
figuration be built.

5.1 Convergence

In order to guarantee that our algorithm converges,
it must shown that by unrolling, new exit configura-
tions (i.e., mappings of variables to registers) that pre-
viously did not exist are not generated. Because our
algorithm exhaustively replaces registers each time a
variable access miss occurs, all conceivable mappings

of variables to registers are generated. When an un-
rolling of the loop body and assignment to that it-
eration is performed, the costs associated with going
from the initial to the derived exit mappings become
known. Thus, the edges in the configuration graph
which connects the initial configuration with all of the
possible exit configurations are generated. If the as-
signment algorithm is again applied to each of these
nodes (e.g. unroll the loop body for another iteration),
directed edges from each of those exit configurations
to one another are obtained. Convergence of our algo-
rithm, therefore, is equivalent to finding a cycle in the
configuration graph. Thus, our algorithm converges
because the number of variables and the number of
registers is finite and, therefore, the number of per-
mutations of the variables in the registers is finite,
although exponential.

5.2 Optimality

An optimal assignment is one in which the memory
traffic is minimized over execution of the loop. When
the loop body is unrolled, an optimal assignment is
an assignment which has minimal spill cost over the
iterations that are contained within the unrolled loop.
Thus, in the optimal assignment, the ratio of the spill
cost for the new unrolled loop body to the number
of iterations is minimized. In the configuration graph
this corresponds to the ratio of the total cost of a cy-
cle to the number of nodes in that cycle. Therefore,
an optimal assignment is found by examining the av-
erage costs of all possible cycles of all possible lengths
in the configuration graph and taking the minimum.
Note that this does not necessarily correspond to the
minimal cycle of length one in the graph'’. In the
worst-case 1t 1s possible that the optimal cycle must
make a complete tour of the graph.

6 Experiments and Results

Our benchmark suite consists of six numerical codes
written in C and compiled into RISC-like code which
is typical of the code executed by most embedded
core processors. The variable access streams were de-
rived and used as input to the OPT-Assign, OPT-
Assign-LOOP and Heuristic OPT-Assign-LOOP algo-
rithms. Two experiments were conducted: the first
measured the difference in assignments produced by
OPT-Assign and OPT-Assign-LOOP while the sec-
ond compared our heuristic to the graph coloring ap-
proach implemented in the Gnu Standard Distribution
C Compiler (gce).

1A cycle of length one would imply that some assignment to
the loop body is minimal and its initial configuration naturally
(i.e. without spills or transfers) matches its exit configuration.

ab*cd*a

a) Register Access Pattern

Initial

b) An Assignment Tree

¢) Patia Configuration Graph

Figure 3: Building a configuration graph from the assignment trees.

6.1 Basic Block Vs. Loop Assignment

In order to create opportunity for OPT-Assign to
do well, we used enlarged loop bodies constructed by
unwinding the loops three times. Thus, some of our re-
sults for OPT-Assign are not whole numbers as they
represent averages for a single iteration of the origi-
nal loop. For OPT-Assign-LOOP, we set the control
parameter K to seven iterations® and observed that
the minimal assignments produced were usually found
within four iterations.

Table 1 contains our observed results and contains
the number of spills per iteration for OPT-Assign
and OPT-Assign-LOOP, as well as the percentage im-
provement of OPT-Assign-LOOP over OPT-Assign.
There is a general trend for the percentage improve-
ment to increase as the number of registers increases
(i.e., the loop algorithm produces better assignments
as the number of registers increases) which can be at-
tributed to the fundamental difference between OPT-
Assign and OPT-Assign-LOOP: OPT-Assign assigns
registers without regard to the effect of iterating on
those register usages, while OPT-Assign-LOOP exam-
ines the iterating effects on register usages while nat-
urally discovering a minimal assignment for a loop.

Another factor, which is an advantage for OPT-
Assign-LOOP, is the presence of loop-carried depen-
dencies. Because OPT-Assign-LOOP unrolls the loop
and assigns registers based upon the exit mappings
for the previous iteration, it examines the possibility
of keeping a variable which has uses in future itera-
tions in a register, thus reducing the number of loads
of that variable in the future.

6.2 Heuristic Loop Vs. Graph Coloring
We compared our heuristic algorithm with the Gnu
Standard Distribution C Compiler (gcc) which imple-

2This setting could, of course, be varied.

Table 1: Comparison of basic block and loop methods.

Basic
Program # Regs. | Block | Loop | % Impr.
2D-Hydro 2 33.3 32 4%
4 14.7 12 23%
6 8 7 14%
8 2.3 2 15%
Inner Product 2 10.3 9 14%
4 4 2 100%
6 2 1 100%
8 1 0 o0
Linear Eqs. 2 22.3 21 6%
Solver 4 11.3 9 26%
6 6 5 20%
8 2 1 100%
Tri-diag. 2 52 52 —
Elim. 4 17.3 16 8%
(below diag.) 6 8 7 14%
8 0 0 —
Tri-diag. 2 53 53 —
Elim. 4 19.3 17 14%
(above diag.) 6 9 8 13%
8 0.3 0 o0
Prefix Sums 2 13 13 —
(scan) 4 5.7 4 43%
6 3 2 50%
8 0 0 —

ments a graph coloring scheme. Because the SPARC
architecture has a RISC instruction set similar to that
found in many embedded core processors, gce was con-
figured to produce SPARC code. Also, the register as-
signment module was modified so that gcc would pro-
duce code which used four, six and eight registers>.
For our heuristic version of OPT-Assign-LOOP we
used a width of two. Table 2 summarizes the results of

3Gec produced an internal compiler error when the real reg-
ister count was set to two.

Table 2: Comparison of graph coloring and heuristic.

Program # Regs. | Gee | Our Heur. | % Impr.
2D-Hydro 4 19 14 36%
6 16 8 100%
8 12 3 300%
Inner Prod. 4 8 2 300%
6 8 1 700%
8 8 0 o0
Linear Eqs. 4 12 10 20%
Solver 6 10 6 67%
8 8 1 700%
Tri-diag. 4 29 16 81%
Elim. 6 24 9 167%
(below diag.) 8 17 0 00
Tri-diag. 4 27 17 59%
Elim. 6 22 8 175%
(above diag.) 8 19 0 00
Prefix Sums 4 7 4 5%
(scan) 6 6 2 200%
8 6 0 o0

the spill code produced by gce as well as our heuristic
algorithm.

In all cases, our heuristic produced assignments
that were superior to gec. In this graph coloring ap-
proach, variables are assigned to registers for their en-
tire lifetime. In some areas of code where a variable
assigned to some register is currently not being ac-
cessed, keeping it in that register causes high “register
pressure” where more loads and stores of other vari-
ables (which currently are being accessed) are gener-
ated than necessary if the variable had been previously
spilled to memory.

One interesting result is that our heuristic produces
assignments which are better than OPT-Assign in a
number of cases. Comparing Tables 1 and 2 shows
that our heuristic results are better by an average of
8%. Although this is a heuristic version of the loop
algorithm, it is able to derive better results than OPT-
Assign because, as previously noted with the optimal
loop algorithm, it derives register assignments which
naturally match at loop top and bottom.

7 Conclusion

In this paper we have motivated and presented an
algorithm which optimally assigns registers to loops.
In this case an optimal assignment is one in which
the memory traffic resulting from spill code 1s mini-
mized. Our work answers the long standing question
of whether it 1s possible to, in principle, achieve op-
timal (minimal) spill code in loops. We have demon-
strated the feasibility of using our technique for the
task of register assignment in embedded code gener-

ation by conducting experiments on RISC-like code
typical of embedded core processors. In our experi-
mentation, we observed that a heuristic version of our
technique out-performs the graph coloring-based ap-
proach used by the Gnu C compiler (gee). Because our
approach 1s directly applicable to architectures having
special-purpose and restricted register usages, future
work will extend the approach discussed here.

References

[1] P. Briggs. Register Coloring via Graph Coloring. PhD thesis,
Rice University, April 1992.

[2] P. Briggs, K. Cooper, K. Kennedy, and L. Torczon. Coloring
Heuristics for Register Allocation. PLDI, June 1989.

[3] G. Chaitin, M. Auslander, A. Chandra, J. Coocke, M. Hopkins,
and P. Markstein. Register Allocation Via Coloring. Computer
Languages, 6, January 1981.

[4] F. Chow and J. Hennessy. The Priority-Based Coloring Ap-
proach to Register Allocation. ACM Transactions on Pro-
gramming Languages and Systems, 12(4), October 1990.

[5] M. Balakrishnan et al. Allocation of Multiport Memories in
Data Path Synthesis. JEEE Trans. on CAD, 7(4), April 1988.

[6] L. J. Hendren, G. R. Gao, E. Altman, and C. Mukerji. A
Register Allocation Framework Based on Heirarchical Cyclic
Interval Graphs. Int. Conf. on Comp. Cons., April 1992.

[7] L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd.
Index Register Allocation. Jour. of the ACM, 13(1), January
1966.

[8] W. Hsu, C. Fischer, and J. Goodman. On the Minimization of
Loads/Stores in Local Register Allocation. IEEE Transactions
on Software Engineering, 15(10), October 1989.

[9] K. Kennedy. Index Register Allocation in Straight Line Code
and Simple Loops. In R. Rustin, editor, Design and Optimiza-
tion of Compilers. Prentice-Hall, 1972.

[10] T. Kim and C. L. Liu. Utilization of Multiport Memories in
Data Path Synthesis. 30th DAC, 1993.

[11] D. J. Kolson, A. Nicolau, and K. Kennedy. An Algorithm
for Minimizing Spill Code in Loops. Technical Report 94-43,
U.C. Irvine, October 1994. Also available as Rice University
Technical Report: CRPC-TR94482.

[12] F.J.Kurdahi and A. C. Parker. REAL: A Program for Register
Allocation. 24th DAC, 1987.

[13] D. Lanneer, M. Cornero, G. Goossens, and H. De Man. Data
Routing: a Paradigm for Efficient Data-Path Synthesis and
Code Generation. Int. Symp. on HLS, May 1994.

[14] C. Liem, T. May, and P. Paulin. Register Assignment
through Resource Classification for ASIP Microcode Gener-
ation. ICCAD-94, November 1994.

[15] P. Marwedel. Tree-Based Mapping of Algorithms to Predefined
Structures. JCCAD-93 November 1993.

[16] C. Park, T. Kim, and C. L. Liu. Register Allocation for Data
Flow Graphs with Conditional Branches and Loops. FEuro-
DAC 93, 1993.

[17] L. Stok. Interconnect Optimisation During Data Path Alloca-
tion. EDAC, 1990.

[18] T. Wilson, G. Grewal, B. Halley, and D. Banerji. An Integrated
Approach to Retargetable Code Generation. Int. Symp. on
High-Level Synthesis, May 1994.

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

