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Abstract

Furthermore, sincpower consumption is directly propor-
tional to transition density, regions withigh switching

Discrete simulation based methods for switching density activity consume a significant portion tifie totalpower

estimation camrovide veryaccurate results, but a number

budget, making them prime candidates power reducing

of unresolved problems such as estimating the requiredoptimizations.

number of input patternnpedes the widespreadeful-
ness of this technique. In this paper, we addressshe
of obtaining run-time and a-priogistimates of the number
of input patterns requirefbr a specified accuracy. We

Two methods are principallyused for calculation of
switching density: probabilistic analys@énd simulation-
based analysis [6]. In probabilistic analysignal statis-

obtain these estimates through the definition of a set oftics such as transition dens#ye propagated from primary

multinomial random variablesnd aset of functions based

inputs to primary outputs [5]. This technique has the

on the parameters of these random variables. Experimenbenefit of lowcomputational complexity but suffers from

tal results indicatehat the proposed techniques provide
accurate estimates of the number of patterns reqforeal
specified switching density accuracy.

[. Introduction

Accurate estimation of switching density for bgibwer
dissipationandreliability analysis is a significant concern
for future integrated circuitdVith battery-powered appli-
cations destined for continued future growthe issue of
extending theuseable lifetime is becoming increasingly

significant. Recent advances in battery technology may

help diminish thigoroblem, but theyare not keepingace
with the growth trend in integrated circuit size. Thus, in
many state-of-the-art portable applications, functionality is
sacrificed for reduced power consumption typically in the
form of a power supply reduction. Besidas problem,
the continual increase in packirdgnsity facilitates an
increasing number afevicesper chip which caseriously
impact reliability. The mean time-to-failunmay be sig-
nificantly lower if proper techniqueare notemployed to
handle high switching activity regions.

Recently, a number of nové@w-power techniques have
been proposed. However, befonany of these techniques
can be used, accurate estimates of switchemsity must
be obtained. The identification digh switching density
regions (“hot spots”) is crucial to improving the reliability
since these areas tend to fail prematurely dubigber

average stress directly correlated to switching density.

reduced accuracy. Extensions of probabilistic analysis
have been proposed which sacrifice speed for accuracy.
However,the run time required for these methods begins
to approach that dfliscrete simulation methods (for ex-
ample,seetheruntimes of [3]and [7]). Simulation-based
analysis estimates switching density by applying a large
number of patterns to the circaibddirectly observing the
switching rate using a discrete logic simulator. Wtiiis
canprovide veryaccurate results, a number of unresolved
issues inhibit the use of this technique.

One of the principal problems with simulation-based esti-
mation is determining the number of patterns to be applied
to the logic circuit. To the circuit designer, it is desirable
to estimate the number of pattearedhence, theun time
required for simulationThis allows for adjustment of the
specified accuracy to suit both simulatemorbounds and
time limitations. Qualitatively, the larger the number of
input patterns applied the better the resuléinguracy, but
thus far,few techniques have been proposed which can
approximate the relationshipetween accuracgand the
number of applied patterns.

Two methods to obtain confidence intervals in switching
densityand power estimation have been proposed in the
literaturebased directly othe central limit theorem [3,4].
These methods can provide stopping criteria for a specified
accuracy but requireun-time information. Stopping cri-
teria for the power consumption of aentire circuit is
proposed in [4] where it is assumédat the sampled
power consumptiorfiollows a normal distribution. Stop-
ping criteria to obtain aspecified switching density
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accuracy atll individualnodes is proposed in [3This we will form two multinomial RVs. This allows us to use
method is based othe fact that thedistribution of the statistical techniques to estimate confidence intervals on
mean approaches a normal distributiona large number  the parameters of these RVs in section Ill.

of samples [9]. This technique requirasserving N sam-

ples each of duration T since the standard deviation of anSupposéhat a single inpwector is applied to a logic cir-
unknown distribution must be estimated. This can require cuit. For each node, k, in the logic circuit we define two
significantly more samples being takéiman necessary.  sets of mutually exclusive and exhaustive events:
Furthermore, neither of thebovemethods can based to ol
obtain information on the required number of patterns F® (R®)=
before simuléon.

if i falling (rising) transitions occur
otherwise

where i=0,...,tand trepresents the maximum number of
As a precursor to thisork, a method for estimating the transitionsobserved. As an exampleg(kfizl for node k if
number of required patterns in an a-priori fashion has beenandonly if exactly twofalling transitions are@bserved on
proposed in [8]. That methodology relies othe assump-  thatnode. For simplicity, the superscript (k) will hence-
tion thateach input pattern generates at most wGsiag forth be omitted, but it should be kept imnd thateach
event on each node. Althougtis assumption is valid for  node has associated with it a set of unique events. It can be
a highpercentage of nodes in a circuitc#in not guaran-  easily seerthat theevents fR;) and {R) are mutually
tee that the specified accuracy will hold foall nodes. exclusive sincehe observation of i falling (risingjransi-
Experimentally, we findhat theresults from [8] can pro-  tions on a specific node precludéBe simultaneous
vide accurate stoppingriteria for ~80% ofthe nodes in  observation of j falling (rising) events ohat node for all

our largest benchmark circuit. i #j. This set of events is also exhaustive since application
of a single input pattern results in tbéservation of at
In this paper, we present a technigbat allows a-priori most t falling (rising) transitions. Oneay wonder how t

estimationof the number of patterns required to meet a scales with circuit size. Faill benchmark circuittested,
given error tolerance with gpecified confidence. We also the maximum tobservedhasbeen<10. In general, we
show howthis techniquemay be used early in simulation anticipate that will scale logarithmically with circuit size
to provide a more accurate estimatiortha totalrun time although circuits can be constructed where t scales linearly
and may be used to provide a stoppargerion. This with the number of gates.

technique is applied to estimate the number of patterns

required for gate-level switching density accuracy. Gate- With each event fR), we canassociate aandom vari-
level estimation is crucial for diagnosing high-power logic able,F;(R;). We define therobabilitythatexactly i falling
nodes for power optimizatioand for determiningpoten-  (rising) eventsare observedipon the application of a sin-
tial reliability problems such as electromigratiand hot- gle input pattern asgg?{Fi=1} (pr=P{Ri=1}) where ?
carrier degradationaused byrigh switching activity. We  denotes probability. In other words, when a sipglttern
saythat acircuit is gate-level accurate whéme measured  is applied, we expect that with probability (pg;) exactly i
switching density at each nodevidthin a specifiederror  falling (rising) transitions will beobserved orthe node
with a specified confidence. To achieve a gate-lewlr associated witlhe event H(R). Independently sampling
of at most 0.05 with a confidence of 99% (representedthe above RVs byapplying n input patterns to the circuit
herein as (0.05,0.99)). Thdar everygate we desire an yields twomultinomial RVs foreach node, one faising
absolute error of <0.05 with 99% confidentigat is 99 out  transitions and the othéor falling transitions. Wedenote
of 100 estimates fothat gate should satisfyhe error  these RVs a#l (Mg) with multinomial probability den-
bound. sity functions (pdfs)

The remainder of this paper is organizedfa®ws. In f(xo,....Xt) =%péo pit- gt (2)
section Il, we present an approximation of the signal sta- X0 X1 X
tistics. This enables us to derive a relationdigfween the  where pis the value g (pri) and xis the number of times
number of patterns applieghd the resultingccuracy in exactly ifalling (rising) transitionsoccur onthe node of
section Ill. Section IV contains experimental results interest during the n random samples. cOfirsethis pdf
which justify our approactand irsection V, we present requires thaty x; =n and y p; =1 are satisfied.
our conclusions.

. . . . o In switching activity estimation, we applyinput patterns

Il. Approximation of Signal Statistics and look atthe distribution of the number of rising and

In this section we introduce a method of representing the falling transitions on each node. The total number of ris-
effect of anapplied pattern in terms of Bernoulli random ing transitions on amode may differ fronthe number of
variables (RVs). Upon application of a set opatterns, falling transitions by at most one since eaiding transi-



tion requires a corresponding falling transitiexcept desired relationshipetween accuracgnd the number of
possibly onthe final transition. Thus, if i falling transi- applied patterns. From the relation [1],
tions areobserved for arapplied input pattern then the 2 __[2 2
number of rising transitions observed on that node is either o= E[S ]_ Els]
i-1, i, or i+1. Let us assumthateach of these three pos- \ye can write the variance éfas
sibilities is equiprobable. Then for a large number of 2
samples p=pg; Which allows us to approximatd =M g 2 _ to gt.

for each node. In other worddie number of times we o _EDZl' (pi ‘HZI' HﬁiE - @)
observe exactly fising transitions will beapproximately Ex h g

the same as the number of times abserve exactly i fal-  This can be consistently estimated by substitufindor p
ling transitions. Therefore, instead of considering separatesince the true ;pare not known. For aufficiently large
rising and fallingdistributions, we will only consider a  value of n, the centrdimit theoremmay be used to obtain
single distributionM with corresponding switching prob- [1,2],

abilities p. Without loss of generality, ithe remainder of s-sd

this paper we wilthink of M in terms ofobservedising —-N(0J), (8)
transitions. o

(6)

. . . i.e., (- s)/o approaches a standard normal distribution in
IIll. Bounding Transition Density Error density. If we definez, as the 108(1-d/2)th percentile

In the previous section, we showed how a multinomially of the standard normal distribution, we obtain

distribgted. RV,M, may bg quined _for each nodg in the p{|§_ s*s 0D21—6/2} =1-5. (9)

logic circuit. From the definition ahis random variable,

we can calculate the switchimtgnsityand the number of  This caneasily bemanipulated toyield the minimum

patterns thashould be applied for a specified accuracy. number of required patterns as a function of the parame-

The switching density, s, on a node is given in transitions terse andd as

er clock cycle and is estimated b
i ’ t ’ n~—4&i6/2 Dtizm-—mtim-ng (10)
§=ZDziE3(n—', ©) g? ggl ) IEE'
i=1

where x is the observednumber of times a single input  This relationshipbetween accuracynd the number of
pattern generatesxactly irising events orthe node, n is  fequired patterns can hesed to asseshie relative run

the total number of applied patterasd themultiplicative ~ times of alternative values foe,(1-0). If we know or

factor of 2 accounts faising and falling transitions. The Mmeasure the required number of patterns far a speci-

term x/n is an estimate fahe parameter; pvhich we de-  fied accuracy, g, 1-5,), thenfor a second accuracye( 1-

note pj . 02), the number of patterns required is approximated by
. . _ g2 25—52/2

Our goal is to approximate the required value of n such n, =—LE5——0 . (11)

that theestimated switching density githin € of the ac- €2 2152

:EZ'C\,’?CM? _Vélthconﬂdence 1 for anyparticular node in |, yerjying (11), ithasbeen assumethat the maximum

ircuit i.e.,

number of rising transitions, t, and tkalues for p; re-
p{|§— s*s g} >1-9. (4) main invariant for different accuracy parameters. Usually a

value of n=100 is sufficient to obtain a reasonably accu-
For thedevelopment othe method we present, we have rate estimatdor these quantitiedhis resultyields one
assumedhat anabsoluteerroraccuracy is required. How-  notential accuracy-driven simulation algorithm. First,

ever, if we desire a specified accuracy in percentage, simulation is performed witHoose error bounds, say
(¢',1-0), we can use (4) and the modified value,of (0.2,0.8), with the stopping criteria determined by (10)

¢ = Lg (5) being satisfied aall nodes. Then, the entir@ccuracy vs.

1-¢ runtime tradeoff curvean be determinegindappropriate

boundscan beselected with respect tawn times and/or

Thisimposes no additional computational burden siéce
is already computeduring simulation. Note that agiven

percentage error in switching density accuracy corresponds_. . . . . . .
to the same percentage error in power accuracy. Given run-time information, (10) provides a stopping cri-
terion for a specified accuracy. Howevethere is

considerable interest in estimating the number of required
patterns in an a-priori fashion without requirisgmetype
of initial simulation. Theonly unknown values in (10) are

error goals.

We begin our derivation by computing the variance of (3).
Then weemploythe central limit theorem to obtain the



] =2 / — n=348
= =0.409 =0.129
1700022201}  m=1+max{5,4,4}=6 D: 41'5 Py P
t= p.=0.026 p =0.002
17{0,5,24,8,14} R={0,0,8,43,40,16,1} X=272.67 3 4
T3:{0,3,17,10,2} 7={0,0,8,43,40,16,0} Fig. 2. Calculation of n.
Fig. 1. Computation of T for a three-input gate. events frominput to output dramaticallymproves the es-

A _ timate of . Physically, atransition on an input signal
the measuredalues for pj and the maximum number of  maynot propagate to the output due to the functionality of
transitionsobserved, t. If wean find realistic estimates e gateand signatorrelation. However, to achieveun-
for the values of t angi , these can based to estimate the  time efficiency, wecan notirectly consider theseffects

number of patterns required. Wew present an algo- pyt instead account for them by th@arameter.
rithm that hasbeen empirically found to produagood

estimates for these parameters. Once we have an estimate for t, we need to determine the
. ) . ) values forp;. To achievehis, we first call gprobabilistic

First, we need to obtain the maximum numbetrahsi-  gimylator based on [5]This provides us with a quick es-

tions, t. For this, wassumehat allgates have equahit timate for the switching density, D, at each node. thiéa

delays. Let ¥ be a vector with entry jepresenting the  ,se [3/4 to approximate the second inner-term in (10). In
number of paths from the primary inputs to the output of aqgition, we can use D to estimate the probabilities accord-

gate k which could generatetansition at time j. Fur- ing to the equations:
thermore, let Y represent the latest time at which gate 4
k's output will switchand ' be the maximum number of b = (t+1-1i)

L o i
rising transitions on gate k. X+ -Zl(t +1_J)4 13 a0)
The first step irthis portion of our algorithm is to initial- tJ

ize the primary inputs. We assuntbat all inputs b= 2Dz_k[i)k

transition at time zero, i.e.’=1. This methodioes not k=L
depend on this assumptidmwever, forthe average input
switching density to be-0.5, transitions at times other
thanzero are required under the unit-delay model. Next
the gates ar¢opologically orderedand theabove values
are propagated as demonstrated in Fig. 1 according to th

following equations:

where x corresponds to the weighting assigned to the
probability that zero transitions occur. The value of x is
computed by substituting (13a) into (13bJhis value is

’ thenresubstituted in (13a) to calculate thaues for p; .
Finally, these quantities anesed together with (10) to
%roduce the final result. This yields,

m(k) —14 ma>{m(i)} . Dzj D8t4 +(32- 14D)t3 +(§6— 422D)t2 +(48- 21D)t+ D - 4(14)
i Te 2t +6t +3t-1
T(i) ifi>0 The use of (13%nd(14) is demonstrated in Fig. 2 where n
r(K) :% -1 J is calculated for (0.1,0.9).Notice that this model may

H 0 otherwise produce a negative value for x if D is sufficientiyge

K K K (12) compared to t. However, this has heen observed in any
(k) _ E?E ) ifj>0 andRJ( )/Z R%) >A benchmark circuits. If it occurgshen acubic, quadratic,
Tj =d n linear, or constandependencean be tried in (13)ntil a

B 0 otherwise non-negative value for x is obtained.
1K) = & o) % if Tj(k) > 0% IV. Experimental Verification
52 i HO otherwisetH In this section we present dateerifying our approach to

estimating the valuéor n in botha-priori and run-time
paradigms. We begin by presenting data certifying the
validity of our variance estimate in (10). Next, assess
the accuracy of (12jnd (14) for a-priori estimation. Fi-
nally, we demonstrate these of (11) in producing an
accuracy vs. run-time tradeoff curve.

where i=1,...r, j=n=0,..., fA, and r is the number of inputs
to gate k. After these valuese computed fomll gates, t
is estimated as the maximum value8f f the percentage
of transitions in the temporary variablg®Ris not at least
A (empiricallyA=1%), then weassumehat noevents will
actually be observed othe output at time j. We have
foundthat including thiscondition on the propagation of



Table 1. Number of patterns for various,{-9).

Circuit Gates Number of Patterns Required
(0.1,0.9) | (0.05,0.99) (0.01,0.999)

b9 168 33¢ 330p 1344643
C432 364 625 6138 2501}8
C880 538 598 5819 237311
alu2 610 659 6465 265395
C1355 703 663 6511 2637p4
C499 719 525 5157 210099
C1908 962 633 6218 253319
alu4 1137 718 7002 2853p4
C2670 1180 1147 11257 459016
C3540 1656 1591 15613 636499
C5315 2794 1452 14247 581(73
C7552 3877 2058 20195 823987

To validate our approach we have selected a benchmar
suite that consists of circuits from ISCAS 198nd the
1989 MCNC International Workshop drogic Synthesis.
These circuits are simulated via a gate-level simulator with
delay models based upon capacitleading and signal
slewrates. Forall simulations wespecify that each pri-
mary input signahas aprobability of 0.25 ofchanging
logic value at the beginning of eaclock cycleand that
the inputslope is randomly distributed ovég@ns,2ns].
Finally, the clock period is set to bee maximundelay of

the circuit plus 1ns. For verificatiggurposes we need to
first obtain “exact” values for the switching density of each
node. To acquire these valuesiaitial simulation with

an accuracy specification of (0.01,0.999) was performed.
Table 1 contains a list of the benchmark circaitsl the
number of patterns required satisfythis accuracy speci-
fication as well astwo other representativeaccuracy
specifications.

To verify the accuracy of (10) we simulated ealobnch-
mark circuit 100dtimes with an accuracy of (0.1,0.9) and
thencalculated the maximum violation rateerall nodes
in the circuit. A violationoccurs at a node is-s$>¢,
and theviolation rate is defined as the numbervaila-
tions divided by the total number of simulations. ttis
instance, we expethe maximum violation rate to be ap-
proximately 6=0.1, and asndicated by Table 2this is
indeed thecase withthe maximunobserved violatiomate
over all benchmark circuitbeing 15%. We should not
expectthe actual violation rate to teelow 10% in all cir-
cuits for a number of reasons. In derivihg approximate
confidence intervals used in (10), we utilizés central
limit theorem. While this theorerprovides us with a
limiting distributionfor n - o, our simulations only re-
quired 300-2000 patterns whiahay introduce amall
amount of error. In addition, 1000 simulatianay not be

adequate to obtain a true measure of the violation rate.

Therefore, dew percent error in thebserved 1 for this
approximation is quite acceptabland inany case, we
may compensate for through slightly tighteraccuracy
specifications.

Table 2. Violation rate for (0.1,0.9).

Circuit Maximum % Nodes in
Violation Rate Violation
b9 8.6% 0.00%
C432 11.5% 1.10%
C880 11.5% 0.74%
alu2 10.0% 0.00%
C1355 12.0% 0.57%
C499 14.8% 1.39%
C1908 13.0% 0.73%
alud 10.0% 0.00%
C2670 15.0% 0.59%
C3540 9.0% 0.00%
C5315 9.5% 0.00%
C7552 7.5% 0.00%

k

Next, we consider the error of our a-priori pattern number
estimation algorithm given principally by (12nd (14).

For each benchmark circuit, datas collectediuring the
calculation of “exact” results on the maximum number of
transitionsobserved foeach node. Next, 100 simulations
were performedvith an accuracy specification of (0.1,0.9)
and the mean number of patterns requines recorded.
Finally, (12)and(14) were used to predict these values for
each circuit with the results being presented in Table 3. In
this table, the ratio of the predicted n to theserved n is
tabulated to facilitate comparison across thecuracy
spectrum since the ratio will remain constéortall accu-
racies. As this data indicates, our estimfde t is in
excellent agreement with thebserved value for t in all
benchmark circuits. Furthermore, the number of patterns
predicted is within aracceptableange of themeasured
number forall benchmarks asorne out by the ratio of the
two. Theonly circuit for which ourlgorithm significantly
underestimates the number of required patterns is C3540.
This indicateghat for larger circuits our quartic relation-
ship between probabilities may need to be revisedight
underestimation is to be avoided. In general, as circuit
size increases the data indicatbat our combined ap-
proximations becomebetter and produce more accurate
results.

In many instances it is desirable to obtain the entire accu-
racy vs. run time tradeoff curve using (11). To
demonstrate this technique, we consider application to
C1908. Initially simulation was performed with an accu-
racy specification 0f0.2, 0.8). This required a total of
n;=428 patterns where the stopping criteras (10) be-

ing satisfied forall 962nodes. We cansethis result and
(11) to plot theaccuracy vs. number gfatternstradeoff
curve as shown in Fig. 3. As amsert to this figure the
tradeoff betweew and 18 is depicted fon=600 patterns.
This insert clearly indicates that it requires relativielyer
patterns to increasedthan to increase This figure also
clearly showshe inverse quadratic dependences aavi-
dent in (10).
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Fig. 3. Number of patterns required as a function of accuracy for C1908.

V. Conclusions

lationship betweenthe number of applied patterns and

total circuit power.

For reliability assessmermind power analysis, estimation

of the switchingdensity for individual nodes is essential.
Switching density estimation by discrete simulation can [1]
yield veryaccurate results but is hampered by an ambigu-
ous relationshipbetweenthe number of patterns applied [2]
and the accuracy of the resulting estimates.

In this paper, we have presented an analysis of the relaf3]
tionship betweenthe number of applied patteraad the
resulting accuracy ofthe estimated densities. We have
provided an algorithnthat allows for a-priori estimation [4]
of the number of required patterns for a specified accuracy.
In addition, we have showmow our methodology may be
used in conjunction with run-timdatafor error control
during simulation. Furthermore, we hasteown how one  [5]
can obtain the entiraccuracy vsrun time tradeoffcurve

using thismethodology in a very efficiemhanner. In the
future, our techniques may be extended to analyzere-

[6]
Table 3. Accuracy of the estimation of t and n for

€=0.1, 18=90%.
[7]

Circuit Measured Calculated Rati
t | n t | n
b9 3 334 4 467 1.39
C432 4 624 ¥ 15256 2.44 [8]
C880 5 59 V 1740 2.93
alu2 s 659 10 1690 2.46
C1355 g 663 b 6444 0.97
C499 4 524 fl 668 1.47 [9]
C1908 g 633 v 1098 1.13
alu4 q 713 10 1758 2.47
C2670 1 114y B 1828 1.%9
C3540 7 1591 v 1197 0.15
C5315 145 P 2320 1.$0
C7552 1 2058 11 2900 1.41
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