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Abstract

Discrete simulation based methods for switching density
estimation can provide very accurate results, but a number
of unresolved problems such as estimating the required
number of input patterns impedes the widespread useful-
ness of this technique.  In this paper, we address the issue
of obtaining run-time and a-priori estimates of the number
of input patterns required for a specified accuracy. We
obtain these estimates through the definition of a set of
multinomial random variables and a set of functions based
on the parameters of these random variables.  Experimen-
tal results indicate that the proposed techniques provide
accurate estimates of the number of patterns required for a
specified switching density accuracy.

I. Introduction

Accurate estimation of switching density for both power
dissipation and reliability analysis is a significant concern
for future integrated circuits. With battery-powered appli-
cations destined for continued future growth, the issue of
extending the useable lifetime is becoming increasingly
significant. Recent advances in battery technology may
help diminish this problem, but they are not keeping pace
with the growth trend in integrated circuit size.  Thus, in
many state-of-the-art portable applications, functionality is
sacrificed for reduced power consumption typically in the
form of a power supply reduction.  Besides this problem,
the continual increase in packing density facilitates an
increasing number of devices per chip which can seriously
impact reliability. The mean time-to-failure may be sig-
nificantly lower if proper techniques are not employed to
handle high switching activity regions.

Recently, a number of novel low-power techniques have
been proposed.  However, before many of these techniques
can be used, accurate estimates of switching density must
be obtained. The identification of high switching density
regions (“hot spots”) is crucial to improving the reliability
since these areas tend to fail prematurely due to higher
average stress directly correlated to switching density.

Furthermore, since power consumption is directly propor-
tional to transition density, regions with high switching
activity consume a significant portion of the total power
budget, making them prime candidates for power reducing
optimizations.

Two methods are principally used for calculation of
switching density: probabilistic analysis and simulation-
based analysis [6].  In probabilistic analysis signal statis-
tics such as transition density are propagated from primary
inputs to primary outputs [5].  This technique has the
benefit of low computational complexity but suffers from
reduced accuracy.  Extensions of probabilistic analysis
have been proposed which sacrifice speed for accuracy.
However, the run time required for these methods begins
to approach that of discrete simulation methods (for ex-
ample, see the run times of [3] and [7]).  Simulation-based
analysis estimates switching density by applying a large
number of patterns to the circuit and directly observing the
switching rate using a discrete logic simulator.  While this
can provide very accurate results, a number of unresolved
issues inhibit the use of this technique.

One of the principal problems with simulation-based esti-
mation is determining the number of patterns to be applied
to the logic circuit. To the circuit designer, it is desirable
to estimate the number of patterns and hence, the run time
required for simulation. This allows for adjustment of the
specified accuracy to suit both simulation error bounds and
time limitations. Qualitatively, the larger the number of
input patterns applied the better the resulting accuracy, but
thus far, few techniques have been proposed which can
approximate the relationship between accuracy and the
number of applied patterns.

Two methods to obtain confidence intervals in switching
density and power estimation have been proposed in the
literature based directly on the central limit theorem [3,4].
These methods can provide stopping criteria for a specified
accuracy but require run-time information.  Stopping cri-
teria for the power consumption of an entire circuit is
proposed in [4] where it is assumed that the sampled
power consumption follows a normal distribution.  Stop-
ping criteria to obtain a specified switching density
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accuracy at all individual nodes is proposed in [3]. This
method is based on the fact that the distribution of the
mean approaches a normal distribution for a large number
of samples [9]. This technique requires observing N sam-
ples each of duration T since the standard deviation of an
unknown distribution must be estimated.  This can require
significantly more samples being taken than necessary.
Furthermore, neither of the above methods can be used to
obtain information on the required number of patterns
before simulation.

As a precursor to this work, a method for estimating the
number of required patterns in an a-priori fashion has been
proposed in [8].  That methodology relies on the assump-
tion that each input pattern generates at most one rising
event on each node.  Although this assumption is valid for
a high percentage of nodes in a circuit, it can not guaran-
tee that the specified accuracy will hold for all nodes.
Experimentally, we find that the results from [8] can pro-
vide accurate stopping criteria for ~80% of the nodes in
our largest benchmark circuit.

In this paper, we present a technique that allows a-priori
estimation of the number of patterns required to meet a
given error tolerance with a specified confidence.  We also
show how this technique may be used early in simulation
to provide a more accurate estimation of the total run time
and may be used to provide a stopping criterion. This
technique is applied to estimate the number of patterns
required for gate-level switching density accuracy.  Gate-
level estimation is crucial for diagnosing high-power logic
nodes for power optimization and for determining poten-
tial reliability problems such as electromigration and hot-
carrier degradation caused by high switching activity.  We
say that a circuit is gate-level accurate when the measured
switching density at each node is within a specified error
with a specified confidence.  To achieve a gate-level error
of at most 0.05 with a confidence of 99% (represented
herein as (0.05,0.99)). Then for every gate we desire an
absolute error of <0.05 with 99% confidence, that is 99 out
of 100 estimates for that gate should satisfy the error
bound.

The remainder of this paper is organized as follows.  In
section II, we present an approximation of the signal sta-
tistics. This enables us to derive a relationship between the
number of patterns applied and the resulting accuracy in
section III.  Section IV contains experimental results
which justify our approach, and in section V, we present
our conclusions.

II. Approximation of Signal Statistics

In this section we introduce a method of representing the
effect of an applied pattern in terms of Bernoulli random
variables (RVs).  Upon application of a set of n patterns,

we will form two multinomial RVs.  This allows us to use
statistical techniques to estimate confidence intervals on
the parameters of these RVs in section III.

Suppose that a single input vector is applied to a logic cir-
cuit.  For each node, k, in the logic circuit we define two
sets of mutually exclusive and exhaustive events:

F Ri
k

i
k( ) ( ) ) (

if i falling (rising) transitions occur

otherwise
= 




1

0
   (1)

where i=0,...,t and t represents the maximum number of
transitions observed. As an example, F2

(k)=1 for node k if
and only if exactly two falling transitions are observed on
that node.  For simplicity, the superscript (k) will hence-
forth be omitted, but it should be kept in mind that each
node has associated with it a set of unique events. It can be
easily seen that the events Fi(Ri) and Fj(Rj) are mutually
exclusive since the observation of i falling (rising) transi-
tions on a specific node precludes the simultaneous
observation of j falling (rising) events on that node for all
i ≠ j.  This set of events is also exhaustive since application
of a single input pattern results in the observation of at
most t falling (rising) transitions.  One may wonder how t
scales with circuit size.  For all benchmark circuits tested,
the maximum t observed has been <10.  In general, we
anticipate that t will scale logarithmically with circuit size
although circuits can be constructed where t scales linearly
with the number of gates.

With each event Fi(Ri), we can associate a random vari-
able, Fi(Ri). We define the probability that exactly i falling
(rising) events are observed upon the application of a sin-
gle input pattern as pFi=P{ Fi=1} (pRi=P{ Ri=1}) where P
denotes probability.  In other words, when a single pattern
is applied, we expect that with probability pFi (pRi) exactly i
falling (rising) transitions will be observed on the node
associated with the event Fi (Ri). Independently sampling
the above RVs by applying n input patterns to the circuit
yields two multinomial RVs for each node, one for rising
transitions and the other for falling transitions. We denote
these RVs as M F (M R) with multinomial probability den-
sity functions (pdfs)
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where pi is the value pFi (pRi) and xi is the number of times
exactly i falling (rising) transitions occur on the node of
interest during the n random samples.  Of course this pdf
requires that xi n=∑  and pi =∑ 1 are satisfied.

In switching activity estimation, we apply n input patterns
and look at the distribution of the number of rising and
falling transitions on each node. The total number of ris-
ing transitions on a node may differ from the number of
falling transitions by at most one since each rising transi-



tion requires a corresponding falling transition except
possibly on the final transition.  Thus, if i falling transi-
tions are observed for an applied input pattern then the
number of rising transitions observed on that node is either
i-1, i, or i+1.  Let us assume that each of these three pos-
sibilities is equiprobable.  Then for a large number of
samples pFi≈pRi which allows us to approximate M F≈M R

for each node.  In other words, the number of times we
observe exactly i rising transitions will be approximately
the same as the number of times we observe exactly i fal-
ling transitions.  Therefore, instead of considering separate
rising and falling distributions, we will only consider a
single distribution M  with corresponding switching prob-
abilities pi. Without loss of generality, in the remainder of
this paper we will think of M  in terms of observed rising
transitions.

III. Bounding Transition Density Error

In the previous section, we showed how a multinomially
distributed RV, M, may be defined for each node in the
logic circuit. From the definition of this random variable,
we can calculate the switching density and the number of
patterns that should be applied for a specified accuracy.
The switching density, s, on a node is given in transitions
per clock cycle and is estimated by
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where xi is the observed number of times a single input
pattern generates exactly i rising events on the node, n is
the total number of applied patterns, and the multiplicative
factor of 2 accounts for rising and falling transitions.  The
term xi/n is an estimate for the parameter pi which we de-
note $pi .

Our goal is to approximate the required value of n such
that the estimated switching density is within ε of the ac-
tual value with confidence 1-δ for any particular node in
the circuit, i.e.,

{ }P $s s− ≤ ≥ −ε δ1 . (4)

For the development of the method we present, we have
assumed that an absolute error accuracy is required.  How-
ever, if we desire a specified accuracy in percentage error,
(ε',1-δ), we can use (4) and the modified value of ε,
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This imposes no additional computational burden since $s
is already computed during simulation.  Note that a given
percentage error in switching density accuracy corresponds
to the same percentage error in power accuracy.

We begin our derivation by computing the variance of (3).
Then we employ the central limit theorem to obtain the

desired relationship between accuracy and the number of
applied patterns. From the relation [1],
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we can write the variance of $s as
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This can be consistently estimated by substituting $pi  for pi

since the true pi are not known.  For a sufficiently large
value of n, the central limit theorem may be used to obtain
[1,2],
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i.e., ($s s− )/σ approaches a standard normal distribution in
density.  If we define z1-δ/2 as the 100×(1-δ/2)th percentile
of the standard normal distribution, we obtain

{ }P -$ /s s z≤ ⋅ ≈ −−σ δδ1 2 1 . (9)

This can easily be manipulated to yield the minimum
number of required patterns as a function of the parame-
ters ε and δ as
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This relationship between accuracy and the number of
required patterns can be used to assess the relative run
times of alternative values for (ε, 1-δ).  If we know or
measure the required number of patterns, n1, for a speci-
fied accuracy, (ε1, 1-δ1), then for a second accuracy, (ε2, 1-
δ2), the number of patterns required is approximated by
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In deriving (11), it has been assumed that the maximum
number of rising transitions, t, and the values for $pi  re-
main invariant for different accuracy parameters. Usually a
value of n1=100 is sufficient to obtain a reasonably accu-
rate estimate for these quantities. This result yields one
potential accuracy-driven simulation algorithm. First,
simulation is performed with loose error bounds, say
(0.2,0.8), with the stopping criteria determined by (10)
being satisfied at all nodes.  Then, the entire accuracy vs.
run time tradeoff curve can be determined and appropriate
bounds can be selected with respect to run times and/or
error goals.

Given run-time information, (10) provides a stopping cri-
terion for a specified accuracy.  However, there is
considerable interest in estimating the number of required
patterns in an a-priori fashion without requiring some type
of initial simulation.  The only unknown values in (10) are



the measured values for $pi and the maximum number of
transitions observed, t.  If we can find realistic estimates
for the values of t and$pi , these can be used to estimate the
number of patterns required.  We now present an algo-
rithm that has been empirically found to produce good
estimates for these parameters.

First, we need to obtain the maximum number of transi-
tions, t.  For this, we assume that all gates have equal unit
delays. Let T(k) be a vector with entry j representing the
number of paths from the primary inputs to the output of
gate k which could generate a transition at time j.  Fur-
thermore, let m(k) represent the latest time at which gate
k’s output will switch and t(k) be the maximum number of
rising transitions on gate k.

The first step in this portion of our algorithm is to initial-
ize the primary inputs. We assume that all inputs
transition at time zero, i.e., T0

(PI)=1. This method does not
depend on this assumption; however, for the average input
switching density to be >0.5, transitions at times other
than zero are required under the unit-delay model.  Next,
the gates are topologically ordered, and the above values
are propagated as demonstrated in Fig. 1 according to the
following equations:
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where i=1,...r, j=n=0,..., m(k), and r is the number of inputs
to gate k.  After these values are computed for all gates, t
is estimated as the maximum value of t(k). If the percentage
of transitions in the temporary variable, Rj

(k), is not at least
λ (empirically λ=1%), then we assume that no events will
actually be observed on the output at time j.  We have
found that including this condition on the propagation of

events from input to output dramatically improves the es-
timate of t(k). Physically, a transition on an input signal
may not propagate to the output due to the functionality of
the gate and signal correlation.  However, to achieve run-
time efficiency, we can not directly consider these effects
but instead account for them by the λ parameter.

Once we have an estimate for t, we need to determine the
values for $pi . To achieve this, we first call a probabilistic
simulator based on [5].  This provides us with a quick es-
timate for the switching density, D, at each node.  We then
use D2/4 to approximate the second inner-term in (10).  In
addition, we can use D to estimate the probabilities accord-
ing to the equations:
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where x corresponds to the weighting assigned to the
probability that zero transitions occur. The value of x is
computed by substituting (13a) into (13b).  This value is
then resubstituted in (13a) to calculate the values for $pi .
Finally, these quantities are used together with (10) to
produce the final result.  This yields,
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The use of (13) and (14) is demonstrated in Fig. 2 where n
is calculated for (0.1,0.9).  Notice that this model may
produce a negative value for x if D is sufficiently large
compared to t.  However, this has not been observed in any
benchmark circuits. If it occurs, then a cubic, quadratic,
linear, or constant dependence can be tried in (13) until a
non-negative value for x is obtained.

IV. Experimental Verification

In this section we present data verifying our approach to
estimating the value for n in both a-priori and run-time
paradigms.  We begin by presenting data certifying the
validity of our variance estimate in (10). Next, we assess
the accuracy of (12) and (14) for a-priori estimation. Fi-
nally, we demonstrate the use of (11) in producing an
accuracy vs. run-time tradeoff curve.

1T ={0,0,2,22,0,1}

T ={0,5,24,8,14}2

m=1+max{5,4,4}=6

R={0,0,8,43,40,16,1}

T ={0,3,17,10,2}3 T={0,0,8,43,40,16,0}      

t=2

Fig. 1. Computation of T for a three-input gate.

D=1.5
t=4  
x=272.67

n=348

p =0.409
1

p =0.129
2

p =0.002
4

p =0.026
3

Fig. 2. Calculation of n.



To validate our approach we have selected a benchmark
suite that consists of circuits from ISCAS 1985 and the
1989 MCNC International Workshop on Logic Synthesis.
These circuits are simulated via a gate-level simulator with
delay models based upon capacitive loading and signal
slew rates.  For all simulations we specify that each pri-
mary input signal has a probability of 0.25 of changing
logic value at the beginning of each clock cycle and that
the input slope is randomly distributed over [0ns,2ns].
Finally, the clock period is set to be the maximum delay of
the circuit plus 1ns.  For verification purposes we need to
first obtain “exact” values for the switching density of each
node.  To acquire these values an initial simulation with
an accuracy specification of (0.01,0.999) was performed.
Table 1 contains a list of the benchmark circuits and the
number of patterns required to satisfy this accuracy speci-
fication as well as two other representative accuracy
specifications.

To verify the accuracy of (10) we simulated each bench-
mark circuit 1000 times with an accuracy of (0.1,0.9) and
then calculated the maximum violation rate over all nodes
in the circuit.  A violation occurs at a node if $s s− > ε ,
and the violation rate is defined as the number of viola-
tions divided by the total number of simulations.  In this
instance, we expect the maximum violation rate to be ap-
proximately δ=0.1, and as indicated by Table 2, this is
indeed the case with the maximum observed violation rate
over all benchmark circuits being 15%.  We should not
expect the actual violation rate to be below 10% in all cir-
cuits for a number of reasons. In deriving the approximate
confidence intervals used in (10), we utilized the central
limit theorem.  While this theorem provides us with a
limiting distribution for n→ ∞ , our simulations only re-
quired 300-2000 patterns which may introduce a small
amount of error.  In addition, 1000 simulations may not be
adequate to obtain a true measure of the violation rate.
Therefore, a few percent error in the observed 1-δ for this
approximation is quite acceptable, and in any case, we
may compensate for it through slightly tighter accuracy
specifications.

Next, we consider the error of our a-priori pattern number
estimation algorithm given principally by (12) and (14).
For each benchmark circuit, data was collected during the
calculation of “exact” results on the maximum number of
transitions observed for each node.  Next, 100 simulations
were performed with an accuracy specification of (0.1,0.9)
and the mean number of patterns required was recorded.
Finally, (12) and (14) were used to predict these values for
each circuit with the results being presented in Table 3. In
this table, the ratio of the predicted n to the observed n is
tabulated to facilitate comparison across the accuracy
spectrum since the ratio will remain constant for all accu-
racies. As this data indicates, our estimate for t is in
excellent agreement with the observed value for t in all
benchmark circuits. Furthermore, the number of patterns
predicted is within an acceptable range of the measured
number for all benchmarks as borne out by the ratio of the
two. The only circuit for which our algorithm significantly
underestimates the number of required patterns is C3540.
This indicates that for larger circuits our quartic relation-
ship between probabilities may need to be revised if slight
underestimation is to be avoided.  In general, as circuit
size increases the data indicates that our combined ap-
proximations become better and produce more accurate
results.

In many instances it is desirable to obtain the entire accu-
racy vs. run time tradeoff curve using (11).  To
demonstrate this technique, we consider application to
C1908.  Initially simulation was performed with an accu-
racy specification of (0.2, 0.8). This required a total of
n1=428 patterns where the stopping criterion was (10) be-
ing satisfied for all 962 nodes. We can use this result and
(11) to plot the accuracy vs. number of patterns tradeoff
curve as shown in Fig. 3. As an insert to this figure the
tradeoff between ε and 1-δ is depicted for n=600 patterns.
This insert clearly indicates that it requires relatively fewer
patterns to increase 1-δ than to increase ε.  This figure also
clearly shows the inverse quadratic dependence on ε evi-
dent in (10).

Table 1.  Number of patterns for various (ε,1-δ).

Circuit Gates Number of Patterns Required
(0.1,0.9) (0.05,0.99) (0.01,0.999)

b9 168 336 3302 134463
C432 364 625 6138 250118
C880 538 593 5819 237311
alu2 610 659 6465 265325

C1355 703 663 6511 263724
C499 719 525 5157 210099
C1908 962 633 6218 253319
alu4 1137 713 7002 285334

C2670 1180 1147 11257 459016
C3540 1656 1591 15613 636699
C5315 2794 1452 14247 581073
C7552 3877 2058 20195 823587

Table 2. Violation rate for (0.1,0.9).

Circuit Maximum
Violation Rate

% Nodes in
Violation

b9 8.6% 0.00%
C432 11.5% 1.10%
C880 11.5% 0.74%
alu2 10.0% 0.00%

C1355 12.0% 0.57%
C499 14.8% 1.39%
C1908 13.0% 0.73%
alu4 10.0% 0.00%

C2670 15.0% 0.59%
C3540 9.0% 0.00%
C5315 9.5% 0.00%
C7552 7.5% 0.00%



V. Conclusions

For reliability assessment and power analysis, estimation
of the switching density for individual nodes is essential.
Switching density estimation by discrete simulation can
yield very accurate results but is hampered by an ambigu-
ous relationship between the number of patterns applied
and the accuracy of the resulting estimates.

In this paper, we have presented an analysis of the rela-
tionship between the number of applied patterns and the
resulting accuracy of the estimated densities.  We have
provided an algorithm that allows for a-priori estimation
of the number of required patterns for a specified accuracy.
In addition, we have shown how our methodology may be
used in conjunction with run-time data for error control
during simulation.  Furthermore, we have shown how one
can obtain the entire accuracy vs. run time tradeoff curve
using this methodology in a very efficient manner.  In the
future, our techniques may be extended to analyze the re-

lationship between the number of applied patterns and
total circuit power.
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Table 3. Accuracy of the estimation of t and n for
ε=0.1, 1-δ=90%.

Circuit Measured Calculated Ratio
t n t n

b9 3 336 4 467 1.39
C432 4 625 7 1525 2.44
C880 5 593 7 1740 2.93
alu2 5 659 10 1690 2.56

C1355 5 663 5 644 0.97
C499 4 525 4 668 1.27
C1908 5 633 7 1098 1.73
alu4 6 713 10 1758 2.47

C2670 7 1147 8 1828 1.59
C3540 7 1591 7 1197 0.75
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C7552 7 2058 11 2900 1.41
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Fig. 3. Number of patterns required as a function of accuracy for C1908.
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