
Abstract

Analog techniques can lead to ultra-efficient computational
systems when applied to the right applications.  The
problem of associative memory is well suited to array-based
analog implementation.  The architectures which result can
be ultra efficient both in terms of high density and low
power consumption.  We have implemented a small
(16x512) analog associative memory array which uses
programmable nonlinear capacitors based on flash
EEPROM technology for both analog storage and analog
Manhattan Distance computation.  The core circuit
involved is based on only two of these novel devices.
Preliminary results from this test circuit indicate that we
can achieve a computing precision of more than 8 digital-
equivalent bits in a chip which is capable of performing
128 Giga absolute-value-of-difference-accumulate
operations per second at a power consumption of less than
150 mW.  Performance of this level is more than an order
of magnitude more efficient than the best low-power digital
techniques and demonstrates the potential advantages
analog implementation has to offer when applied to certain
applications.

Introduction - Associative Memory

The function of an associative memory, or content-
addressable memory, is more or less the inverse of that of a
random access memory: when presented with a partial or
complete data vector, the memory should return the row
address of the internally stored data vector which best
“matches” the input data vector.  The matching function is
typically a distance function; in standard digital
implementations Hamming distance is usually used.
Associative memory lends itself to array-based parallel
implementation.  A typical architecture consists of a 2-
dimensional distance-computing / memory array, and
several 1-dimensional arrays including an accumulator
array for accumulating distances, a comparator array for
finding the smallest distance, a priority encoder array for
selecting rows one at a time, and a ROM array for
presenting outputs [5].

* This work has been partially sponsored by U. C. Berkeley where Mr.
Kramer is completing a Ph.D.

Analog Associative Memory

We are exploring an analog implementation of this type of
architecture for Associative Memory.  The result is an
analog associative memory in which both stored memory
rows and inputs consist of analog-valued vectors (5-bit
equivalent precision).  The goal is to achieve an ultra-
efficient design in terms of both density and power
consumption.  Our target is an associative memory
containing 4K lines of 64-dimensional memory vectors
and capable of performing nearest neighbor match based
on Manhattan Distance in less than 2uS at a power
consumption of less than 150mW.

Computation of 4K 64-dimensional Manhattan Distances
requires 256K 5-bit absolute-value-of-difference-
accumulate computations, thus achieving a cycle time of
2uS requires performing 128G of these operations per
second.  Performing this much computation on a single
chip at a power consumption of less than 150mW
represents an increase in efficiency both in terms of density
and power consumption of more than an order of
magnitude over the best low-power digital techniques [1].
Practical realization of computing systems based on analog
techniques may provide a viable alternative for ultra-
efficient system design if the design generality lost can be
justified by the added efficiency gained.

 0
 1
 0
 0
 0
 0

 0

C
O
M
P
U
T
I
N
G

W
I
N
N
E
R
|

P
R
I
O
R
I
T
Y

R
O
M

ANALOG
INPUTS

WINNER
ADDRESSES

Analog
Distances

Digital
Selections

Single
Winner

 0
 1
 0
 1
 1
 0

 0

Q
U
E
U
E

T
A
K
E
|
A
L
L

A
R
R
A
Y

Fig 1:Block Diagram of Analog Associative Memory Architecture.  ROM
address of best-matching row (minimum Manhattan Distance) is output.
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The block diagram of our analog architecture is shown in
figure 1.  It is a fairly direct mapping of the typical digital
achitecture described earlier and contains an analog
memory / Manhattan Distance-computing array, a charge
integrator (accumulator) array, a winner-take-all
(comparator) array, and a digital output path consisting of
a priority queue and a ROM.  The core of the architecture
is the analog memory/computation array which is based on
novel programmable nonlinear capacitors implemented in
flash-EEPROM technology.  Each device in this array can
store an analog value with 5-bit equivalent precision and,
when given an analog input which is column-driven, can
compute the absolute value of the difference between the
stored value and the input value.  The way this operation is
performed is the central concept in our computing system
and is presented in detail in the following sections.

A sketch of the data flow through the architecture is as
follows:  Analog inputs are presented to the computing
array; each element of the array has a local analog value
stored and computes the absvaldiff (absolute-value of
difference) of the difference between its stored value and
its input; the charge integrator array sums the individual
absvaldiffs along each row into an analog Manhattan
Distance; the winner-take-all array compares all of the
computed analog distances and selects the one (or few)
which has the smallest distance (best match); and the
digital output path then prioritizes the winners selected
and sends their row addresses off chip through the ROM.
Control circuitry allows the winners selected to be disabled
following output through the ROM; in this way a sorted
list of rows in order of distance from the input can be read
from the chip.

Analog Storage and Computation with Flash
EEPROMs

As in a digital implementation, the power budget in an
analog associative memory is dominated by the energy
needed to compute the distances between each row of the
memory array and the common input vector.  The way this
array is implemented and these distances are computed is
the central novelty of our architecture and will be a focus
of this paper.  The distance computing array we present is
highly efficient both in terms of density and power
consumption: a circuit consisting of only two novel
programmable nonlinear capacitors is able both to store an
analog value and to perform an absvaldiff computation at
an energy consumption of less than 1pJ.  This is done by
making use of floating-gate technology and the MOS
physics controlling the channel charge of these devices.

The use of floating gate technology for efficient long-term
analog storage is well explored, especially in  neural
network implementations [2,3,4]. Typically, these devices
are employed only for storage, providing input to larger

analog computational circuits such as multiplying
amplifiers [2].  In this work we extend the use of these
devices by using a single Flash-EEPROM based device for
both analog storage and analog computation, resulting in a
large increase in computational efficiency.  This is done by
making use of the MOS physics controlling the charge in
the channel of a floating gate transistor to perform a
nonlinear difference operation.  The charge in the channel
of an MOS transistor is nonlinear:  below Vt the channel
charge is effectively 0, while above Vt it is linear in (Vg -
Vt) (fig 2).  In the case of a floating gate device, this non-
linearity is programmable.  By storing one analog value as
the threshold of a floating gate device, applying a second
analog value on the gate of the device and measuring the
channel charge with a charge integrator, it is possible to
efficiently compute the amount by which the gate voltage
exceeds the threshold voltage (fig 3).
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Fig 2:  Channel charge versus gate voltage for a floating gate MOSFET.  The
curve shows the idealized function.
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Fig 3: Channel charge to voltage conversion.  After resetting the charge
integrator, the input is applied

 Distance Computation

The use of differential signaling allows a pair of these
devices to be programmed so that their combined channel
charge represents the absolute-value of the difference
between two analog values (absvaldiff).  The two devices
have their threshold voltages programmed and their gate
voltages applied in a differential manner (fig 4).  The
computation of the Manhattan Distance between two
vectors requires the sum of the absolute values computed
in each dimension, and conservation of charge allows
many absvaldiff-computing circuits to be row-connected to
a single common charge integrator which can then
efficiently compute the Manhattan distance between the
vector stored on the gates of the devices in the row, and the



vector applied on the gates.  In addition, many such rows
can be accessed by the columnar gates in parallel, allowing
for a highly-efficient array-based architecture for the
parallel computation of the Manhattan distances between a
set of row-stored vectors and a single column-applied gate
vector (fig 5).
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Fig. 4:  Absolute Value of Difference Circuit.  Using differential signaling for
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Fig 5: Architecture of the Manhattan Distance Computing Array.  The inputs
are applied simultaneously to the gates.  Distances are computed in parallel.

CAPFLASH Device

The standard flash cell presents several limitations for use
in our architecture.  The first of these is that to prevent
charge sharing between rows, we must have a cell with
parallel source/drain access (compared to the standard cell
layout which is parallel source/gate).  The second
limitation involves the parasitic capacitances of the
standard device which modify the charge-domain
properties of the idealized device in a way which adversely
affects computational precision by introducing a large
common-mode signal which must be compensated [7].  To
overcome these limitations a new programmable nonlinear
capacitor based on flash EEPROM technology has been
designed, fabricated and tested [7].  This new structure,
which we call the CAPFLASH device, allows parallel

source/drain access and provides an effective channel
capacitance which is almost a factor of 10 greater than that
of the standard device while increasing cell size by less
than 40% over that of the minimum parallel source-drain
layout.

Analog programmability of the CAPFLASH device has
been successfully tested, though at somewhat higher
voltages than for "standard" devices (because device length
is more than double) [7].  We have programmed these
devices to an analog precision of better than 8 bits (8mV)
confirming typical results [2,3].  In addition, charge
retention has been characterized and the preliminary
results are encouraging: charge loss in a maximally
programmed (Vt=2V above virgin) or maximally erased
(Vt=2V below virgin) device following corresponds to a
retention of more than 5 bits for more than 10 years at
125°C [2,7].  At the lower temperatures where we expect
to operate our circuit retention times should be even
greater.

We have characterized the charge-domain properties of the
CAPFLASH cell and the results from the new device are a
much improved Q-V characteristic representing a signal-
to-error ration which makes the device usable for our
application [7].  We have also made a preliminary
characterization of  the mismatch in channel capacitance
among 1024 CAPFLASH devices in an array of 512 rows
and found the worst-case mismatch in capacitance to be
less than 2%.  This represents a precision of 51/2 bits and
is encouraging for our goal of 5-bit overall precision.  A
circuit for the computation of Manhattan Distance based
on 2 CAPFLASH and a charge integrator (fig 4) has been
tested (fig 6).  The results demonstrate the viability of
using a single floating-gate device for  both analog storage
and ultra-efficient analog computation.
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Array core test circuit

We have realized in silicon a circuit to test the core array
of our target architecture.  The circuit implemented has the
full input width of 64 input pairs (128 columns of
CAPFLASH devices), though only 16 of the inputs are
connected to pads (the rest are tied to ground), and
contains 512 computing rows which consist of the
CAPFLASH devices, charge integrator, winner-take-all,
and output path.  The circuit has been realized in an 0.7
um CMOS-flash process and overall size is 7mm x 3.5mm
(fig 7).

7mm

3.
5m

m

Output path
Winner-take-all
Charge Integrator

128 Flash

Core Computing Array 
(512 lines)

control, bias, 
buffers & I/O

Fig 7:  Photograph of 16x512 core array test chip.  Flash is < 25% of array.

As can be seen from the photograph, the flash array is very
dense: it consumes less than 25% of the core array area.
This circuit has allowed us to test the full functionality and
characterize the computing precision of our architecture.
The circuit is fully functional as an analog associative
memory and preliminary results indicate that the circuit is
able to compute the absvaldiff function with a precision of
5 digital-equivalent bits, to accumulate these absolute
difference into a Manhattan Distance measure with a
precision of more than 8 bits, and to compare and select
the smallest of these Manhattan Distances also with a
precision of more than 8 bits.  The details of how this was
measured are the subject of the following sections.

Analog probing

An analog probe was included in the to allow analog
testability.  This analog probe consists of a common probe
wire which has a CMOS switch connecting it to each
individual charge integrator output and is also output off-
chip through an analog buffer connected in follower
configuration (fig 8).  A shift register on the periphery of
the array allows a digital control pattern to be shifted into
the array.  Every row of the computing array has a row
(bit) in the shift register which controls the corresponding
probe switch.  By shifting a single “1” through the shift
register, each line of the charge integrator array can be
sequentially connected to the probe for measurement.
“Scanning” the array in this way allows the relative
outputs of the charge integrators to be read with high
precision (better than 2mV).
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Fig 8:  An analog probe was built into the array to allow charge integrator
outputs to be scanned.  A shift register provides the control to CMOS
switches.

Charge Integrator

The charge integrator we have used is a low-power version
of an offset-compensated instrumentation amplifier [6]
connected in charge-integrator configuration.  In the same
reset cycle we both compensate the amplifier offset and
reset the charge integrator.  The precision of this reset
operation is a source of additive noise in our system which
must be small to achieve high computational precision.
Using the analog probe, we have measured the output of a
single charge integrator following each of 1000 reset
cycles.  The histogram of the 1000 reset values is plotted in
figure 9.  The absolute precision of the charge integrator
reset is better than 8mV (sigma = 1.21mV).
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For our computing system, relative reset precision is in fact
more important than absolute reset precision (the winner-
take-all circuit will self-compensate for any correlated
offset common to all the charge integrators). Using the
difference between two neighboring charge integrator
outputs as our signal (measure-shift-measure-subtract),
relative reset precision has been measured at less than
2mV.  Relative reset precision among charge integrators at
larger distances from each other in the array should be
characterized as well, but these preliminary measurements
indicate that the charge integrator reset operation reaches a
relative precision within our target of 8mV.

Winner-Take-All
Winner-take-all is the operation of converting an analog-
valued vector into a binary valued vector with one “1” (or
at most a few) corresponding to the input vector element
with the largest analog value.  In our computing
architecture, the winner-take-all serves as the parallel
sense amplifier which finds the charge integrator with the
highest output value, corresponding to the row with the
smallest measured analog distance, and selects that row to
be output from the chip.  The circuit we have employed for
the winner-take-all operation is the subthreshold analog
circuit designed by Lazzaro and Mead [8].  Theory and
operation of the circuit will not be described here.  We
have used the standard configuration except that we have
employed two stages to increase gain (we want digital
outputs and a single stage cannot guarantee this), we have
used a simple parallel voltage-to-current converter at the
input to each stage, and we have used large input
transistors to improve matching and reduce offsets through
the array.

Offsets in the Vts of the winner-take-all input transistors
are another source of additive noise in our system, and
more importantly, the computing precision of the winner-
take-all circuit itself will critically limit the overall
computing precision we achieve.    We have characterized
the winner-take-all circuit in our test array and
preliminary results indicate a precision of better than 6mV
over a 3V input range.  This corresponds to a digital-
equivalent computing precision of better than 8 bits.  This
measurement has been done by using the full functionality
of the associative memory test circuit and involves several
steps.

The first step is to program the flash array such that a
given input to the array results in a desired analog vector
to be present on the charge integrator outputs.    To test
6mV precision, the analog vector chosen was a 6mV
“staircase” in which every successive row has an output
6mV higher than the previous even row (the odd rows
were unprogrammed).  10 staircase “steps” were
programmed in this way; probe measurement of the
resulting staircase is shown in figure 10.

Fig 10: Oscilloscope traces showing 6 mV staircase.  Bottom trace shows a
single-sweep scope trace of a partial charge integrator array scan.  Two
middle traces are averaged sweeps showing charge integrator outputs before
and after flash programming.  Top trace is a zoom showing staircase to have
6mV steps.

 The bottom trace is a single-sweep charge integrator scan.
To get the trace, the charge integrators are first reset, the
reference input (a 2-to-4 volt step to the programmed
column) is then given to the flash array, and finally the
scope is triggered as the analog probe is activated and
scans the charge integrator outputs.  Each square-wave-
like transition in the trace represents a shift of the
controlling shift register which connects the analog probe
to the next successive charge integrator output.  The next
trace up is actually a pair of averaged tracks showing the
same charge integrator scan before and after
programming.  The random charge integrator offsets
before programming are caused by small differences in the
virgin Vt of the unprogrammed flash column. The final
(top) trace is a zoom of the averaged scan of the staircase
showing the precision to be 6 mV.

The next step in the computing precision measurement
involves using the full functionality of the associative
memory to read a sequence of 10 winning rows to
determine if the order of winners output from the circuit
correspond correctly to programmed staircase.  Digital
control circuitry allows winning rows to be disabled so that
a sequence of successive winners can be read in order of
selection.  Full functionality means:

  1) Charge integrator reset

  2) Reference input applied to flash array (staircase now
      present on charge-integrator outputs)

  3) Winner-take-all enabled

  4) ROM address of selected winning row read from chip

  5) winning row disabled, allowing next successive winner
      ROM address to be output, etc...



Fig 11:  ROM output addresses read out following flash programming and
input that produced charge integrator output levels of fig 10.  Digital
addresses descending by twos demonstrate full functionality of circuit at
6mV (> 8 bit) precision and at 100kHz (10 us per output).

Figure 11 shows the sequence of 10 ROM addresses read
from the chip in this manner.  The first address
corresponds to the last row of the staircase (highest analog
output) and the sequence of ROM addresses which follow
counts down by twos and corresponds to descending down
the analog staircase scanned in figure 10.   This output
pattern is stable over 1000 complete cycles and provides a
preliminary indication that the winner-take-all circuit we
have implemented is capable of resolving 6mV differences
in its 512 inputs.  As the charge integrator outputs have an
output range of  3 volts,  6mV sensitivity by the winner-
take-all circuit corresponds to a computing precision of
more than 8 digital-equivalent bits.

Power, precision, and speed.

We have successfully tested the full functionality of this
chip at speeds of 100kHz, the limitation imposed by our
current test setup.  Simulation results show correct
operation at speeds in excess of 500kHz, but of course the
effect of the faster operating frequency on computational
precision must be determined.  Power consumption of the
chip is dominated by the charge integrator bias current.
Each of the 512 charge integrators draws a bias current of
6uA, giving a total current of 3mA for this test circuit.
Remaining analog components such as the winner take all
and buffer circuits draw bias currents in the 10 uA range
and do not contribute significantly to power consumption.
Digital switching power is also negligible on this scale.
The equivalent digital function performed by each row of
the circuit consists of 64 5-bit absvaldiff and 8-bit
accumulate operations.  At the measured period of 10us,
each 5-bit-absvaldiff-8-bit-accumulate operation is
performed using less than 5 pJ of energy.  Successfully
testing the chip at 500kHz will mean we have achieved

less than 1 pJ per each of these complex operations, as our
simulations demonstrate is possible.  While we have only
16 inputs actually connected to pads, we have programmed
the 16 inputs in a way which allows the integrated charge
to be roughly equivalent to what it will be when all 64
inputs are driven; we have seen that this does not change
observed precision, power consumption or speed in any
appreciable way.  The preliminary results we have
achieved with this small test circuit have been encouraging
enough that we are now developing a full-size circuit
containing a 64-input x 4k rows version of this
architecture.

Conclusions

We have developed an analog associative memory based
on the analog computation of Manhattan distance using
pairs of novel programmable nonlinear capacitor devices
for both analog storage and retention.  A small test circuit
containing 32k of these device pairs has been successfully
tested at speeds of 100kHz, at a power consumption of
15mW.  Preliminary measurements indicate that the
circuit is capable of computing Manhattan Distances to a
precision of 8 digital-equivalent bits based on 16
dimensional analog-valued vectors with an equivalent
precision of 5-bits.  This small test circuit has been
measured at a throughput of nearly 1 Giga 8-bit
accumulate-5-bit-absolute-value-of-difference operations
per second.  The full-size full-speed version of this
architecture on which we are now working should be
capable of performing 128 Giga ops of this type at an
energy of less than 1 pJ per complex operation.

References:
(1)  A. P. Chandrakasan, S. Sheng, R. W. Broderson, "Low-Power CMOS
         Digital Design," IEEE Journal of Solid State Electronics, Vol. 27, pp.
         473-484, 1992.
(2)  M. Holler, S. Tam, H. Castro, and R. Benson, "An Electrically Trainable
         Neural Network Chip (ETANN) with 1024 'Floating Gate' Synapses,"
         in Proc. IJCNN, June 1989, pp 2.191-2.196.
(3)  A. Kramer, V. Hu, C. K. Sin, B. Gupta, R. Chu, and P. K. Ko,
         "EEPROM Device as a Reconfigurable Analog Element for Neural
         Networks," IEDM Tech. Dig., pp. 10.3.1-10.3.4, Dec., 1989
(4)  A. Kramer, C. K. Sin, R. Chu, and P. K. Ko, "Compact EEPROM-based
         Weight Functions," in Neural Information Processing Systems 3, R. P.
         Lippmann, J. E. Moody, and D. S. Touretzky, Eds., San Mateo CA:
         Morgan Kaufmann Publishers, Inc., 1991, p. 1001 - 1007.
(5)  J. P. Wade and C. G. Sodini, “A Ternary Content Addressable Search
         Engine,” IEEE  Journal of Solid State Circuits, 1989, pp. 1003 - 1013.
(6)  M. Degrauwe, E. Vittoz and I. Verbaouwhede, “A Micropower CMOS-
         Instrumentation Amplifier,” IEEE Journal of Solid State Circuits,
         vol. SC-20, 1985, pp.805 - 807.
(7)  A. Kramer et. al.  “Flash-Based Programmable Nonlinear Capacitor for
         Switched-Capacitor Implementations of Neural Networks,” IEDM
         Tech. Dig., pp. 17.6.1-17.6.4, Dec., 1994.
(8)  Lazzaro, J., Ryckenbusch, S., Mahowald, M. A., and Mead, C. (1988).
        .Winner-take-all-networks of O(n) complexity.  In Tourestzky,D. (ed),
        Advances in Neural Network Information Processing Systems 1.
       San Mateo, CA: Morgan Kaufmann Publishers, pp. 703-711


	Compendium95 Home Page
	ISLPD95
	Table of Contents
	Session Index
	Author Index


