
1

Low Delay-Power Product CMOS Design
Using One-Hot Residue Coding

William A. Chren, Jr., Member IEEE
NASA Lewis Research Center
Grand Valley State University

Abstract:  CMOS implementations of arithmetic units for
One-Hot Residue encoded operands are presented.  They
are shown to reduce the delay-power product of
conventional, fully-encoded designs by more than 85%,
as exemplified by the design of a direct digital frequency
synthesizer for frequency-hopped spread spectrum
communication systems.  The reduction is  attributable to
the one-hot representation, which decreases the activity
factors of the signals and the number of circuit and
critical path transistors.

I.  Introduction

The contributions of this paper are twofold.  First,
CMOS arithmetic circuits for One-Hot Residue (OHR)
operands are presented.  OHR is an encoding technique for
Residue Number System (RNS) operands in which the
residue digits are one-hot encoded. The simplified
structure and lower activity factors of these circuits yield
superior delay-power products when compared with fully-
encoded units.  The circuits presented include an
adder/subtracter, multiplier and scaler.

Second, the delay-power benefits are
demonstrated for a direct digital frequency synthesizer
(DDFS) design which exhibits a delay-power product that
is at least 85% less than that of a recently developed, fully-
encoded design called the High-Agility Direct Synthesizer
(HADS).

This paper is organized as follows.  Section II is a
presentation of background information on the RNS, One-
Hot Residue (OHR) encoding and DDFS.  Section III
presents the OHR arithmetic circuits and the example
synthesizer design.  Section IV presents its delay-power
product estimate and compares it with that of the HADS.
Section V contains our conclusions.

II.  Background

The RNS represents an integer X as the vector of
its residues modulo a fixed, specially chosen set of integers

called moduli.  Letting mi denote the ith modulus, this is

depicted as X x x xn⇔ ( , ,..., )1 2 , where x X Xi mi
= =∆

modulo mi.  The operations of addition, subtraction and
multiplication are performed in "digit-parallel" fashion,
modulo mi.  If operands X and Y have residue
representations ( , ,..., )x x xn1 2  and ( , , ... , )y y yn1 2 , and

Z X Y= ∗∆  where ∗  represents any of the operations, then

we have Z x y x y x y
m m n n mn

⇔ ∗ ∗ ∗( , , ... , )1 1 2 2
1 2

.

Because these operations are done in parallel, modulo
small integers mi, they can be performed quickly.  The
division operation, however, is relatively slow [1].

A useful property of prime moduli is that they
possess at least one primitive root.  A primitive root is an
integer α whose successive powers equal the nonzero
integers modulo mi.  This allows the use of logarithm-like
operations for multiplication.  If modulus mi has primitive
root α, then for any 1 1≤ ≤ −x m i ,

x ulo m for some k mk
i i= ≤ ≤ −α mod 0 2 .  It is then

said that x has index k.  Multiplication can be performed
by addition modulo mi -1 of  indices.  Section III shows a
simple way of finding the index of a residue digit in the
OHR representation.

A residue operation called Scaling is useful for
frequency synthesis and is the equivalent of "right-
shifting" (truncation) in the binary number system.
Scaling by modulus mi consists of a subtraction of xi and
multiplication by mi

−1 in each modulus except the ith, that

is X

m
m x x m x x m x x

i
i i m i i m i n i mn







 ⇔ − − −− − −( ( ) , ( ) ,..., ( ) )1

1
1

2
1

1 2

.

Scaling by a product of moduli is done by successive
application of the above formula.  The result is encoded
only in those moduli not used for scaling.  An operation
called Base Extension [2] is used to restore the lost digits.
It consists of successive scalings by each of the remaining
moduli (with the lost digits initialized to zero), followed by
a final multiplication by the additive inverse of the product
of these moduli.  Base Extension is not needed for
frequency synthesis, and will not be discussed further.
Note that the Scaling operation requires some method of
converting a residue digit from one modulus to another.  It
will be seen in Section III that the OHR encoding provides
a simple and fast way of doing this conversion.



2

The OHR representation is the representation of
RNS operands using one-hot encoding.  It allows
implementation of arithmetic circuits with lower delay-
power product than conventional RNS designs employing
positional binary codes.  These benefits result because all
major operations (addition, subtraction, multiplication,
modulus conversion, scaling and index computation) are
performed using transposition of lines and barrel shifters.
Fewer transistors are used than in gate-intensive
architectures, leading to lower power and shorter critical
path length.  Furthermore, OHR circuits have a lower (and
constant) activity factor, and possess a critical path delay
which does not depend on the size of the operands.

The OHR representation for the ith residue digit
x i  is depicted in Figure 1.  Only the single line

corresponding to the digit value is asserted at any time.

Line
Number

0
1

mi-2
mi-1

(Digit

Value)

Only one line
active

at any time

Figure 1:  One-Hot Residue Representation for Digit xi

Direct Digital Frequency Synthesis

Direct Digital Frequency Synthesis (DDFS) is a
method of sinusoidal signal generation that yields
frequencies of high-precision and resolution with
frequency switching that is fast and phase continuous.
Most DDFS systems use the Sine Table Lookup Method
[3], wherein the output is generated by periodically
accessing a ROM in which are stored samples of a single
period of a sine wave.  The samples are converted to
analog by a digital-to-analog converter (DAC).  The ROM
addresses are computed using a Phase Accumulator, which
generates successive multiples of an externally-supplied
frequency setting word denoted by k.

The architecture of an RNS-based pipelined
synthesizer called HADS (High-Agility Direct
Synthesizer) [4] is shown in Figure 2.  It will be the
benchmark for comparison with the OHR design.  The
residue-encoded setting word, k, is the step size through
the Sample ROM and thus establishes the output
frequency.  Small (large) k values produce low (high)
output frequencies.  The Phase Accumulator forms the
multiples of k (modulo the product of the moduli) by
successive addition.  Typical widths of accumulator output
are at least 32 bits and therefore must be truncated.
Truncation is performed by the Scaler, which computes the
Scaling operation on the accumulator output.  The AI units
and the SI ("sign invert") input of the DAC allow
exploitation of the sine quarter-wave symmetry to reduce
Sample ROM size.  The AI units compute the additive

inverse of their inputs when the next-msb is asserted.  The
SI input of the DAC performs a sign inversion of the DAC
output when it is asserted.

m

m

2

n

k

k m

k m

2

n

Phase

Frequency

Setting

(Residue)
Word

Accumulator

+

+

+

m m

Output

System
Clock

DAC

S
c
a
l
e
r

Address
Invert

ROM

AI

AI

msb
next-msb

11

SineSISample

Figure 2:  High-Agility Direct Synthesizer (HADS)

III:  Arithmetic Circuits for the One-Hot Residue
Encoding

The OHR arithmetic circuits are barrel shifter-
based because for many moduli the basic operations of
addition, subtraction and multiplication in the OHR
representation can be performed by cyclic rotations.  A low
delay-power product results from the circuits economy of
transistors and low activity factors.

OHR Arithmetic Circuits

For one-hot encoded operands, modulo mi

addition is a cyclic permutation and can be implemented
using a barrel shifter.  The barrel shifter can be built using
pass transistors or transmission gates.  Figure 3a shows the
adder symbol and 3b shows the internal architecture.  For
ease of routability pass transistors are preferred over
transmission gates [6].

Subtraction is implemented by transposing the
subtrahend wires to generate its additive inverse modulo
mi.  A dedicated subtracter would hardwire the
transposition on the subtrahend input of the barrel shifter.

-2
i

-3m

1 20 -1

i
m

i

(b )

0

1

2

m
i

-1

m -1 0

m
i

1 2 3 0

2 3 4 1

3 4 5 2

M odu lo  m

Sh if t Inpu t
m i lines

O utpu t
m i l ines

(a)

i
A dder

D ata Inpu t
m i l ines



3

Figure 3:  OHR Adder:  (a)  Symbol  (b)  Architecture
A combined adder /subtracter unit would employ a
multiplexer to selectively apply the inverse.  The
architecture of such a unit will be obvious after the
discussion of multiplication.
 Multiplication by a constant modulo mi can also
be done by wire transposition.  For non-constant
multiplication the architecture is dependent on the
modulus.  Multipliers for moduli of the form

2 4 2, , ,p pe e (p an odd prime) possess primitive roots [7]
and admit the simple and regular multiplier structure
shown in Figure 4.  It

•••

m
i

-1 mi
-2 1

Wire Transposition

mi-1

1
0

Wire
Trans-

0

11 2 m 0

Wire Transposition

Barrel Shifter
Modulo mi -1 position

Figure 4:  Internal architecture of modulo mi multiplier

consists of wire transpositions on all ports with a barrel
shifter core.  The transpositions perform index conversion.
The barrel shifter computes the index sum modulo mi-1.

Multipliers for moduli other than these are
implemented as crossbar switches.  The lack of
transpositions enhances their speed but makes them more
difficult to route.  Their structure is identical to Figure 4
except for the lack of port transpositions and the
substitution of a crossbar switch for the barrel shifter.

Modulus conversion of an operand from mi to mj

can be performed simply and easily.  If mi < mj the
operation is trivial, consisting of "wire padding" with extra
lines.  Otherwise, a wire corresponding to a value α ≥ m j

is applied to the gate of a pass transistor whose source is
tied high, as shown for the zero inputs in Figure 4.  The
drain is tied to the output line corresponding to the value
α mod mj .

Scaling consists of a subtraction by a modulus-
converted operand, followed by a constant
postmultiplication (see Section II).  This can be
implemented by a barrel shifter with modulus conversion
on the subtrahend and a wire transposition on the output.

OHR-based Frequency Synthesizer

The OHR synthesizer is the HADS shown in
Figure 2 with the Phase Accumulator (PA), Scaler,
Address Invert (AI) Units and Sample ROM modified for

the OHR encoding.  See Figure 5.  It includes an Encoder
unit

m

m

2

n

k

k m

k m

2

n

Phase

Frequency

Setting

(Residue)
Word

Accumulator

+

+

+

m m

Output

System
Clock

DAC

S
c
a
l
e
r

Address
Invert

ROM

AI

AI

msb

next-msb

11

SineSISample

Encoder

Figure 5:  OHR Synthesizer

which generates the msb and next-msb for the XOR from
the even modulus of the Scaler output.

A modulo mi adder in the PA is shown in Figure
6a, and consists of a single edge-triggered register with
OHR adder feedback.  Each register element is
implemented with two level-sensitive latches [8], each
consisting of a two-input inverting mux with an output
inverter (see Figure 6b).

The Scaler performs truncation using a memory-
oriented approach as shown in Figure 7a.  It is
implemented with one ROM per PA modulus and a binary
tree of OHR adders, each r moduli wide.  ROMi converts
the output of the ith PA adder to its truncated value in r-
digit OHR code.  The adders accumulate these results to
yield a phase value with reduced resolution which is input
to the AI Units.  The value of r is 2 in Figures 2 and 5.
This value is advantageous, as will be seen below in the
Sample ROM discussion.  ROMi and the adder outputs are
pipelined with the register element shown in Figure 6b.

Figure 7b shows the ROMi word architecture [8].

mi m i

mi

R
e
g

i
s
t
e
r

OHR
Adder

Modulo
m i

Output

System
Clockk mi

(a)
mi

1

0

System

S

0

1

S

D

Q
Mux

Mux

Clock System
Clock

(b)

Q

Figure 6:  (a)  PA adder  (b) register element



4

Pull-down transistors are located only at the 0-bit
positions.  The bit lines are precharged during high system
clock.  During low clock the word line and bit lines are
asserted.  Output data is active low and is converted to
active high by using the inverted output of the register
element in Figure 6b.  Note that each word line drives only
two transistor gates (due to the OHR encoding).

r

r

r
rROM

rROM

r
r

ROM

ROM

PA
Outputs

From

System
Clock

To AI
Units

Bit LinesSystem

PA
Output
Line j

(to output register)Clock

(a) (b)

(Modulo m  )i

Word Line

Figure 7:  (a)  Scaler and  (b)  ROMi Word Architectures

An AI Unit selectively computes the additive
inverse based on the value of the next-msb (generated by
the Encoder unit).  It is implemented as shown in Figure 8,
using a 2-to-1 MUX and wire transposition.  In the figure,
mj is one of the r=2 Scaler output moduli.

The Sample ROM uses the Figure 7b word
architecture in standard fashion, as shown in Figure 9.
The figure depicts a m1m2 X 1 bit plane.  A number p of
these share the word and bit addressing circuitry and are
connected in parallel to form the m1m2 X p Sample ROM,
where p is the DAC width.  Moduli m1 and m2 comprise
the word and bit select lines, respectively.  Corresponding
bit lines from each word are tied together and provide the
data input for the Sense Amplifier/Output Buffers
(SA/OBs).  Bit selection is accomplished by using the bit
select lines to control the output enables of the SA/OBs,
whose outputs are tied to the output bus.  The SA/OBs are
high gain, single-ended inverters with transmission gate
output control.

0

1 S

MuxWireTransposition

mj

mj

mj

Next-msb from Encoder unit

From

Scaler

To

ROM
Sample

mj

R
e
g

i
s
t
e
r

System
Clock

Figure 8:  AI Unit Architecture

The Encoder unit is implemented with NOR
combinational logic in the straightforward manner.  The
DAC is a standard high speed twos-complement type.  The
SI (sign invert) input performs the output sign

x0
SA/ SA/ SA/

To DAC
Output Bus

Cell
1,1

Word

Bit

m1

m2

x0

x1

xm  -12

ym  -11

y0
y1

y0

ym  -11

x1 xm  -12
Lines

Lines

System
Clock

System
Clock

System
Clock

Word Architecture (Figure 7b)

Word Architecture (Figure 7b)

Select

Select

Bit lines

OB OB OB

Figure 9:  Sample ROM Architecture

complementation after the conversion to analog, where it
can be done more quickly.

IV.  OHR Synthesizer Delay-power Estimate

This section contains a derivation of a delay-
power estimate for both the OHR synthesizer and the
HADS.  Delay is estimated by the number of critical path
transistors.  Power is estimated by the number of
transistors needed for implementation of each subsystem,
multiplied by an “activity” factor.  This factor expresses
the average fraction of transistors that switch per clock
transition [9].  DAC delays and powers will not be
estimated because of their difficulty and because they are
the same for both designs.

HADS Delay Estimate

The critical path length of the HADS measured in
number of transistors is given by the sum of the middle
column of entries in Table 1[4], [5].  We have used the fact
that a two-input NOR has two transistors of delay [8], and
(as will be shown for the OHR synthesizer) the critical
path length for the Scaler ROMs is 3 transistors.

HADS Power Estimate

The power can be estimated by adding the
number of transistors in the PA, Scaler, AI Units and
ROM, and scaling by the activity factor fH . These

estimates are given in the top half of Table 2.  We have
assumed that on average half of all transistors switch on
any clock transition, so that fH =.5 .  The XOR gate is

negligible.  We will assume that r=2, that the Scaler
moduli are equal (with value mout) and that one of these
output moduli is a power of two.  The number of pipeline
registers will be estimated using a “pipeline intensity”
factor d with units of stages/bit of ripple carry addition [5].



5

We have assumed that the PA employs Shanbhag
adders [10].  The Scaler consists of n ROMs of size mi X
w, where w mout= 2 2log  and mout is the size of the two

output moduli.  The AI Units

 

consist of constant-operand
subtracters controllable by the next-msb of Scaler output.
The Sample ROM is of size mout

2 X p, where p is the
resolution of the DAC.

OHR Synthesizer Delay Estimate

The critical path delay DOHR  of the OHR

Synthesizer can be found by adding the delays of the PA,
Scaler, Encoder, AI Units and Sample ROM.  The results
are presented in the last column of Table 1.  The PA delay
consists of 1 transistor for the barrel shifter and 4 for the
pipeline register element.  The Scaler path is equal to 3
(two for the word line NOR gate and one for the bit pull
down) transistors for the ROM, 4 for the register element
at the ROM output (2 each for master and slave), and 5 for
each adder in the tree depth (1 for the barrel shifter and 4
for the output register element).

The Encoder requires three mout

4 -input and two

two-input NORs. We have used two-input NORs to
implement the multi-input gates and a register element.
The AI Units have one transistor of delay through the mux
transmission gate and four through the pipeline register
element (see Figure 8).  The Sample ROM path equals 3
for the word architecture blocks (Figure 9), 3 for the
SA/OB and 4 for the pipeline register element.

OHR Synthesizer Power Estimate

The power consumption of each subsystem is
found in the same way as for the HADS, and the results
are presented in the bottom half of Table 2.  As before, we
will assume that r=2, one modulus is a power of two and
they are approximately equal with value mout.

The PA is implemented with modulo mi adders
and register elements (see Figure 6). fOi

and fOout
denote

the utilization factors of the ith input and output moduli
circuitry.  ROMi in the Scaler can be shown to have power
( )6f 38O i O outi out

m f m+ , and the total adder power can be

shown to be ( )( )n m m fout out Oout
− +1 2 362 , where the

number of adders is n-1.  Each SA/OB in the Sample
ROM requires four transistors, p is the output width in bits
(each of which is registered), and the utilization factor of
the output bits is .5.  The Encoder power was estimated
assuming as before that the multi-input NORs are
implemented in binary-tree fashion with two-input gates of
four transistors each.  The sum accounts for the register
transistors, (18 per registered bit).  There are

 log2 2mout − levels of pipeline registers with

mout
i2 2+







registers at the ith level,  1 22≤ ≤ −i moutlog .

Tables 1 and 2 compare the critical path delays

Table 1:  Critical Path Delay (transistors)
Subsystem HADS OHR

Phase
Accumulator

 14 8 2+ log maxm 5

Scaler  3 14 8 2+ +( ) loglog2m nout  7 5 2+ log n

AI Units 7 + 4log2mout 5

Sample
ROM

 
 

 

2 1

2

2

2 2

2 2

2

log ( log )

log log

log

+

+

+

m

m

m

out

out

out

10

Encoder
2

4
62log

mout




+

and powers of the HADS and OHR architectures.  The
percent reduction of the product of the critical path delay
and power estimates (henceforth known as the “delay-
power product”) for the OHR synthesizer below that of the
HADS, for the three modulus sets
M1=[128,127,113,109,107,103,101,97,89,83], M2=[32,31,
29,27,25,23,19,17,13,11] and M3=[29,23,19,17,13,11,7,5,
3,2] is plotted in Figure 10.   We have used fH =.5 ,

fO mi i
= 2  and fO mout out

= 2 because half (two) of the bits

change, on average, every clock cycle for binary-encoded
(OHR-encoded) operands.  Other parameters used in the
figure are d=.5 and p=12, which correspond to 2 bits per
pipeline stage and 12 bits of amplitude resolution on the
output.  It can be seen from the figure that the OHR
synthesizer has a delay-power product which is reduced by
at least 85% below that of the HADS.  Furthermore, the
reduction is inversely related to the size of mout.  Other
data (not shown) indicate that the percent reduction in
delay is independent of modulus size, and furthermore,
changes in d, p and n have very little effect on the path-
power product.

V.  Conclusion

The One-Hot Residue (OHR) number system
encodes the residue digits in one-hot form.  It exhibits a
significantly reduced delay-power product below that of
fully-encoded residue systems.  The arithmetic units for
the number system are fast and simple and possess
exceptional routing regularity.  Use of the circuits is
exemplified in the design of a direct digital frequency
synthesizer for frequency-hopped spread spectrum



6

communication systems.  The delay-power product for this
system is reduced by at least 85% below that of a recently
proposed conventional residue-based design.

Table 2:  Power Estimates (transistors)
Subsystem HADS

Phase
Accumulator    nf d mi mi

i

n

H ( log log )10 2
2

54 2
1

+
=
∑

Scaler
f mi mi

i

n
mi mout

mout m m m

H

i i i

[

]

(log ) log

log ( log )

4 2
1

1 2 2

8 2 12

=
− +

+ + −

∑

AI Units
   

 
 

P fH mout dfH mout

fH mout

dfH mout

AI = +

+ −

+ −

52 2 20 2
2

52 2 2

20 2 2 2

log log

( log )

( log )

Sample
ROM

4 2 1 2

4 2 1

f mout mout pf mout
pf mout mout mout

H H

H

(log )

( log )

− +

+ + −

Encoder 0

Subsystem OHR

Phase
Accumulator

f m mO i
i

n

ii
( )2

1

18
=

∑ +

Scaler

( )

( )( )

6f 38

1 2 36

1

2

O i O out
i

n

O out out

i out

out

m f m

f n m m

+

+ − +
=

∑

AI Units 44f mO outout

Sample
ROM

p f m mO out outout
( . )9 5 92+ +

Encoder
 

f m
m

O out
out

i
i

m

out

out

( )
log

3 4 18
2 2

1

22

− + 



+

=

−

∑

Figure 10:  OHR Delay-Power Product Reduction

Acknowledgment

The author is grateful to Mr. William Ivancic of the NASA
Lewis Research Center, Space Communications
/Electronics Division for supporting this research.

References

[1]  Chren, W.A. Jr., A New Residue Number System
Division Algorithm, Computers and Mathematics With
Applications, vol. 19, no. 7, pp. 13-29.
[2]. N.S. Szabo, R.I. Tanaka, Residue Arithmetic and Its
Applications to Computer Technology, NY: McGraw-Hill,
1967, pp. 147-151.
[3]  J. Tierney, C.M. Rader, B. Gold, "A Digital Frequency
Synthesizer", IEEE Transactions on Audio and
Electroacoustics, AU-19, no. 1, pp. 48-56, March, 1971.
[4]  W. A. Chren, Jr., "Area and Latency Improvements
for Direct Digital Synthesis Using the Residue Number
System", Proceedings of the 37th Midwest Symposium on
Circuits and Systems, Lafayette, LA, 1994
[5]  W. A. Chren, Jr., "RNS-Based Enhancements for
Direct Digital Frequency Synthesis", IEEE Transactions
on Circuits and Systems II:  Analog and Digital Signal
Processing,  in press.
[6]  Wolf, W., Modern VLSI Design:  A Systems Approach,
Englewood Cliffs, NJ:  PTR Prentice Hall, 1994, p. 222-
223.
[7]  Niven, I., Zuckerman, H.S., An Introduction to the
Theory of Numbers, New York:  Wiley, 3rd Ed., 1972.
[8].  Weste, N.H.E., Eshraghian, K., Principles of CMOS
VLSI Design, A Systems Perspective, Reading, MA:
Addison Wesley, 2nd Ed., 1993.
[9]  Bakoglu, H.B., Circuits, Interconnections and
Packaging for VLSI, Addison-Wesley, 1990, p. 440.
[10]  N.R. Shanbhag, R.E. Siferd, "A Single-Chip
Pipelined 2-D FIR Filter Using Residue Arithmetic", IEEE
Journal of Solid-State Circuits, Vol. 26, No. 5, pp. 796-
805, May, 1991.

Reduction
in

Delay-
Power

Product M1
M2
M3

Output Modulus mout

20 30 40 50 60 70 80 90 100 110 120130
85

90

95

100


	Compendium95 Home Page
	ISLPD95
	Table of Contents
	Session Index
	Author Index


