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Abstract - The problem of estimating the energy
consumption at register transfer level is addressed from an
information theoretical point of view. It is shown that the
average switching activity can be predicted without
simulation using either entropy or informational energy
averages. Consequently, two new measures relying on these
concepts are developed. The accuracy of these models is
investigated using common benchmarks and the results are
promising.

I. INTRODUCTION

Modern design tools have changed the entire design
process of digital systems. As a result, most of the
systems are conceived and designed today at the
behavioral/logic level, with little or no knowledge of the
final gate level implementation and the layout style. In
particular, designers are becoming more and more
interested in register-transfer level (RTL) modules
(adders, multipliers, registers, multiplexers) and
strategies to put them together in order to build complex
digital systems.

Energy minimization in digital systems is not an
exception to this trend. Having as soon as possible in the
design cycle an estimate for power consumption, may
save significant redesign efforts or even completely
change the entire design architecture. Circuit and gate
level power estimation techniques have been extensively
explored [1]-[5]. Higher levels of abstraction have been
also considered [6]-[8], but here many problems are still
pending a satisfactory solution; the main difficulties arise
from the lack of precise information and the conceptual
complexity which characterizes these levels.

The problem of power estimation at the RT-level is
different from that at the logic level: whilst at gate level it
is desirable to determine the switching activity at each
node in the circuit, for RT-level designs an average
estimate per module is satisfactory. In other words, some
accuracy may be sacrificed in order to obtain efficiency
for power estimation.

In this paper, we address the problem of power
estimation at RT-level from an information theoretical
point of view [9]. Traditionally, entropy was considered a
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useful measure for solving problems of area estimation
[10]-[12], timing analysis [12] or even testing [13],[14].
Assuming that the internal energy consumption of
modules is the dominant contributor to the energy
consumption at RT-level, we propose two new measures
based onentropyand informational energy for estimating
the energy consumption of each module. With some
further simplifications, simple closed form expressions
are derived and their value in practical applications is
explored. A distinctive feature of the present approach is
that it does not require logic simulation and is basedonly
on the characteristics of the input sequence and some
knowledge about the composition of the circuit.

The paper is organized as follows. Sections 2 and 3
introduce the main concepts and the motivation behind
our model. In Section 4 we present some practical
considerations and finally, in Section 5, we give the
results obtained by analyzing a common data-path. We
conclude by summarizing our main ideas and indicating
possible extensions of the present work.

II . AN ENTROPYBASEDAPPROACH

A. The Concept and Its Use

Let A1,A2,...,An be a complete set of events which may
occur with the probabilities p1,p2,...,pn    that is:

Let's consider an experiment where the outcome is
unknown in the beginning; such an experiment exposes a
probability finite field An, completely characterized by
the discrete probability distribution p1,p2,...,pn. In order
to quantify the content of information revealed by the
outcome of such an experiment, Shannon introduced the
concept of entropy [15].
Definition 1: The entropy of the finite fieldAn (denoted
by H(An)), is given by:

                   (1)

where log stands for log2. The entropy is nonnegative:
H(p1,p2,...,pn) ≥ 0 and if some pi = 1 and pk = 0 (k ≠ i, k
= 1,2,...,n), then  H(p1,p2,...,pn) = 0.

The entropy in (1) is a measure of theuncertainty
contained inAn in the sense that the larger the entropy,
the less certain the outcome of a random experiment in
An. Entropy is also a measure of theinformation
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contained in each event Ai; this information is given by
I(A i) = -log (pi). Therefore the entropy is the weighted
average information of all the events in the finite fieldAn.
Note: Information and uncertainty have the same
quantitative measure (entropy), but different meanings.
As information increases, the uncertainty decreases and
vice versa. Indeed the uncertainty is equal to the amount
of information which is needed to make the outcome of
an experiment known.

Entropy satisfies the following basic properties [15].

Property 1: Entropy is maximized when all events are
equiprobable, that is:

                                     (2)

Property 2: If An andBm are any two independent finite
fields,An × Bm a new finite field withnm events, then

                                       (3)
Shannon's entropy is equally applicable to partitioned

sets of events. More precisely, given a partitioning∏ =
{A 1,A2,...,An} on the set of eventsΩ, the entropy of this
partitioning is:

                                        (4)

where p(Ai) is the probability of class Ai in partition ∏.

Example 1: Truth table for a randomly excited 1-bit full
adder is given bellow:

where xi, yi are the inputs, ci is carry-in, si is the sum bit
and ci+1 is carry-out. The output space is partitioned in
four classes as∏ = {A1,A2,A3,A4} = {10, 01, 11, 00},
where p(A1) = p(A2) = 3/8, p(A3) = p(A4) =1/8; applying
(4) we obtain H(∏) = 1.8113. We observe that within a
class there is no activity on the outputs; this means that
output transitions may occur only when one has to cross
class boundaries in different time steps. If the output
sequence is a purely random one, then exactly H bits will
suffice to represent the output sequence; therefore the
average number of transitions per word (or average
switching activity per word) would be H/2. In any other
nonrandom arrangement, for a minimum length encoding
scheme, the average number of transitions per word
would be≤ H/2, so in practice, this value can serve as a
conservative upper bound on the number of transitions
per word. In our example, we find an average switching
value approximately equal to 0.905 which matches fairly
well the exact value 1 deduced from the above table. Such
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a measure was suggested initially by Hellerman to
quantify thecomputational work of simple processes [10];
it was subsequently explored using symbolic conditional
expressions for the output probabilities [16].

As we have seen, an appropriate measure for the
average switching activity of each net in the circuit is its
entropy value. For any setξ of nets from the circuit, we
have

                                                                (5)

where H is the entropy of the setξ and SW represents the
average number of transitions of this set (in what follows,
upper case letters refer to total values and lower case
letters to individual values). Therefore consideringξ as
the set of nets in the circuit, we may say that the total
number of transitions per step in the entire circuit is upper
bounded by half of the total entropy of the system. It is
unfortunately expensive to compute H(ξ) since the
complete set of events characterizing the circuit is
exponential in the number of nodes in the circuit.
Alternatively, we can use an approximation considering
some distance k (given in the number of gates on any
path τ) beyond which any two signals may be assumed
independent. Partitioning the entire set of nets into groups
of independent signals, one can express the entropy of the
entire circuit as the sum of the partial entropies. In real
cases (where the signals may be highly correlated due to
reconvergent fanout), this value will be a conservative
upper bound on the actual value of entropy.

B. A Quantitative Evaluation

Consider now some combinational block realized on n
levels as a leaf-DAG1 of 2-input NAND gates (a similar
analysis can be carried out for 2-input NOR gates and the
final result is the same). We assume that inverters may
appear only at primary inputs/outputs of the circuit; we do
not include these inverters in the level assignment step.
One can express the signal probability of any net at level
j+1 as a function of the signal probability at the level j by:

                                (6)
Similarly, the signal probability of any net at level j+2

is given by:

                     (7)
The average entropy per net at level j is given by:

                            (8)
Using the corresponding average entropy per net at level
j+2, the parametrized relationship between hj and hj+2 can

be approximated by  and hence we get

expressions for entropy per bit at even/odd levels of the

circuit:  and , where h0, h1 are

entropies per bit at the primary inputs and first level,
respectively. To get a closed form expression, we may
further assume that h1 may be estimated in terms of h0 as

1In a leaf-DAG, only the leaf nodes have multiple fanouts.
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 (in fact, the exact decrease is 0.811, but for

uniformity, we chose this way). Thus, for a 2-input
NAND gate leaf-DAG, the entropy per bit at level j may
be approximated as:

                                                                          (10)

This may be further generalized for the case of f-input
NAND gate leaf-DAGs, observing that increasing the
fanin from 2 to f, produces an decrease in the number of
levels by logf. Hence, for a fanin of f, (10) becomes:

                                                   (11)

We call information scaling factor;it characterizes

each logic component (gate, module or circuit). We will
see how this relation is affected by the circuit structure
and functionality in general. In any case, this provides a
starting point for estimating the total entropy at each level
in the circuit. In general, the total entropy over all levels
in the circuit would thus be:

                                                              (12)

where Hj is the total entropy at level j.

III. A N INFORMATIONAL ENERGYBASEDAPPROACH

A. The Concept and Its Use

Definition 2: The global information of the finite fieldAn
(denoted by E(An)) may be expressed by itsinformational

energy as follows2:

                                                             (14)

For instance, using the truth table in Example 1 we
find Einput = 0.125 and Eoutput = 0.875.

Due to its simplicity, the informational energy was
used mainly in statistics (not necessarily in conjunction
with Shannon’s entropy) as a characteristic of a
distribution (discrete as is the case here, or continuous in
general). However, without a precise theory, its use was
rare until Onicescu proved its usefulness [17]. We give in
the following few basic properties satisfied by the
informational energy [18].

Property 3: The informational energy becomes 1/n when
all events are equiprobable and 1 when one of the events
in An is certain:

                                                                 (15)

Property 4: If the uniformity (or the uncertainty) of the
system increases, then its informational energy decreases.
Property 5: If An and Bm are two independent finite

2This was firstly used in statistics by C.Gini  in 1917.
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fields, then E(An × Bm) = E(An) E(Bm).
Based on this measure, one can find a relationship

between the switching activity and informational energy.
Let e(x) denote the informational energy of a single bit x.
For this bit, under temporal independence assumption, we
have anexact relation:

                        (16)
Since the average switching activity over all nodes in

the circuit corresponds to the arithmetic mean rather than
geometric mean, we will use for the average
informational energy for a setξ the following:

                                                                      (17)

where Etotal represents theadditive informational energy
of the entire circuit (even if it is multiplicative by its
nature).

However, direct computation of Etotal is very costly;
considering once again the partitioning strategy as in the
entropy case and inductively applying Property 5, we may
end up with a practical approach as will be shown
subsequently.

B. A Quantitative Evaluation

We consider the same assumptions as in Section 2.2.
Using relation (6), the informational energy per net at
level j may be expressed as:

                                                         (18)
Applying (6) for level j+2 and substituting in (18), we

get the following parameterized dependency between the
informational energies at levels j + 2 and j:

                                                         (19)
Using a similar approach as in the case of entropy, we

get the following expression for the average informational
energy per bit at level j in a circuit with fanin f:

                                                                (20)

From here, an estimate can be drawn for the total
energy at level j, and thus for the total energy over all the
levels of the circuit:

                                                               (21)

IV. PRACTICAL CONSIDERATIONS

In practice, tree and leaf-DAG structures are too
restrictive to be considered alone: random logic circuits
exhibit a large fanout not only at the primary inputs, but
also at internal nodes. This is one reason to reconsider the
above relations to make them applicable in practice. In
addition, logic circuits contain a mixture of gates: while
NAND (AND), NOR (OR) areentropy decreasing, XORs
and inverters areentropy preserving gates. More
precisely, the output entropy of XORs is 1 when they are
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randomly excited and therefore their information scaling
factor is 1. Their behavior is still described by (11) for
f=1 (similar considerations apply to informational
energy). In general, any generic ‘‘gate’’ having almost
equal-sized ON and OFF sets, exposes the same almost
entropy preserving characteristic. In short, we may say
that structural and functional aspects are important. At
RT-level both of them have to be abstracted and used in
an implicit manner to compensate the lack of explicit
information which characterize high-level representations.

To illustrate these issues, we considered a subset of
ISCAS’85 circuits and some common data-path circuits
mapped withlib2.genlib library (Table 1) and look-up
tables (LUTs) with 3 inputs (Table 2); our objective was
to asses the structure/function influences over constrained
or unconstrained mappings. In these tables, ‘‘Nodes’’
represents the total number of nodes in the circuit
(including inputs), ‘‘Levels’’ stands for number of levels
in the circuit, ‘‘p’’ is the fraction of conservative gates
and havg, eavg, swavg are the simulated values for average
entropy, informational energy and switching activity,
respectively.

As we can see, the actual structure of the circuits
changes the average entropy/informational energy per bit
and ultimately, the average switching activity per bit. In
addition, there seems to exist a ‘‘natural’’ tendency for
different functions to be mapped with a larger or smaller
number of entropy/informational energy  preserving gates.

How can we model a general circuit for entropy/
energy based evaluations ? One can consider relations
(11) and (20), but there the information scaling factor
should reflect not only the average fanin in the circuit, but
also the fraction of preserving gates. The corresponding
effective value feff will be smaller than the average fanin f
due to actual gate composition of the circuit. Let us
consider for instance, circuit C17 given below:

Table 1: Mapped Using lib2.genlib

Circuit Nodes Levels p havg eavg swavg

C432 234 31 0.35 0.7391 0.6558 0.4565

C880 419 45 0.32 0.7861 0.6092 0.4531

add4 29 10 0.40 0.8508 0.5785 0.4187

mul2 40 12 0.62 0.4870 0.7588 0.2253

Table 2: Mapped Using 3-input LUT

Circuit Nodes Levels p havg eavg swavg

C432 158 21 0.15 0.7643 0.6399 0.4523

C880 252 19 0.25 0.8273 0.6032 0.4617

add4 17 5 1 0.9689 0.5193 0.4936

mul2 51 7 0.7 0.5309 0.7290 0.4764
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To levelize it properly, we added three ‘‘dummy’’
components x,y,z. Logically, x, y, z function as buffers
but informationally, they are entropy preserving elements.
Considering the nodes uniformly distributed throughout
the circuit, the average number of nets per level is
(6+5+4+2)/4=4.25. Applying random vectors at the
circuit inputs, the entropy per bit at the output becomes
hout = 0.44. The effective scaling factor can be calculated
as a weighted sum over all the gates in the circuit; thus

the corresponding feff is:  (there

are 3 entropy preserving and 6 entropy decreasing gates).
From (11) we get an estimate for the output bit entropy
(j=3) as hout = 0.51 which is reasonably close to the exact
value.

In what follows, we consider the following
simplifying assumptions:
A1. Uniform distribution : Nodes are uniformly
distributed over the levels of the circuit.
A2. Uniform decrease: The entropy and informational
energy per bit at level j are estimated in terms of feff as:

 and , j= 0, 1,..., N.

Under these assumptions, we may state the following:
Proposition 1. The average entropy/energy per bit in an N-
level circuit, may be estimated as:

           (22)

where hin/ein, hout/eout are the average input and output
entropies/energies per bit.

This gives us an estimate of the average entropy/
energy in a circuit with N levels. The factor feff is
‘‘hidden’’ in the relationship between N, hin(ein) and
hout(eout) since the outputs are considered to be on level N:

                                  (23)

The greater the number of levels is, the smaller the
value for feff will be, which somehow suggests that the loss
of information per bit from one level to another decreases
with the number of levels. However, the usefulness of
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these formulas is limited, since in general at RT-level we
know very little about the internal structure of the circuit.
To compensate this lack of information, we add a new
assumption valid for circuits with high logical depth:
A3. Asymptotic values: For sufficiently large N, the
average entropy and informational energy per bit in the
circuit are given by:

            (24)

Note: In the above assumption, trivial cases such as zero
input or output entropy and one input or output energy are
excluded.

The main difficulty in practice is to estimate the actual
output entropy Hout (which is approximately m times
greater than hout, where m is the number of outputs), since
the information usually available at this level of
abstraction is not detailed at all. Some considerations
about the estimation of Hout can be made:
Case 1.Common data-path operators may allow a quick
estimation of Hout based on the ‘‘composition technique’’
introduced in [14]. There, the Information Transmission
Coefficient (ITC) is defined as the fraction of information
that is transmitted through a function; it may be computed
by taking the ratio of the entropy on the outputs of a
function and the entropy on the inputs of that function.
We give below the ITC values for 8-bit common data-
path operators taken from [14].

Using the following relationship between the ITC on
the output signals and the ITCs on the input signals for a
particular component, we may estimate the ITCs values
throughout the circuit [14]:

where ITCcomp is the ITC for the component of interest,
ITCi is the ITC value for input i, n is the number of input
signal paths for the component, wi is the data-path width

for input i, and . In particular, the output

entropy Hout may be estimated relying solely on the RT-
level description of the circuit.
Case 2.Control circuits need a more elaborate treatment:

a) Control part with unknown internal structure can be
mapped using k-input LUTs. From theseabstract
mappings, we may estimate a set of values for feff and N.
After that, the average switching activity is deduced as
the mean over the estimated values obtained in all these
mappings.

b) Alternatively, when the structural information is
available, one can estimate the output signal probability

Operator ITC Operator ITC

Addition 0.500 Negation 1.000

Subtraction 0.500 And,  Or 0.406

Multiplication 0.461 <, > 0.063

Divide by 2 0.875 Multiplexer 0.471
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with an incremental approach as in [5]. These values can
be just plugged into (23) to obtain an estimate for average
output entropy/informational energy.
c) If neither structural nor functional information is
available (a zero-knowledge scenario), we may rely
entirely on the characteristics of the input stream and get
a rough estimate for average switching values with

(25)

The values of the entropy and informational energy are
extracted at the primary inputs, while the corresponding
values at level 1 can be estimated using the recurrence
equations (6), (8) and (18).

In any case, this framework is also open to logic
simulation; this  may provide accurate values for output
entropy/informational energy values but with a much
higher computational cost.

V. EXPERIMENTAL RESULTS

The whole point about the proposed models is to assess
the accuracy of relations (23) and (24). Their main
advantage is the fact that theydo not need any simulation
to predict an average energy consumption for the target
circuit.

Two types of experiments were performed: one
involving individual modules (ISCAS’85 bechmarks and
common data-path operators) and another one using
allocated data-paths. Due to its imprecise meaning at RT-
level, the delay was not considered as a parameter.

The experimental setup consisted of a pseudo-random
input generator feeding the modules under consideration.
The values of the entropy and informational energy were
extracted at the primary inputs, while the corresponding
values at the outputs were estimated as in Section 4. Once
obtained, the average values of entropy or informational
energy were directly used to estimate the average
switching activity per node; this value weighted by an
average node capacitance is a good indicator of power/
energy consumption.

We report in Tables 3 our results on benchmark circuits
and common data-path operators. We  note that the results
are promising in all cases, as the max error is 0.094
(0.0951) for entropy (energy)-based estimations.

In Fig.3 we considered a complete data-path

Table 3: Data-Path and ISCAS Circuits
Simulated values Estimated values

Circuit havg eavg swavg havg swavg eavg swavg

add8 0.8494 0.5792 0.4282 0.9394 0.4697 0.5218 0.4782

add16 0.8487 0.5754 0.4369 0.9252 0.4626 0.5268 0.4732

add32 0.9201 0.5486 0.4017 0.9914 0.4957 0.5037 0.4968

mul8 0.6857 0.6615 0.3163 0.6778 0.3389 0.6365 0.3635

mul16 0.7564 0.6952 0.3854 0.6974 0.3487 0.6265 0.3754

mul32 0.7086 0.6857 0.3759 0.6918 0.3459 0.6316 0.3684

C432 0.8391 0.5558 0.4565 0.9048 0.4524 0.5516 0.4484

C880 0.8861 0.5092 0.4531 0.8236 0.4118 0.5953 0.4047

C1908 0.9272 0.4650 0.4519 0.9928 0.4964 0.5049 0.4951
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represented by the data-flow graph of the differential
equation example [19]; all the primary inputs were
considered as having 8 bits and the output entropy of the
entire module was estimated with the compositional
technique based on ITCs. The ITC value for the
multipliers was taken 0.461 and the ITCs for adders and
subtracters were 0.5 (we indicated in Fig.3 the values of
ITCs in the entire circuit). Based on these values, hout was
estimated as 0.1508 compared to 0.1666 obtained by
exact simulation. The overall errors in estimating the
average switching activities using entropy and
informational energy were 0.0228 and 0.0202,
respectively.

Fig. 3: A Data-Path Example

VI. CONCLUSIONS

In this paper, we have proposed two new measures to
estimate the energy consumption in RT-level digital
circuits. Their foundation relies on statistical modelling of
the circuit behavior and seems to successfully overcome
the lack of information which characterizes this level of
abstraction. The accuracy of the model is investigated
using common benchmarks for pseudorandom input
sequences. As shown, the average switching activity may
be predicted without simulation using either entropy or
informational energy averages; the error in prediction is
generally small enough to be satisfactory in practice.
Future work will be devoted to extend the compositional
technique in Section 4, to also handle the informational
energy. In addition, it would be desirable to make the
compositional technique more sensitive to different styles
of implementing data-path/control hardware.
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