
Transforming Set Data Types to Power Optimal Data Structures�

Sven Wuytack, Francky Catthoor, Hugo De Manz

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract
In this paper we present a novel approach to model the

search space for optimal set data types in network compo-
nent realisations. The main objective is to arrive at power
efficient realisations of these data types in data structures,
but the model can also be used with non-power cost func-
tions. This work also strongly contributes to our overall goal
of a higher level of specification and shorter design cycles for
table-based memory organisations in network components.

1 Introduction
ATM and network components in general are very

important application domains. In the layer 3-6 protocols
for most network component applications, the efficient
organisation of the large table structures is the most crucial
issue [10, 2, 6]. Therefore we propose a novel model to
characterise the freedom in specifying and realising these
structures. This model allows to calculate what the best
table organisations are for a given application and cost
function. In our experiments, the cost function is a measure
for the power dissipation, but it can be changed to reflect
the cost of memory size, the number of memory transfers,
or, in practice, a combination of power, memory size and
number of transfers. This work fits in a context of system
level specification and exploration of network component
realisation. It is a step towards higher level modelling of
data structures.

We have organised this paper as follows. We start with
giving some references to related work in Section 2. Then,
we present our novel set data structure model in Section 3.
Next, we present, in Section 4, the cost function that we use
to obtain power efficient data structure implementations. In
Section 5, we explain our optimisation method to arrive at a
power optimal solution without having to perform an exhaus-
tive search. In Section 6, we illustrate our methods on a rele-
vant industrial design, namely a Segment Protocol Processor
(SPP) [10]. The SPP is an ASIC that implements the common
part of AAL3 and AAL4 (ATM Adaptation Layer) as speci-
fied by the CCITT standards.

2 State of the Art
There is not much related work on optimising data struc-

tures for low power. The basic elements and techniques (e.g.
linked lists, arrays, hashing, ... ) that we have used in our
model are well known in programming theory [1]. However,
in the programming community, these techniques are applied
to reach high performance solutions or solutions with low
memory requirements, but, until now, they are not applied to
reach low power solutions. Moreover the decisions there are
not automated at all. Most low power oriented research, on
the other hand, focusses on much lower levels than the algo-
rithm level, and is therefore not attacking this problem either.
Several researchers are looking at the algorithm/architecture
level to optimise power [4, 7]. Here, they are focussing their
attentionmainly on data-paths, and not on memories or mem-
ory organisations. Their developments on power estimation
on the algorithm/architecture level [5] are very useful for our
research, though. There are also some memory related power
studies [3, 8], but these are oriented to caches in micropro-
cessors and not for custom network components. Our own
previous work was situated at the architectural level [11].

3 Set Data Structure Model
A set of records which are accessed with one or more keys

can be represented by many different data structures. All
these data structures have different characteristics in terms of
memory occupation, number of memory accesses to locate a
certain record, power dissipation, and the like. To allow the
designer to make a motivated choice, all possible data struc-
tures available for a given system level specification have to
be represented in the model such that the best solutions for a
given application can be searched for. In our model there are
a number of primitive data structures that can be combined to
create more complex data structures.

3.1 Assumptions
The assumptions that we made in the construction of the

current model are: a key is an integer number withina certain
interval and every number in that interval is a valid key value.
When these conditions are not met, this can be simply and
efficiently solved by realising a coding scheme in hardware.
This coding scheme will translate the original values of the
keys into an interval of integers. These coded keys are then
used to access the records; All key values have equal proba-

�This research was sponsored by the IWT HASTEC project.
zProfessor at the Katholieke Universiteit Leuven



bility. When the distributions of the key values are not uni-
form, we obviously require statistics which can then be used
to influence the weighting in the model; A key/pointer occu-
pies one memory location. The model can be easily extended
to accommodate keys or pointers that require more than one
memory location. Extending the model for keys which re-
quire less than one memory location and that can be stored
together with other information in one memory location, is
less trivial and a topic of current research.

3.2 Primitive Data Structures
Currently, our model incorporates four primitive data

structures, which are largely based on what is available in
computer science theory [1]. These four primitive data struc-
tures are the linked list (LL), the binary tree (BT), the array
(AR), and the pointer array (PA), which is an array of pointers
to dynamically allocated objects. Most of the primitive data
structures have additional parameter options which allow to
subdivide them further (e.g. binary vs quad-trees, etc.).

3.3 Combining Primitive Data Structures
In the model, these primitive data structures can be

combined into more complex and powerful data structures
(Fig. 1). If there is more than 1 key or if the simple key is
split up in subkeys, then we can construct a hierarchy of data
structures. For example in the Segment Protocol Processor
application [10] there is a set of packet records which are ac-
cessed by two keys, which we will call key A and key B. In
the implementation of the SPP, a 3-layer data structure was
chosen to represent this set of records. The first layer, is a
pointer array which is accessed with the A key. The pointers
point to pointer arrays of the second layer, which are accessed
with the B key. The pointers on the second layer then point
to the dynamically allocated packet-records which form the
third layer. Of course this realisation is only one of the many
possible combinations. Finding the best one in terms of a cer-
tain cost function is not obvious, because of the high number
of possibilities and the dependence on the parameters in the
model, as shown in Section 6.

3.4 Key Management
In the previous subsection we assumed that every key cor-

responds to one layer in a hierarchy of data structures (except
for the last layer, which is the record layer and has no key as-
sociated with it). This is not necessary, however. It is also
possible to split keys into subkeys, or to combine several keys
into one super key. This can have a large effect on the cost
functions. Also, the order in which the keys are used to access
the different data structures is very important. For example,
in the SPP application there are two possible key orderings:
A - B or B - A. In the implementation of the SPP, the A - B
ordering was chosen. The other key ordering is equally valid,
however. Which key ordering is the best solution depends on
the parameters in the application. Since the key ordering has
a large effect on the required memory size, on the average
number of memory accesses to locate a certain record, and on
the power cost of a data structure, it is important to find the

LL:

LL-LL:

LL-PA:

PA-PA:

Figure 1: A few combinations of primitive data structures
(actual records are not shown).

optimal key ordering as well as the optimal number of layers
in the hierarchy.

3.5 Hashing (Key Transformations)

In the model we assume that the key values are uniformly
distributed. If this is not the case, then a hashing function can
be used to automatically obtain a more uniform distribution.
It is important to realise that hashing can, in principle, be ap-
plied in combination with any of the primitive data structures.
So it provides an “independent” axis of freedom in the search
space. Hashing is especially useful in combination with key
splitting, because this allows to reduce the (average) size of
the data structures. Consider for example a large array of
records which contains relatively few elements compared to
its size (Fig. 2a). Because there are many empty slots in the
array, a lot of memory is wasted in this data structure. This
can be solved by applying key splitting. The array of records
is converted into a (smaller) array of linked lists of records.
Therefore, the large key is split into two parts: one part which
is used to access the array and another part which is used to
access the linked lists. In the ideal case, the splitting is done
such that the small array is fully filled and the linked lists are
as short as possible (Fig. 2b). However, if the distribution of
the key values is such that most records are contained in only
a few linked lists (due to correlation), then the result of the
key splitting can be far from optimal (Fig. 2c). Applying a
hashing function to obtain a more uniform distribution can
avoid this problem (Fig. 2d).



a. Original data structure: sparsely filled array

b. Key splitting: ideal case

d. Hashing + key splitting c. Key splitting: 
correlated key values

Figure 2: Applying hashing and key splitting to a sparsely
filled array.

4 Cost Function
For the estimation of the power cost of the different data

structures in our model, we use the memory power esti-
mation function of the Stochastic Power Analysis tools of
U.C.Berkeley [5]. The power cost function is: P = Cread �

V 2

dd
� fread, where Cread is the estimated capacitance of

the memory for read operations, Vdd is the supply voltage
of the memory, and fread is the frequency of the read ac-
cesses to the memory. Note that, at the moment, we only take
the cost of locating a record (read action) into account, not
the insertion or removal of records from the set: Cread =

n RAMs �(Cr0+Cr1:word length+Cr2:n words+Cr3 �

word length � n words), where n RAMs is the number of
parallel RAMs in the memory architecture. The figures we
used in our experiments are n RAMs = 9, word length =

8, Cr0 = 9707 fF,Cr1 = 108 fF,Cr2 = 1126 fF,Cr3 = 6 fF,
Vdd = 1 V, and fread = 0:38 � n reads per frame MHz.
The capacitance figures are those used in U.C.Berkeley to
model SRAMs in their 1:2�m CMOS technology.

5 Optimisation Methodology
There are many possible data structures within the model

that realise a given set of records. As mentioned in Sec-
tion 3, each of these can be seen as a combination of different
choices which are relatively orthogonal (Fig. 3).

Finding the best one for a given application is not so triv-
ial, since it depends on the parameters in the model. More-
over, the full search space is too large to scan it exhaustively.
To determine the optimal data structure we have to find the
optimal number of layers in the hierarchy, the optimal key or-
dering, the optimal hashing function for each layer, and the
optimal primitive data structure for every layer in the hierar-
chy. Our experiments showed that all of these optimisations

Primitive data structure

Array

Pointer Array Binary Tree

Linked List

Hashing

YesNo

Hashing function

Key splitting Key ordering

Figure 3: Different orthogonal subtrees in the search space
for data structures. These can be chosen independently for
each layer corresponding to the original specified keys.

influence each other, so it is not possible to optimise each
aspect fully independently to obtain the global optimum. In
practice, however, some decisions are much more important
than others, and a decision ordering can be proposed which
leads to near optimal solutions without exhaustively explor-
ing all combinations.

After explaining the input for the optimisation method in
subsection 5.3 and presenting the decision ordering on which
it is based in subsection 5.4, we explain each step in the next
subsections. This is done using an example, which will be in-
troduced in Section 5.2. But first, we define the Filling Fac-
tor because it is an important element in our method.

5.1 Definition of the Filling Factor
The filling factor is defined for every layer i of the data

structure hierarchy. The filling factor of layer i is defined as:

FF (i) =
#objects on layer i + 1

(#obj on layer i)� (max #key val on layer i)

It is, in fact, the fraction of the slots that would be filled if this
layer would be realised with arrays. Obviously, the higher the
filling factor of a layer, the more (power) efficient the data in
it can be stored (Fig. 4).

This graph shows the power cost functionversus the filling
factor when the number of objects on layer i+1 are kept con-
stant. The power cost function is plotted for the four primi-
tive data types in our model. It is possible to plot a 2D plot of
the power cost of an array and a pointer array vs FF(i) when
(#obj on layer i) is fixed, because, in this case, the power
cost only depends on the product in the denominator of FF(i).
Since the power cost functions of a linked list and a binary
tree only depend on the number of elements in the data struc-
ture, i.e., (#obj. on layer i + 1)/(#obj on layer i), and not on
(max # key val on layer i), they do not depend on FF(i) di-
rectly. Therefore, we have drawn these power costs as hori-
zontal lines vs FF(i) for the key ordering that minimizes the



0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 C

os
t F

un
ct

io
n

FF(%)

AR
PA
BT
LL

BT or LL PA AR

Figure 4: Power cost function versus the filling factor (FF),
in which the number of objects on layer i+1 is kept constant.

power cost. Clearly, different ranges of FF(i) require differ-
ent optimal choices (as indicated in Fig. 4).

The actual position of the different curves in this graph de-
pends of course on the parameters in the model.
5.2 Introduction of Illustrative Example

The SPP application has two keys: key A with range 0!
127 and key B with range 0 ! 1023. We will examine the
case in which half of the users are active (i.e., 64 of the 128
possible A key values are used) and all B key values are in
use. The records are 6 words long, and, the average number
of accesses during one frame to the records is 2. We calculate
the optimal data structure to store the records in the SPP in
terms of our power cost function. We do this for two realistic
sets of parameters to show that the optimal solution depends
on the parameters in the model. Here, we estimate the best
data structure in case the SPP is used with enough external
memory to store 8200 records (current SRAM generation).
In Section 6, we repeat this calculation in case the SPP is used
with enough external memory to store 57300 records (next
SRAM generation).
5.3 Input for Optimisation Method

Most of the input to the optimisation method comes from
profiling information obtained during system simulation for
the network application. Because the result is optimised for
the statistics gathered during the simulation, it is important
that the simulation is done with realistic input values. See
for example Sykas et al. [9] for such studies. If these real-
istic input values are not known in advance, one can simu-
late a number of typical scenarios and calculate the optimal
data structure and corresponding cost function for each sce-
nario. By comparing the different solutions with their cost
functions, and calculating the cost of each solution for every
scenario, one can arrive at a good compromise. The infor-
mation we currently need in the optimisation process for the
model of Section 3 - 4 is the following:

� for every original key:

– key interval) max # different key values
example: key A: 0! 127) 128

key B: 0! 1023) 1024

– expected # different key values
example: key A: 64

key B: 1024

� for every combination of keys:

– expected # different key combinations
example: A - B: 8200

� about the records:

– size (# words) (example: 6)

– avg. # accesses to records (example: 2)

� about other data structures in same memory:

– total size (# words) (example: 0)

– avg. # accesses to other DS (example: 0)

5.4 Decision Ordering
Both key transformation and key splitting/merging de-

pend on the statistics of the original keys, and determine the
statistics of the new keys. The other optimisations also de-
pend on the key statistics, but they don’t alter them. There-
fore, key transformation and key splitting/merging has to be
performed before optimisationof the key ordering and primi-
tive data structure assignment to optimise the filling (see sub-
section 3.5). It is very important to have optimal filling fac-
tors for the different layers because this determines how effi-
cient the data can be stored. The assignment of the primitive
data structures to the layers is highly related to these filling
factors, but does not influence the filling factors of the layers.
The key ordering, on the other hand, has a large impact on the
filling factors of the different layers. Therefore, key ordering
has to be decided before the assignment of the primitive data
structures to the layers. The information of the filling factors
can then be used to assign primitive data structures to the lay-
ers.
5.5 Optimising the Key Ordering

Because lower layers in the hierarchy contain in general
more data than the higher ones, it is important to store the
lowest layers as efficient as possible, i.e., with high filling
factors. The key ordering has a large impact on the filling
factor of each layer. Therefore we have to select the key
ordering which gives high filling factors for the lowest
layers. This can be done by calculating the filling factors
of every layer for all key orderings and then selecting the
one with the highest filling factors for the lowest layers.
However, there is a better way of calculating the optimal key
ordering. It is based on a property of the filling factor. As
mentioned above, the filling factor of a layer depends on the
key ordering. However, it only depends on which keys are
used on layers above it, on which key is used on the layer
itself, and on which keys are used on layers below it. So, it



does not depend on the actual ordering of the keys before
or after it. Therefore, because we want to calculate the key
ordering which gives the highest filling factor on the lowest
layer, we can calculate the filling factor for the lowest layer
for every key in the last position, and then select the key that
leads to the highest filling factor. Once we know the last key
in the key ordering, we can calculate the one but last key
in the same way. Then, we can repeat this to calculate the
key before that, and so on. So, the optimal key ordering is
efficiently calculated backwards.

SPP example:

� Last key:

key = B ) FF =
8200

64� 1024
= 13%

key = A ) FF =
8200

1024� 128
= 6%

13% > 6%) last key = key B

� First key: only 1 key left ) first key = key A

� Optimal key ordering: key A - key B

5.6 Optimising the PDS Assignment
In this stage of the optimisation process, we have fixed

the subkeys, their statistics, and their ordering. The only
thing left is the assignment of primitive data structures to
every layer in the data structure hierarchy. As can be seen in
Fig. 4, there is a correlation between the FF of a certain layer
and the optimal primitive data structure for that layer. This
could be used to assign a primitive data structure to each
layer. However, the actual boundaries between the optimal
data structures vary with the parameters in the model and
with the assignment of the primitive data structures to the
other layers. Therefore, it is not always easy to decide based
on the value of the filling factor alone. In this case one can
calculate the cost function for the most promising primitive
data structures in the model and select the one which yields
the lowest cost.

SPP example:

key = B ) FF =
8200

64� 1024
= 13%

) PA(B)

key = A ) FF =
64

1� 128
= 50%

) PA(A)

The estimated optimal data structure is thus PA(A) �
PA(B) The analysis shows that the difference between an
A - B and a B - A ordering is rather small (the difference be-
tween 13 % and 6 % is small). Therefore, the best result of
the B - A ordering should be almost as good as the best A - B
ordering. This will be confirmed in Fig. 5.

6 Examples

First example: large external memory

This is the example which we have analysed in the previous
subsections. In this example we assumed that there are 8200
records in the external memory of the SPP. A graph of the
cost of a number of alternative data structures (without key
transformation and splitting/merging) in the model is shown
in Fig. 5. In practice there are even more options and the esti-
mate for each candidate can be quite costly to compute. The
alternatives are sorted on the value of the power cost func-
tion. The best realisation is a pointer array accessed by key A,
which points to a pointer array accessed by key B. However,
this solution is only slightly better than an array of binary
trees, in which the array is accessed with key B, and the bi-
nary trees with key A. This is exactly what we found with-
out exhaustive enumeration in our analysis of the example in
Section 5.

Note also the huge difference in the values of the cost
function which could be obtained with bad choices for the
data structures.

1E+00

1E+01

1E+02

1E+03

1E+04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P
ow

er
 C

os
t F

un
ct

io
n

Different Data Structures

1 PA(A) - PA(B) 12 AR(A, B) 23 PA(A) - LL(B)
2 AR(B) - BT(A) 13 BT(A) - BT(B) 24 BT(A) - LL(B)
3 PA(A, B) 14 BT(B) - BT(A) 25 LL(A) - LL(B)
4 PA(B) - BT(A) 15 BT(B) - LL(A) 26 BT(B) - AR(A)
5 AR(B) - LL(A) 16 PA(B) - AR(A) 27 LL(A) - AR(B)
6 PA(B) - PA(A) 17 BT(A, B) 28 LL(B) - LL(A)
7 PA(B) - LL(A) 18 BT(B) - PA(A) 29 LL(B) - BT(A)
8 AR(A) - BT(B) 19 BT(A) - AR(B) 30 LL(B) - PA(A)
9 PA(A) - BT(B) 20 LL(A) - BT(B) 31 LL(A, B)

10 PA(A) - AR(B) 21 LL(A) - PA(B) 32 LL(B) - AR(A)
11 BT(A) - PA(B) 22 AR(A) - LL(B)

Figure 5: Example 1: Power cost function for different data
structure implementations.

Now, we will look at the same application in case a larger
memory is used.

Second example: very large external memory

In this example, we assume that there are 57300 records in
the external memory. A graph of the power cost of the same
data structures as in the first example is shown in Fig. 6. The
graph is again sorted by the value of the power cost function



for every solution. The best realisation this time is a pointer
array accessed by key A, which points to an array of records
which is accessed by key B. This solution is about 30 % bet-
ter than the pointer array to pointer array solution obtained
with the previous parameters. Remark also the differences
between the ranking of the realisations for both sets of param-
eters! This clearly shows that it is not trivial to predict which
is the best realisation for a given application. Let us now cal-
culate the optimal data structure with the proposed optimisa-
tion method:

1. Second layer:

key = B ) FF =
57300

64� 1024
= 87%

) AR(B)

key = A ) FF =
57300

1024� 128
= 44%

) PA(A)

87% > 44%) second layer = AR(B)

2. First layer:

key = A ) FF =
64

1� 128
= 50%

) PA(A)

3. Conclusion:

optimal DS = PA(A) � AR(B)

1E+00

1E+01

1E+02

1E+03

1E+04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P
ow

er
 C

os
t F

un
ct

io
n

Different Data Structures

1 PA(A) - AR(B) 12 AR(A) - BT(B) 23 LL(A) - BT(B)
2 PA(A, B) 13 PA(A) - BT(B) 24 AR(A) - LL(B)
3 AR(A, B) 14 BT(A) - BT(B) 25 PA(A) - LL(B)
4 PA(A) - PA(B) 15 BT(B) - BT(A) 26 BT(A) - LL(B)
5 PA(B) - PA(A) 16 BT(B) - AR(A) 27 LL(A) - LL(B)
6 PA(B) - AR(A) 17 BT(A, B) 28 LL(B) - PA(A)
7 BT(A) - AR(B) 18 LL(A) - AR(B) 29 LL(B) - LL(A)
8 BT(A) - PA(B) 19 AR(B) - LL(A) 30 LL(B) - BT(B)
9 AR(B) - BT(A) 20 PA(B) - LL(A) 31 LL(B) - AR(A)

10 PA(B) - BT(A) 21 LL(A) - PA(B) 32 LL(A, B)
11 BT(B) - PA(A) 22 BT(B) - LL(A)

Figure 6: Example 2: Power cost function for different data
structure implementations.

The estimated optimal data structure is again the same as
the one obtained by exhaustively calculating the cost function
of every possible data structure.

7 Conclusions
We have proposed a novel set data structure model which

structures the choices in the search space and that can be used
to effectively calculate the best data structure implementa-
tion for a set of records in a given application. We have also
presented an efficient optimisation method for finding the
implementation with minimum power consumption without
an exhaustive scan of the search space.

Acknowledgements
We gratefully thank our colleagues from IMEC and Alcatel
for the interesting discussions.

References
[1] A.V.Aho, J.E.Hopcroft, J.D.Ullman, “Data Structures and Algo-

rithms”, Addison-Wesley, 1983.

[2] A.Alles, “ATM in Private Networking: Tutorial”, INTEROP ’93,
1993.

[3] J.Bunda, W.Athas, D.Fussell, “Evaluating Power Implications of
CMOS Microprocessor Design Decisions”, 1994 International
Workshop on Low Power Design, Napa Valley CA, pp. 147-152,
Apr. 1994.

[4] A.Chandrakasan,M.Potkonjak, J.Rabaey, R.Mehru, R.W.Brodersen,
“Optimizing power using transformations”, accepted for Transac-
tions on CAD, 1994.

[5] P.Landman, J.Rabaey, “Black-Box Capacitance Models for Archi-
tectural Power Analysis”, 1994 Int. Wkshp on Low Power Design,
Napa Valley CA, pp. 165-170, Apr. 1994.

[6] J.-Y.Le Boudec, “The Asynchronous Transfer Mode: a tutorial”,
Computer Networks and ISDN Systems 24, pp. 279-309, 1992.

[7] T.Noll, “Low-Power Strategies for High-Performance CMOS Cir-
cuits”, Proc. ESSCIRC ’94, pp. 72-83, 1994.

[8] C.Su, C.Tsui, A.Despain, “Low Power Architecture Design and
Compilation Techniques for High Performance Processors”, Pro-
ceedings of IEEE COMPCON, Feb. 1994.

[9] E.Sykas, K.Vlakos, K.Tsoukatos, E.Protonotarius, “Performance
Evaluation of Analytical Models for Effective Bandwidth Allocation
in ATM Networks”, Eur.Trans. on Telecommunications, Vol. 5, no 3,
pp. 391-396, May 1994.

[10] Y.Therasse, G.H.Petit, M.Delvaux, “VLSI architecture of a
SMDS/ATM router”, Annales des Télécommunications, 48, no 3-4,
pp.166-180, 1993.

[11] S.Wuytack, F.Catthoor, F.Franssen, L.Nachtergaele, H.De Man,
“Global communication and memory optimizing transformations for
low power systems”, 1994 Int. Wkshp on Low Power Design, Napa
Valley CA, pp.203-208, Apr. 1994.


	Compendium95 Home Page
	ISLPD95
	Table of Contents
	Session Index
	Author Index


