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Abstract

In this paper we present a novel approach to model the
search space for optimal set data types in network compo-
nent realisations. The main objective is to arrive at power
efficient realisations of these data types in data structures,
but the model can also be used with non-power cost func-
tions. Thiswork also strongly contributesto our overall goal
of a higher level of specification and shorter design cyclesfor
table-based memory organisationsin network components.

1 Introduction

ATM and network components in genera are very
important application domains. In the layer 3-6 protocols
for most network component applications, the efficient
organisation of the large table structures is the most crucial
issue [10, 2, 6]. Therefore we propose a novel modd to
characterise the freedom in specifying and realising these
structures. This model allows to caculate what the best
table organisations are for a given application and cost
function. In our experiments, the cost function is a measure
for the power dissipation, but it can be changed to reflect
the cost of memory size, the number of memory transfers,
or, in practice, a combination of power, memory size and
number of transfers. This work fits in a context of system
level specification and exploration of network component
realisation. It is a step towards higher level modelling of
data structures.

We have organised this paper as follows. We start with
giving some references to related work in Section 2. Then,
we present our novel set data structure model in Section 3.
Next, we present, in Section 4, the cost function that we use
to obtain power efficient data structure implementations. In
Section 5, we explain our optimisation method to arrive at a
power optimal solutionwithout having to perform an exhaus-
tivesearch. In Section 6, weillustrate our methodson arele-
vant industrial design, namely a Segment Protocol Processor
(SPP)[10]. The SPPisan ASIC that implementsthecommon
part of AAL3 and AAL4 (ATM Adaptation Layer) as speci-
fied by the CCITT standards.

2 Stateof theArt

There is not much related work on optimising data struc-
turesfor low power. The basic elements and techniques (e.g.
linked lists, arrays, hashing, ... ) that we have used in our
model are well known in programming theory [1]. However,
inthe programming community, these techniquesare applied
to reach high performance solutions or solutions with low
memory requirements, but, until now, they are not applied to
reach low power solutions. Moreover the decisionsthereare
not automated at all. Most low power oriented research, on
the other hand, focusses on much lower levelsthan the algo-
rithmlevel, and istherefore not attacking thisproblem either.
Several researchers are looking at the a gorithm/architecture
level to optimise power [4, 7]. Here, they are focussing their
attentionmainly on data-paths, and not on memories or mem-
ory organisations. Their devel opments on power estimation
onthealgorithm/architecturelevel [5] are very useful for our
research, though. There are also some memory rel ated power
studies [3, 8], but these are oriented to caches in micropro-
cessors and not for custom network components. Our own
previouswork was situated at the architecturd level [11].

3 Set Data Structure M odel

A set of recordswhich are accessed with one or more keys
can be represented by many different data structures. All
these data structures have different characteristicsin terms of
memory occupation, number of memory accesses to locate a
certain record, power dissipation, and the like. To alow the
designer to make a motivated choice, all possible data struc-
turesavailable for a given system leve specification have to
be represented in the model such that the best solutionsfor a
given application can be searched for. In our model thereare
anumber of primitivedatastructuresthat can be combined to
create more complex data structures.

3.1 Assumptions

The assumptions that we made in the construction of the
currentmodel are: akeyisaninteger number withinacertain
interval and every number inthatinterval isa valid key value.
When these conditions are not met, this can be simply and
efficiently solved by redlising a coding scheme in hardware.
This coding scheme will trandate the original values of the
keysinto an interval of integers. These coded keys are then
used to access therecords; All key values have equal proba-
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bility. When the distributions of the key values are not uni-
form, we obviously require statistics which can then be used
to influence the weighting in the model; A key/pointer occu-
piesone memory location. The model can be easily extended
to accommodate keys or pointers that require more than one
memory location. Extending the model for keys which re-
quire less than one memory location and that can be stored
together with other information in one memory location, is
lesstrivia and atopic of current research.

3.2 Primitive Data Structures

Currently, our modd incorporates four primitive data
structures, which are largely based on what is available in
computer science theory [1]. These four primitivedata struc-
tures are the linked list (LL), the binary tree (BT), the array
(AR), and thepointer array (PA), whichisan array of pointers
to dynamically allocated objects. Most of the primitive data
structures have additional parameter optionswhich allow to
subdivide them further (e.g. binary vs quad-trees, etc.).

3.3 Combining Primitive Data Structures

In the model, these primitive data structures can be
combined into more complex and powerful data structures
(Fig. 1). If thereis more than 1 key or if the simple key is
split up in subkeys, then we can construct ahierarchy of data
structures. For example in the Segment Protocol Processor
application [10] thereisaset of packet records which are ac-
cessed by two keys, which we will call key A and key B. In
the implementation of the SPP, a 3-layer data structure was
chosen to represent this set of records. The first layer, isa
pointer array which is accessed withthe A key. The pointers
point to pointer arrays of the second layer, which are accessed
with the B key. The pointers on the second layer then point
to the dynamically alocated packet-records which form the
third layer. Of course thisredisationisonly one of the many
possiblecombinations. Finding thebest oneintermsof acer-
tain cost functionis not obvious, because of the high number
of possibilitiesand the dependence on the parameters in the
model, as shown in Section 6.

34 Key Management

In the previous subsection we assumed that every key cor-
respondsto onelayer in ahierarchy of data structures (except
for thelast layer, whichistherecord layer and has no key as-
sociated with it). Thisis not necessary, however. It is also
possibleto splitkeysintosubkeys, or to combinesevera keys
into one super key. This can have a large effect on the cost
functions. Also, theorder inwhichthekeysareusedtoaccess
the different data structuresis very important. For example,
in the SPP application there are two possible key orderings:
A - B or B - A. In the implementation of the SPP, the A - B
ordering was chosen. Theother key orderingisequally valid,
however. Which key ordering isthe best solution depends on
the parameters in the application. Sincethe key ordering has
a large effect on the required memory size, on the average
number of memory accesses tolocatea certainrecord, and on
the power cost of a data structure, it isimportant to find the
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Figure 1: A few combinations of primitive data structures
(actual records are not shown).

optimal key ordering as well as the optima number of layers
in the hierarchy.

3.5 Hashing (Key Transformations)

In the modd we assume that the key values are uniformly
distributed. If thisisnot the case, then ahashing functioncan
be used to automatically obtain a more uniform distribution.
Itisimportant to realise that hashing can, in principle, be ap-
pliedincombinationwith any of theprimitivedatastructures.
Soit providesan “independent” axisof freedominthesearch
space. Hashing is especialy useful in combination with key
splitting, because this allows to reduce the (average) size of
the data structures. Consider for example a large array of
records which containsrelatively few elements compared to
itssize (Fig. 2a). Because there are many empty slotsin the
array, alot of memory iswasted in this data structure. This
can be solved by applying key splitting. The array of records
is converted into a (smaller) array of linked lists of records.
Therefore, thelargekey issplitintotwo parts: onepart which
is used to access the array and another part which is used to
access thelinked lists. Inthe ided case, the splittingis done
such that the small array isfully filled and thelinked listsare
as short as possible (Fig. 2b). However, if the distribution of
thekey valuesissuch that most recordsare contained in only
afew linked lists (due to correlation), then the result of the
key splitting can be far from optimal (Fig. 2c). Applying a
hashing function to obtain a more uniform distribution can
avoid thisproblem (Fig. 2d).
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Figure 2: Applying hashing and key splitting to a sparsdly
filled array.

4 Cost Function

For the estimation of the power cost of the different data
structures in our model, we use the memory power esti-
mation function of the Stochastic Power Analysis tools of
U.C.Berkeley [5]. The power cost functionis: P = Cheqq -
VZ - fread, Where Cr.qq is the estimated capacitance of
the memory for read operations, V,; is the supply voltage
of the memory, and f,..q is the frequency of the read ac-
cesses tothe memory. Notethat, at the moment, weonly take
the cost of locating a record (read action) into account, not
the insertion or removal of records from the set: C\rocqq =
n-RAMs-(Cro+Cyr1.wordlength+ Cra.n_words+Chrg -
word length - n_words), wheren_RA M s isthe number of
paralel RAMs in the memory architecture. The figures we
used in our experimentsaren_RAM s = 9, word_length =
8, Cro = 9707fF, Cy = 108fF, C\o = 1126 fF, C3 = 6 fF,
Vig = 1V, and froqq = 0.38 - n_reads_per_frame MHz
The capacitance figures are those used in U.C.Berkeley to
model SRAMSsin their 1.2um CMOS technology.

5 Optimisation M ethodology

There are many possible data structures within the model
that realise a given set of records. As mentioned in Sec-
tion 3, each of these can be seen as acombination of different
choices which are relatively orthogona (Fig. 3).

Finding the best onefor agiven applicationis not so triv-
ia, since it depends on the parameters in the model. More-
over, thefull search spaceistoo largeto scan it exhaustively.
To determine the optimal data structure we have to find the
optimal number of layersin thehierarchy, the optimal key or-
dering, the optimal hashing function for each layer, and the
optimal primitive data structure for every layer inthe hierar-
chy. Our experiments showed that all of these optimisations
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influence each other, so it is not possible to optimise each
aspect fully independently to obtain the global optimum. In
practice, however, some decisions are much more important
than others, and a decision ordering can be proposed which
leads to near optimal solutions without exhaustively explor-
ing al combinations.

After explaining the input for the optimisation method in
subsection 5.3 and presenting the decision ordering on which
itisbased in subsection 5.4, we explain each step in the next
subsections. Thisisdoneusingan example, whichwill bein-
troduced in Section 5.2. But first, we define the Filling Fac-
tor because it is an important e ement in our method.

5.1 Définition of the Filling Factor

The filling factor is defined for every layer i of the data
structure hierarchy. Thefilling factor of layer i isdefined as:

FF() = #objects on layer 1 + 1

(F£0bj on layer i) X (max #key val on layer 1)

Itis, infact, thefraction of thed otsthat would befilledif this
layer would berealised witharrays. Obviously, thehigher the
filling factor of alayer, the more (power) efficient thedatain
it can be stored (Fig. 4).

Thisgraph showsthepower cost functionversusthefilling
factor when the number of objectson layer i+ 1 are kept con-
stant. The power cost function is plotted for the four primi-
tivedatatypesinour model. It ispossibleto plot a2D plot of
the power cost of an array and a pointer array vs FF(i) when
(#obj on layer 1) is fixed, because, in this case, the power
cost only depends on the product i n the denominator of FF(i).
Since the power cost functions of a linked list and a binary
tree only depend on the number of dementsin the datastruc-
ture, i.e., (#obj. onlayer i + 1)/(#0bj on layer 7), and not on
(max # key val on layer 1), they do not depend on FF(i) di-
rectly. Therefore, we have drawn these power costs as hori-
zontal lines vs FF(i) for the key ordering that minimizes the
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Figure 4: Power cost function versus the filling factor (FF),
inwhich the number of objectson layer i+ 1 iskept constant.

power cost. Clearly, different ranges of FF(7) require differ-
ent optimal choices (asindicated in Fig. 4).

Theactua position of thedifferent curvesinthisgraph de-
pends of course on the parameters in the moddl.
5.2 Introduction of Illustrative Example

The SPP application has two keys. key A withrange( —
127 and key B withrange 0 — 1023. We will examine the
case in which half of the users are active (i.e., 64 of the 128
possible A key values are used) and dl B key vduesare in
use. The records are 6 wordslong, and, the average number
of accesses during oneframetotherecordsis2. Wecalculate
the optimal data structure to store the recordsin the SPP in
terms of our power cost function. Wedo thisfor tworealistic
sets of parameters to show that the optimal solution depends
on the parameters in the modedl. Here, we estimate the best
data structure in case the SPP is used with enough external
memory to store 8200 records (current SRAM generation).
In Section 6, werepeat thiscalculationin casethe SPPisused
with enough external memory to store 57300 records (next
SRAM generation).
5.3 Input for Optimisation M ethod

Most of the input to the optimisation method comes from
profiling information obtained during system simulation for
the network application. Because the result is optimised for
the statistics gathered during the simulation, it is important
that the simulation is done with redistic input values. See
for example Sykas et a. [9] for such studies. If these rea-
istic input values are not known in advance, one can simu-
late a number of typical scenarios and calculate the optimal
data structure and corresponding cost function for each sce-
nario. By comparing the different solutions with their cost
functions, and cal culating the cost of each solution for every
scenario, one can arrive at a good compromise. The infor-
mation we currently need in the optimisation process for the
mode! of Section 3 - 4 isthefollowing:

for every origina key:

— key interval = max # different key values
example: keyA: 0— 127= 128
keyB: 0— 1023= 1024

— expected # different key values
example:  key A: 64
key B: 1024

o for every combination of keys:

— expected # different key combinations
example:. A -B: 8200

o about the records:

— size (# words) (example: 6)
— avg. # accessesto records (example: 2)

about other data structuresin same memory:

— total size (# words) (example: 0)
— avg. # accessesto other DS (example: 0)

5.4 Decision Ordering

Both key transformation and key splitting/merging de-
pend on the statistics of the origina keys, and determine the
statistics of the new keys. The other optimisations also de-
pend on the key statistics, but they don't alter them. There-
fore, key transformation and key splitting/merging has to be
performed before optimisationof the key orderingand primi-
tivedatastructure assignment to optimisethefilling (see sub-
section 3.5). It isvery important to have optimal filling fac-
torsfor the different layers because thisdetermines how effi-
cient the data can be stored. The assignment of the primitive
data structures to the layersis highly related to these filling
factors, but does not influence thefilling factors of thelayers.
Thekey ordering, onthe other hand, hasalargeimpact onthe
filling factors of the different layers. Therefore, key ordering
has to be decided before the assignment of the primitive data
structuresto the layers. The information of thefilling factors
can then be used to assign primitivedata structuresto thelay-
ers.
5.5 Optimisingthe Key Ordering

Because lower layers in the hierarchy contain in general
more data than the higher ones, it is important to store the
lowest layers as efficient as possible, i.e., with high filling
factors. The key ordering has a large impact on the filling
factor of each layer. Therefore we have to select the key
ordering which gives high filling factors for the lowest
layers. This can be done by cdculating the filling factors
of every layer for al key orderings and then selecting the
one with the highest filling factors for the lowest layers.
However, thereisabetter way of cal culating the optima key
ordering. It is based on a property of the filling factor. As
mentioned above, thefilling factor of alayer depends on the
key ordering. However, it only depends on which keys are
used on layers above it, on which key is used on the layer
itself, and on which keys are used on layers below it. So, it



does not depend on the actual ordering of the keys before
or after it. Therefore, because we want to calculate the key
ordering which gives the highest filling factor on the lowest
layer, we can calculate thefilling factor for the lowest layer
for every key inthelast position, and then select the key that
leads to the highest filling factor. Once we know thelast key
in the key ordering, we can caculate the one but last key
in the same way. Then, we can repeat this to calculate the
key before that, and so on. So, the optimal key ordering is

efficiently calcul ated backwards.
SPP example:
o Last key:
8200
8200
key = A FFP=— =6
v = Tozd x 128 = 0%

13% > 6% = last key = key B

o First key: only 1 key left = first key = key A
e Optimal key ordering: key A - key B

5.6 Optimising the PDS Assignment

In this stage of the optimisation process, we have fixed
the subkeys, their statistics, and their ordering. The only
thing left is the assignment of primitive data structures to
every layer in the data structure hierarchy. Ascan beseenin
Fig. 4, thereisacorrel ation between the FF of acertain layer
and the optimal primitive data structure for that layer. This
could be used to assign a primitive data structure to each
layer. However, the actual boundaries between the optimal
data structures vary with the parameters in the model and
with the assignment of the primitive data structures to the
other layers. Therefore, it isnot always easy to decide based
on the vaue of the filling factor aone. In this case one can
calculate the cost function for the most promising primitive
data structures in the model and select the one which yields
the lowest cost.

SPP example:
8200
= PA(B)
64
= PA(A)

The estimated optimal data structure is thus PA(A) —
P A(B) The anaysis shows that the difference between an
A -BandaB - A orderingisrather small (thedifference be-
tween 13 % and 6 % is smdl). Therefore, the best result of
the B - A ordering should be aimost as good asthe best A - B
ordering. Thiswill be confirmed in Fig. 5.

6 Examples

First example: large external memory

Thisis the example which we have analysed in the previous
subsections. In this example we assumed that there are 8200
records in the external memory of the SPP. A graph of the
cost of a number of aternative data structures (without key
transformation and splitting/merging) in the model is shown
inFig. 5. In practice there are even more optionsand the esti-
mate for each candidate can be quite costly to compute. The
alternatives are sorted on the value of the power cost func-
tion. Thebest realisationisapointer array accessed by key A,
which pointsto a pointer array accessed by key B. However,
this solution is only slightly better than an array of binary
trees, in which the array is accessed with key B, and the bi-
nary trees with key A. Thisis exactly what we found with-
out exhaustive enumeration in our analysis of the examplein
Section 5.

Note aso the huge difference in the values of the cost
function which could be obtained with bad choices for the
data structures.
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Figure 5: Example 1: Power cost function for different data
structure implementations.

Now, we will look at the same applicationin case alarger
memory is used.

Second example: very large external memory

In this example, we assume that there are 57300 records in
the external memory. A graph of the power cost of the same
datastructures asin thefirst exampleisshowninFig. 6. The
graph is again sorted by the value of the power cost function



for every solution. The best redlisation thistimeis a pointer
array accessed by key A, which pointsto an array of records
which isaccessed by key B. This solutionis about 30 % bet-
ter than the pointer array to pointer array solution obtained
with the previous parameters. Remark also the differences
between theranking of thereali sationsfor both sets of param-
eters! Thisclearly showsthat itisnot trivia to predict which
isthebest redlisation for agiven application. Let usnow cal-
cul ate the optimal data structure with the proposed optimisa
tion method:

1. Second layer:
57300
key = B FP=_20""  _g7
Y = 64 x 1024 %
= AR(B)
57300
key = A FFP=—22" 44
Y = 1024 x 128 %
= PA(A)

87% > 44% = second layer = AR(B)
2. First layer:

64

k = f1 17f7 = ——
Y = 1128

= 50%
= PA(A)
3. Conclusion:

optimal DS = PA(A) — AR(B)
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6 | PA(B)-AR(A) || 17 | BT(A,B) 28 | LL(B)-PA(A)
7 | BT(A)-AR®B) || 18 | LL(A)-AR®B) || 29 | LL(B)-LL(A)
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Figure 6: Example 2: Power cost function for different data
structure implementations.

The estimated optimal data structureis again the same as
the one obtai ned by exhaustively cal cul ating the cost function
of every possibledata structure.

7 Conclusions

We have proposed anovd set data structure model which
structuresthe choicesin the search space and that can be used
to effectively calculate the best data structure implementa
tion for a set of recordsin a given application. We have also
presented an efficient optimisation method for finding the
implementation with minimum power consumption without
an exhaustive scan of the search space.
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