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Abstract: We describe a technique to estimate the en-
ergy consumed by speed-independent asynchronous (clock-
less) control circuits. Because speed-independent circuits are
hazard-free under all possible combinations of gate delays,
we prove that an accurate estimate of their energy consump-
tion is independent of relative component gate delays and
can be determined by simulating only a small number of in-
put patterns proportional to the size of the circuit's Signal
Transition Graph (STG) speci�cation. Speci�cally, we cal-
culate the average energy per external signal transition con-
sumed by a circuit. This can be used to compare the energy
consumption between two di�erent circuit implementations
of the same speci�cation, to calculate average energy for a
given high-level operation, and to provide average circuit
power when combined with delay information.

1 Introduction

Because asynchronous circuits do not have a global clock, en-
ergy consumption per clock cycle, a common means of quan-
tifying energy dissipation in synchronous circuits, can not
be used. Instead, it has been suggested to quantify energy
consumption in asynchronous circuits using energy per op-
eration (cycle of activity) [6]. This approach has been ap-
plied to asynchronous circuits that use a two-phase signaling
protocol for request/acknowledge handshaking. The control
circuits addressed in [6], however, are assumed to be in a
small set of pre-de�ned macro gates whose energy consump-
tion per output transition is pre-calculated using SPICE. The
energy per output transition for all control circuits is then
incorporated into the overall estimate for energy and power
consumption [6].

This paper, on the other hand, considers the problem
of measuring energy consumption of a more general class
of control circuits to support energy and power estimation
of other types of asynchronous circuits. Speci�cally, we
consider control circuits that are netlists of gates rather
than pre-de�ned macro gates. These circuits are speed-
independent, i.e., they are hazard-free under any set of com-
ponent gate delays. Moreover, the circuits can exhibit input
choice, in which the environment can non-deterministically
decide what external inputs to change, driving the circuit
into di�erent modes of operation, such as a read/write mode
in a memory interface controller.

Since di�erent internal signals may change in di�erent
modes, each mode may have a di�erent energy consumption.
To obtain a unique �gure of merit, it is necessary to com-
bine the energy consumption in each of the di�erent modes
of operation into a single quantity. To do this, we assume
the availability of input-choice statistics, which describe the
relative probabilities of di�erent environmental choices. In
practice, these input-choice statistics may be given by the
user or estimated through behavioral simulation.

Our procedure assumes the control circuit is speci�ed

using a Signal Transition Graph (STG). Starting with
the STG, we derive a Sequential Signal Transition Graph
(SSTG) that de�nes a small set of input sequences that are
simulated to obtain the switching activity of circuit nodes.
The SSTG also de�nes a Markov chain which under reason-
able circuit assumptions is irreducible, recurrent, and peri-
odic (see section 4). Using Markov chain analysis, we ob-
tain a small system of linear equations whose solution, when
combined with the simulation results of the SSTG, yields
the average energy per external signal transition.

The organization of the paper is as follows. Section 2
gives a more complete introduction to calculating energy in
asynchronous circuits. Section 3 describes the classes of cir-
cuits and speci�cations considered in this paper. Section 4
presents a proof that the order of concurrent transitions does
not a�ect the energy consumption of the circuit. Section 5
describes our SSTG. Section 6 describes how the SSTG de-
�nes a Markov chain which leads to a system of linear equa-
tions whose solution is used to calculate the average energy.
Section 7 describes how this work relates to previous work
on the energy consumption of synchronous circuits. Section
8 describes some preliminary results and conclusions.

2 Calculating energy consumption

The lack of a global clock in an asynchronous circuit and the
concurrent operation of the circuit and its environment ob-
scures any obvious time frame to measure energy consump-
tion. If the circuit repeatedly performed the same operation,
such as asynchronous datapaths, then energy per operation
would be a useful measure of energy consumption [6].

Control circuits, however, do not perform a well-de�ned
single operation repeatedly and hence energy per operation
is not suitable for quantifying energy use. Kudva et al. [6]
suggest measuring the average energy per output transition
using SPICE simulation on the �nal layout, which is prac-
tical when the circuits are single pre-de�ned gates. Yet,
for other asynchronous design styles the control circuits are
synthesized automatically or semi-automatically using basic
gates (e.g., [2, 9]). SPICE simulation is impractical for these
circuits since energy consumption estimates are desired be-
fore their physical design. Moreover, since energy might be
expended in response to input signal changes prior to any
output signal change, we estimate a slightly di�erent �gure
of merit: average energy per external (input and output) sig-
nal transition.

To illustrate the issues involved in calculating energy
per external signal transition, let us consider the speed-
independent control circuit and its STG speci�cation de-
picted in Figure 1. This control circuit, called sbuf-send-ctl,
has 5 output signals, 3 input signals, and 9 internal signals.
The arrows in the STG speci�cation describe sequencing re-
quirements between transitions of input and output signals.
For example, the arrow between rejpkt+/1 and y1+/1means
that after the environment raises rejpkt, the circuit should
raise y1. The two arrows into rejpkt- from idlebar+ and
latchaddr+/1 respectively mean that once both idlebar+ and
latchaddr+/1 occur, the environment can lower rejpkt. In ad-
dition, the STG speci�es environmental choice using arrows
that emanate from circles, called places. For example, in the
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Figure 1: a) An STG speci�cation of the sbuf-send-ctl circuit [4, 7] and b) a corresponding speed-independent implementation.

above STG, there exists two arrows emanating from a place
to acksend+/1 and rejpkt+/2 with an arrow from reqsend+
leading into the place. This means that after reqsend+ oc-
curs, the environment chooses between raising acksend or
rejpkt, and thereby driving the circuit into di�erent cycles
of activity. The dark dot on the transition between idlebar-
and rejpkt+/1 denotes the initial state of the system; the
�rst transition that can �re is rejpkt+/1. (An STG's formal
semantics is given in Section 3.1.)

To de�ne energy per external signal transition for such
a circuit, the following de�nitions are needed: a trace T of
the circuit is a sequence of STG transitions ht1; : : : ; tni; T
is the set of all traces that start at the initial state and are
speci�ed to occur by the STG; and, T k is a set of all traces
in T that have k external signal transitions. For example, in
the sbuf-send-ctl STG, one trace in T 5 is T1 = hrejpkt+/1,
y1+/1, idlebar+, latchaddr+/1, rejpkt-/1i.

Note that there may be two signals in the STG speci�ed
to change concurrently. For example, the above speci�cation
allows idlebar+ and latchaddr+/1 to �re concurrently after
y1+/1 �res. In this case, each ordering of these two transi-
tions represents one interleaving of the two concurrent tran-
sitions. For each interleaving there exists a di�erent trace
in T . Hence, T 5 also contains the trace T2 = hrejpkt+/1,
y1+/1, latchaddr+/1, idlebar+, rejpkt-/1 i.

Second, we de�ne the energy consumed by a circuit dur-
ing the execution of a trace T , denote En(T ). A trace de-
scribes only the behavior of the external circuit signals, while
the energy consumed during the execution of a trace is also
dependent on the behavior of the internal signals in the cir-
cuit. The number of times gates switch during execution,
the order of arrival of input changes to a gate, the relative
directions of the changes, and the capacitive load on a gate
output all determine the energy consumption. This energy
is computed assuming the internal signals are allowed to set-
tle before and after the execution of the trace. For simplicity,
we assume this energy depends only on the capacitance at
the output of the gates that switch during the execution of
T . The well-known formula for energy consumption is:

En(T ) =
X

gates

1

2
�Cgate-load�V dd

2
�(# of gate switches): (1)

A more accurate model of En(T ) would consider the energy
consumed through charging/discharging of capacitance that
is internal to gates in the circuit along with other factors,
such as short-circuit current.

Consider the simulation of the trace T1. Initially, the
inputs and outputs are held �xed at the circuits initial state

and the internal signals are allowed to settle. Since, in the
initial state, only signal y0 is high, the only internal signal
high is u8. Starting from this state, the trace is simulated
and the number of circuit signals that switch is recorded. In
this case, signals y1 and idlebar go high, signal u8 goes low,
and signals u5, u6, and u9 �rst go high and then go low.
Each circuit signal transition is guaranteed to be monotonic
because the circuit is hazard-free [1, 2].

Third, we associate a probability for each trace in T 2

T k, denoted PrSTG(T ), subject to the constraint thatP
T2T k

PrSTG(T ) = 1 for all k. This probability depends

on gate delays and the probability of various environmental
choices. For example, consider the two traces T1 and T2 in
T 5. Since they are the only two traces of length 5, the sum of
their probabilities should equal 1. Their exact probabilities,
however, depend on the relative delays of the sub-circuits
that control them. For example, since the sub-circuit for
latchaddr has 3 levels of logic and the sub-circuit for idlebar
only has 2 levels, idlebar+ will most likely �re �rst. Since
idlebar+ �res �rst in T1, a delay analysis might generate a
probability of 0:8 for T1 and 0:2 for T2.

Finally, we can present our de�nition for average energy
per external signal transition, denoted E as follows:

E = lim
k! 1

P
T2T k

En(T ) � PrSTG(T )

k
: (2)

The focus of the paper is to provide an e�cient technique
to calculate the above equation for a large class of speed-
independent control circuits. To do this, we prove that for
the class of speed-independent circuits we consider, any pair
of traces T and T 0 that di�er only in the order of concurrent
transitions consume the same energy, i.e., En(T ) = En(T 0).
For example, the traces T1 and T2 discussed in the last sec-
tion di�er only in the order of concurrent transitions. Hence,
both traces consume the same amount of energy.

As a result of this property, an equivalence relation that
identi�es traces that consume equal energy, di�ering only
by the ordering of concurrent transitions, can be de�ned.
This relation partitions the traces T into a set of equivalence
classes �. Each class � 2 � contains all traces in which the
same input choices are made by the environment. We de�ne
the probability of an equivalence class PrSTG(�) to be the
sum of the probabilities of all traces inside the class. The
energy consumed by an equivalence class, En(�), is equal
to the energy consumed by any trace T in �. Average en-
ergy can then be computed based on the probability of each



equivalence class PrSTG(�) as follows:

E = lim
k !1

P
�2�k

En(�) � PrSTG(�)

k
: (3)

This result is the key justi�cation of our power estimation
procedure. This equation refers to the probability of equiv-
alence classes rather than that of individual traces. In the
presence of concurrent transitions, the probability of individ-
ual traces can depend on relative delays inside the circuit and
the environment, in contrast, the probability of an equiva-
lence class depends only on the statistics of various input
choices made by the environment. Hence, this result enables
us to estimate energy consumption without performing a
complicated delay analysis on the circuit or its environment.

Moreover, this equation enables us to calculate average
energy by simulating the circuit using a derived sequential
signal transition graph that de�nes a subset of the traces of
the STG and does not model any concurrency. We will show
that because of the lack of concurrency, the SSTG de�nes a
Markov chain. Using Markov chain analysis, the proportion
of each STG transitions that �res in an average trace in the
SSTG can be calculated. This result leads to a small system
of linear equations that can be used to calculate E.

3 Speci�cations and implementations

In this paper we restrict ourselves to free-choice STG speci-
�cations and their speed-independent implementations.

3.1 Free-choice STG

An STG [3] is a speci�cation formalism for asynchronous
sequential circuits. It is an interpreted Petri net, and as such,
can explicitly capture causality, concurrency, and choice.

A Petri net is a triple N = hP;R; F i, where P is a set of
places, R is a set of transitions, and F � (P �R) [ (R� P )
is the 
ow relation. A place p 2 P is a predecessor of a
transition t 2 R, and t is a successor of p if (p; t) 2 F .
Conversely, a transition t 2 R is a predecessor of a place
p 2 P , and p is a successor of t if (t; p) 2 F .

A free-choice net (FC net) is a Petri net where if a place
p has more than one transition as its successors, then p must
be the only predecessor of its successor transitions. Such a
p is called a free-choice place.

An STG is an interpreted free-choice Petri net: transi-
tions of the net are interpreted as value changes on external
signals of the speci�ed circuit. Positive transitions (labeled
with a \+") represent 0 ! 1 changes, negative transitions
(labeled with a \-") represent 1 ! 0 changes. Input tran-
sitions, which are underlined for emphasis in Figure 1, are
those that occur on circuit input signals I, output transitions
are those that occur on circuit output signals O.

The conventional graphical representation of an STG is
slightly di�erent than conventional Petri net representations.
STGs are represented using a directed graph, where transi-
tions are identi�ed by their name, places are denoted by
circles, and directed edges represent elements of the 
ow re-
lation. Places with only one predecessor and one successor
are omitted. Directed edges whose successor is a transition
represent sequencing constraints, either on the circuit to be
synthesized (if their successor is an output transition), or on
the environment (if their successor is an input transition).
They specify what set of transitions cause each transition.

A token marking of a Petri net is a non-negative integer
labeling of its places. A transition is enabled (i.e., the cor-
responding event can happen in the circuit) whenever all its
predecessor places are marked with at least one token.

An enabled transition may �re. This means that the
corresponding external signal changes value in the circuit.
When it �res, a token is removed from every predecessor
place, and a token is added to every successor place.

If a place marked with only one token has more than one
enabled successor transition, then only one of them may �re
non-deterministically. The other transitions are disabled by
its �ring. Hence, such successor transitions are referred to
as choice transitions.
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Figure 2: A portion of the STG and SG for sbuf-send-ctl.

A marking M 00 is reachable from another marking M 0

if there exists a sequence of enabled transition �rings that
produces M 00 starting from M 0. A marking M 0 is live if for
all markings M 00 reachable from M 0, every transition can
be enabled through some sequence of �rings from M 00. A
marked net is live if its initial marking is live. A marking
M 0 is bounded if the number of tokens that any place can
be holding after any sequence of �rings fromM 0 is bounded.
A marking M 0 is safe (sometimes referred to as 1-bounded)
if its is 1-bounded. A marked net is 1-bounded (safe) if its
initial marking is 1-bounded (safe).

Two transitions are said to be concurrent i� there exists
a marking, reachable from the initial marking, in which both
transitions are enabled.

An STG is live i� 1) the underlying free choice net is
live and safe, 2) no two transitions of the same signal are
concurrent, and 3) if two up-transitions of a signal are �red,
a down-transition of the same signal should always be �red in
between (and vice versa). In this paper, we restrict ourselves
to live STGs.

We annotate choice transitions with choice probabilities
that designate the probability of the environment �ring one
of multiple mutually-exclusive input transitions. In our ex-
ample, we annotated both choice transitions acksend+/1and
rejpkt+/2 with a probability of 0:5.

The reachability graph of a Petri net is a directed graph
where each node corresponds to a marking and an edge joins
a pair of marking M 0 and M 00 if there exists a transition t
that �ring from M 0 produced M 00 (the transition labels the
edge).

The state graph (SG) [3] of an STG is the reachability
graph of the underlying net where each node (henceforth
called state) is labeled with a vector of signal values. For a
given state s, the value of signal u is given by s(u). This
node labeling must be consistent with the SG edge labeling,
in other words for each edge s! s0 and each signal u: if the
edge is labeled u+, then s(u) must be 0 and s0(u) must be
1; if the edge is labeled u�, then signal s(u) must be 1 and
s0(u) must be 0; and otherwise s(u) must equal s0(u). The
labeling can always be done, as proven in [3], if the STG is
live. The procedure to �nd a SG from a STG is called token

ow and is given in [3]. A portion of the SG along with the
corresponding portion of the STG is depicted in Figure 2.

Notice that the SG can be exponentially larger than its
STG. The size di�erence is dependent on the amount of con-
currency expressed in the STG. In the STG, concurrency is
expressed implicitly with independent parallel paths of tran-
sitions, while, in a SG, each di�erent interleaving is explic-
itly represented by di�erent paths through the SG. The two
di�erent interleaving T1 and T2 that were discussed earlier
correspond to the two paths through the portion of the SG
depicted in Figure 2.



Our procedure for estimating power does not explore the
various interleavings and hence avoids the exponential com-
plexity associated with the state graph.

3.2 Speed-independent circuits

We model a circuit with a �ve-tuple G = hI;O;N;E;F i.
The sets I, O, and N are the input, output and internal
signals of the circuit respectively. They are collectively called
the circuit signals and denoted AImpl. E � AImpl � AImpl
is a set of directed edges that de�nes the connectivity of
the circuit signals. An edge e = (u; v) means that signal u
is a fanin of signal v. F is a labeling function that labels
each internal and output signal u with a binary function fu
that describes the function of the gate that drives this signal.
Two-output gates such as mutual exclusion elements can not
be modeled in this framework. Consequently, circuits that
contain such elements are not considered.

A signal is enabled if its current value does not equal
the value of its function given the current value of its fanin.
For example, if the current value of u is 0 and it is driven
by an AND gate whose inputs are all 1, then u is enabled.
When the signal changes value, the signal �res. A signal is
disabled if, before it �res, one or more of its fanins change
such that it is becomes no longer enabled. In practice, the
disabling of a signal can manifest itself as a voltage spike or
runt pulse. For a broad class of circuits using a conservative
delay model, there always exists a set of delays such that
this spike can propagate to a primary output [1]. Therefore,
such a disabling is generally considered a hazard and should
be avoided. For the sequel, a circuit is speed-independent
i� the circuit is guaranteed to be void of hazards under all
possible gate delays (assuming negligible wire delay) and the
circuit satis�es its speci�cation [1].

4 Concurrency and energy consumption

This section formalizes our claim that energy consumption
can be calculated without analyzing all possible interleav-
ings. First, we prove that two traces that di�er only in the
order of two concurrent transitions consume the same energy.
Then, we extend the result to all members of an equivalence
class of interleavings.

Let a binary relation W � T � N be the set of pairs
(T; i) such that in trace T transition ti and ti+1 are concur-
rent. Let the function swap(T; i) return the trace obtained

from T by swapping the ith and i+ 1st transitions. Then,
swap(T; i) is legal if (T; i) 2 W .
Theorem 1 If swap(T; i) is legal, then En(T ) =
En(swap(T; i)):
Proof: (By contradiction, sketch) For the purpose of reach-
ing a contradiction, presume the energy consumed in the two
di�erent traces is di�erent. Then there exists a gate u which
�res in the simulation of one but not both traces. Starting
from a simulation point in which signal u is enabled, simulate
the remaining part of the trace without letting u �re. The
circuit status after this simulation trace should be the same
as after simulations in which u does not �re. By de�nition of
our simulations, at this simulation point no internal signal
is enabled. Hence, gate u must have been disabled and the
circuit must not be speed-independent. A contradiction.

To extend this result to any set of transitions that di�er
only in the interleavings of concurrent transitions, we de�ne
a relation C � T �T such that (T; T 0) 2 C i� there exists a
sequence (including the zero length sequence) of legal swaps
that transform T into T 0. Then, any two traces in C consume
the same amount of energy. Moreover, it is easy to prove that
C is an equivalence relation. Therefore, it partitions a trace
set T into a set of equivalence classes �. We let �k represent
the equivalence classes of the set of traces of length k.

The equation for average energy can be recast in terms
of these equivalence classes rather than individual traces to
obtain Equation 3 repeated here for convenience:

E = lim
k !1

P
�2�k

En(�) � PrSTG(�)

k
: (4)

Algorithm 5.1 (Find SSTG)

/* Let N = hP;R;F i, be the speci�cation STG. */
/* Let M be a marking of the STG. */
/* Let t be a transition that drives the circuit into M . */
/* Let �re(M; t0) be the marking obtained from M

after �ring enabled transition t0. */
/* Let set S contain transition-marking pairs (t;M). */
/* Let i be a time stamp. */
Find SSTG(N;M) f
initialize S to include (null;M) and set i = 0
while S is not empty
remove some transition-marking pair (t;M) from S.
call add state(t) to add a node for t to the SSTG
if there exists an unseen non-choice transition t0

enabled in M
call add edge(t; t0) to connect nodes for t and t0

mark t0 as seen at time i and increment i
add the transition-marking pair (t0;�re(M; t0)) to S

else if there exists a set D of unseen mutually-exclusive
choice transitions enabled in M

foreach choice transition t0 in D
call add edge(t; t0) to connect nodes for t and t0

mark t0 as seen at time i and increment i
add the transition-marking pair (t0;�re(M; t0)) to S

else if there exists seen transitions enabled in M
let t0 be the seen transition with the lowest time stamp
call add edge(t; t0) to connect nodes for t and t0

call add places() to add free-choice places at transitions
with multiple predecessors or successors.

g

Figure 3: The algorithm to �nd the SSTG from a given STG.

The advantage of this alternative representation is that
the probabilities of each equivalence class depend only on
input-choice statistics. Hence, a delay analysis of the circuit
to determine relative probabilities of di�erent interleavings
caused by concurrent output signals is unnecessary.

5 The sequential signal transition graph

The energy of an equivalence class, En(�), is measured by
simulating a characteristic trace T� of � This characteris-
tic trace is de�ned by imposing an order on concurrent STG
transitions which is the same for all equivalence classes. Such
an ordering ensures that equivalence classes that contain dif-
ferent subtraces corresponding to the same part of the STG
will have the same choice of interleavings. We specify this or-
dering by taking the original STG and deriving a new STG,
called a sequential signal transition graph (SSTG), in which
all concurrency is serialized.

Algorithm 5.1, presented in Figure 3, �nds an SSTG for
a given STG. The resulting SSTG is comparable in size with
the initial STG. When run on the STG given in Figure 1,
the algorithm derives the SSTG illustrated in Figure 4.

Note that each trace of the SSTG T� is a characteristic
trace of the equivalence class � in the original STG. Infact,
the purpose of the SSTG is that the probability of the equiva-
lence class �, which recall is de�ned as the sum of PrSTG(T )
for all traces T in �, is equal to the probability of T� in the
SSTG, i.e.,

PrSTG(�) =
X

T2�

PrSTG(T ) = PrSSTG(T�) (5)

Using this fact, the average energy of the circuit can be
computed as follows:

E = lim
k! 1

P
T�2T

k

SSTG

En(T�) � PrSSTG(T�)

k
; (6)

where TSSTG is the set of all traces in the SSTG.

6 Calculating average energy

To calculate the average energy using the SSTG we de�ne
the long term proportion of an SSTG transition t, denoted



y1+/1

latchaddr+/1

idlebar+

rejpkt-/1

beginsend+

y1-/1

y0-/1

latchaddr-/1

beginsend-

reqsend+

rejpkt+/2

y1+/2

rejpkt-/2

acksend+/2

y0+/2

reqsend-/2

latchaddr+/2

acksend-/2

rejpkt+/1

y0+/1

reqsend-/1

acksend-/1

idelbar-

acksend+/1
0.50.5

Figure 4: The SSTG for the circuit sbuf-send-ctl.

�t, as follows:

�t = lim
k !1

P
T�2T

k

SSTG

(# of t in �) � PrSSTG(T�)

k
: (7)

Then, the equation for average energy can be recast as fol-
lows:

E =
X

t2R

�t �En(t); (8)

where R is the set of STG transitions and En(t) is the en-
ergy consumed simulating transition t. Note that each SSTG
transition t has a unique corresponding SG state s in which
t is enabled in which simulation begins. (This state can
be obtained through a reachability analysis of the SSTG.)
We begin simulation of the transition assuming all internal
circuit signals settle in this state. Then, we �re the exter-
nal transition and simulate the circuit until all internal sig-
nals have once again settled, recording which circuit signal
change. During simulation, a zero delay model can be used
for circuits which have no internal feedback since internal
signals can change at most once per external signal tran-
sition. Many automatically synthesized circuits have this
property, e.g., [2]. When internal feedback can exist, on the
other hand, internal signals may change multiple times per
external signal transition, requiring the use of a more real-
istic delay model.

Developing this equation from the SSTG is important
because now Markov chain theory can be used to obtain
the long-term proportions of STG transitions. To demon-
strate this, we �rst review Markov chains, then, explain why
the original STG does not generally de�ne a Markov chain,
and demonstrate that, under the assumption of uncorrelated
choices, the traces of the SSTG de�ne a Markov chain.

Consider a stochastic process fXn; n = 0; 1; 2; : : :g. If
Xn = i then we say the process is in state i at time n. If
the conditional distribution of any future state Xn+1 is inde-
pendent of the past states and depends only on the present
state, then the process is a Markov chain.

First, consider the stochastic process fTn; n = 0; 1; 2; : : :g
that models all possible traces in the original STG. In each
\time step", Tn can take on a �nite set of values, the STG
transitions. If Tn = t, then the nth state of the process is the
STG transition t. The traces do not de�ne a Markov chain
because concurrency is allowed. Consider, for example, two
concurrent transitions t and t0. The probability of a future
state Tn+1 being transition t0 given that Tn = t depends on
whether or not t0 was visited earlier (such as in state Tn�1),

i.e., the conditional distribution depends not only on the
current state of the process, but also on past states. This
violates the Markov model.

Now, consider the traces in the SSTG which exhibits no
concurrency. The only decision points made during the trace
are at choice places. If there is no correlation between con-
secutive input choices, the conditional distribution of the
future states Tn+1 depends only on the present state. The
transition probability between states corresponding to STG
transition t and t0, denoted Ptt0, are as follows:
� zero if there is no edge from t to t0;
� one if the only edge into t0 is from t; and
� the choice probability of t, if t is a choice transition.

Hence, the stochastic process is a �nite-state Markov
chain. In fact, in Section 7, we will argue that for speed-
independent circuits, correlations among input choices do
not a�ect the average energy consumption of the circuit.

Before we can present our �nal result, we must demon-
strate the our Markov chain satis�es a few properties. A
state t in a Markov chain is recurrent if, starting in state t,
the process will ever reenter state t. Since the STG is live
we are guaranteed after �ring t there will exist a trace in the
original STG that re�res t. Since we do not allow zero choice
probabilities we are guaranteed that the probability of this
trace is non-zero. Hence, our Markov chain is recurrent.

A Markov chain is irreducible if every state can be reached
from every other state. Because the original STG is live,
from every marking there exists a sequence of transitions
which enables every transition. Since this property extends
to our SSTG, our Markov chain is irreducible.

State t in a Markov chain is periodic with period d if the
probability of being in state t after n transitions starting
in state t is 0 whenever n is not divisible by d and d is
the largest integer with this property [11]. In other words,
starting in state t, it may be only possible to enter state t
at times 2, 4, 6, 8, etc, in which case state t will have period
2. State t is called aperiodic if d equals 1. Since a STG
transition t cannot �re twice without �ring a complete cycle
of the transitions in the STG, our Markov chain is periodic.

Because our �nite-state Markov chain is irredundant, re-
current, and periodic, it can be shown that the �t are the
unique non-negative solutions to the following equations [11]:

�t0 =
X

t2R

�t � Ptt0 ; for all t0 2 R (9)

X

t2R

�t = 1 (10)

Because most of the transitions in the SSTG have a single
predecessor, many of the above equations are trivial. For ex-
ample, since y1+ has a single predecessor, namely rejpkt+/1,
one of the equations is �y1+ = �rejpkt+=1: In other words,
many transitions are equiprobable and can be combined into
a sequence of transitionsLm. The di�erent sequences � form
a partition of the signal transitions in the SSTG. For the
SSTG depicted in Figure 4, we illustrate this collapsing of
equiprobable transitions in Figure 5.

The new system of linear equations based on this parti-
tion of sequences of equiprobable transitions are as follows:

�Lm =
X

Ll2�

�Ll � PLlLm ; Lm 2 � (11)

X

Lm2�

(# of transitions in Lm) ��Lm = 1: (12)

In our example, this transformation reduces the number of
needed equations from 24 to 4. Average energy can then be
calculated in terms of these transition lists as follows:

E =
X

Lm2�

�Lm � En(Lm); (13)

where En(Lm), the energy consumed in the transition list
Lm, is simply the sum of the energy consumed in its compos-

ite transitions. Hence, the exact value of E can be obtained
by simulating each STG transition once!



L1 = acksend+/1, y0+/1, reqsend-/1,

y1+/1, latchaddr+/1, idelbar+,
acksend-/1, idelbar-, rejpkt+/1,

rejpkt-/1

L2 = beginsend+, y1-/1, y0-/1,
latchadder-/1, beginsend-, reqsend+

L3 = rejpkt+/2, y1+/2, rejpkt-/1,
acksend+/2, y0+/2, reqsend-/2,
latchadder+/2, acksend-/2

0.50.5

Figure 5: The collapsed SSTG for the circuit sbuf-send-ctl.

7 Relationship to related work

Because the performance of a synchronous circuit is �xed by
the period of the global clock, the average circuit power can
be obtained from the energy consumed per clock cycle. As a
result, the switching activity (the expected number of times
a gate switches in one clock period) of circuit signals deter-
mines the energy and power consumption estimates. The
goal of current research is to obtain the most accurate esti-
mate of switching activity while maintaining low complexity.

Many synchronous energy estimation techniques address
taking into account correlations among di�erent circuits sig-
nals. Correlations among signals can be related temporally
(on the same signal at di�erent times) [5], spatially (between
di�erent signals at the same time), and spatio-temporal cor-
relations (di�erent signals at di�erent times) [8, 12, 10].

In our circuits, the only correlations that are not taken
into consideration by our Markov model are correlations be-
tween di�erent input choices. Correlations among the input
choices a�ect the probability of each trace. More speci�-
cally, they a�ect the probability of sequences of transition
lists. They do not a�ect, however, the expected number of
occurrences of a particular transition list in an average trace.
Since the energy consumed in a circuit depends only on the
expected number of occurrences of each transition list, we
can conclude that correlations do not a�ect average energy.

8 Results and Conclusions

We have applied our procedure to four circuits whose STG
speci�cations are modi�ed versions of those used in a large
industrial circuit [4] and report the results in Table 1. Since
these speci�cation are taken from a benchmark set [7], their
use in a large system is unknown. Hence, we had to make
some assumptions about their use. First, we assumed that
all mutually exclusive choice transitions are equiprobable.
Since these circuits have not been layed out, we had to make
some assumptions on the load capacitances of the gates in
the circuit. Second, we assume each fanout of a signal con-
tributes 25fF to the output load of the gate. The circuit
netlist provides the fanout of internal signals while each pri-
mary output is assumed to have a total of 4 fanouts. Third,
we assume a 5 volt power supply is used.

The column labeled jRj shows the number of signal tran-
sitions in the original STG, the column labeled jAImplj shows
the number of circuit signals, the column labeled j�j shows
the number of di�erent transition lists obtained by serializ-
ing and then collapsing the original STG. The last column E
represents our �nal estimate for average energy per external
signal transition.

The main purpose of the technique proposed in this paper
is to facilitate an energy consumption comparison between
two implementations of the same STG. Because the complex-
ity of the approach is very low, this technique may guide logic
optimizations (such as those described in [1]) to facilitate the
synthesis for low power. In addition, when combined with
the average number of transitions per high-level operation,

Average Energy Estimates

Circuit jRj jAImplj j�j E
sbuf-send-ctl 8 17 3 1.08 pJ.
sbuf-send-pkt2 9 17 6 0.806 pJ.

pe-rcv-ifc 11 37 8 1.56 pJ.
pe-send-ifc 10 38 7 1.38 pJ.

Table 1: Calculated average energy estimates.

the average energy per operation can be obtained. This will
enable circuits with di�erent STG speci�cations for the same
application to be compared. Using additional techniques de-
scribed in [6], we can also estimate the energy consumption
per operation for asynchronous circuits that contain both
datapath and control circuits.
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