
A Multiple Clocking Scheme for Low Power RTL Designy

Christos Papachristou Mark Spining Mehrdad Nourani

Department of Computer Engineering

Case Western Reserve University

Cleveland, OH 44106 USA

Abstract

This paper presents an e�ective multiple clocking scheme for
lower power RTL circuit design. The basis is to partition a
behavioral description of the circuit into m modules fed by n

non-overalapping clocks. The idea is is to operate each module
only during its corresponding duty cycle at a frequency f=n to
reduce power. power. However, the overall e�ective frequency
of the circuit remains f , the single clock frequency. The scheme
uses a resource allocation algorithm to synthesize clock module
partitions at the RTL. The allocation avoids combinational
power consumption during the o� duty cycles of each module.
The method has been implemented on Sparcstation ma-

chines using a commercial CAD tool which includes an activity-
based power estimator. Experimental results and comparisons
of the multiple clocking scheme to single clock (gated and un-
gated) designs are reported, entailing power savings up to 50%.

1 Introduction

The increasing demand for battery-operated devices, such as
cellular phones and notebook computers, requires a special at-
tention to power instead of speed which is a typical concern
in conventional VLSI design. However, optimizing for power
requires a second look at the entire VLSI design process, mean-
ing technology, architectures and even algorithms.
There are two sources of power dissipation in CMOS [1]:

1) Static dissipation mainly due to leakage current.
2) Dynamic dissipation due to: a) switching transient current;
b) charging and discharging of load capacitors.
Usually it is the dynamic switching components, resulting

from the charging and discharging of capacitors, which dom-
inate the total power consumption of CMOS circuits. The
dynamic power dissipation for a CMOS gate with a load ca-
pacitor CL is [1]: Pd = CL:V

2
DD:f , where VDD is the power

supply voltage and f is the frequency of switching.

Reducing VDD is an obvious way of power improvement. It
was shown in [2] that 60% power reduction is possible for a 3.3
Volt system compared to the same circuit runing with a 5 Volt

power supply. Unfortunately, this simple solution cost a speed
penalty for a VDD reduction which after all may not be accept-

able. Load capacitor is a technology-dependent factor and can
be reduced by using special implementation of transistors in
Silicon. The clock frequency is another important contributor

to the dynamic power dissipation and roughly speaking is an
indication of activities performed by a component.
� Prior Work. There are three levels that power consump-

tion methods have been investigated: 1) transistor , 2) logic ;

yThis work has been supported in part from contracts OAI
94-1-015 and SRC DJ-527.

and 3) register-transfer level or architecture. At the transistor
level, the objective is to optimize the transistor size, by careful
cell selection, thus reducing the parasitic capacitances of tran-
sistors and interconnect routings [3]. The work in [4] presents
an LP-based algorithm to �nd the best cell combination to
reduce power consumption. A pass transistor logic family was
found to minimize the capacitance and introduced in [5] as an
alternative to conventional CMOS logic family.
Much work for power optimization has focused at the logic

level. Several logic synthesis optimization techniques have
been proposed [6] to lower the power consumption. In [7]
power is minimized by modifying the function of each node
in the circuit. Re-encoding of a sequential circuit [8] and us-
ing gated clocks [9] are two techniques for power reduction in
sequential circuits.
Reducing power at levels higher than logic has been recently

attempted. A high-level synthesis system, HYPER-LP, pre-
sented in [10] uses a variety of architectural transformations
to estimate and optimize the power dissipation.
In this paper we present an e�ective multiple clocking scheme

for lower power RTL design. The main contribution of this
work is twofold. First, we show that using non-overlapping
multiple clocking to design a partitioned datapath, so that
each module is assigned to a distinct clock, is an e�ective way
of RTL datapath synthesis with minimum power consumption.
The working frequency running each partition module is f=n,
where f is the single clock frequency, however, the e�ective fre-
quency of the entire circuit remains f . This means the inactive
partitions are literally \turned o�" during their o� duty cy-
cle to reduce power dissipation. Careful selection of partitions
during RTL design assures achieving the same performance as
in the single clock datapath. Second, we present a multiple

clock allocation algorithm for power reduction. A key feature
of this scheme is holding the old input values as long as pos-
sible (in a register or through a MUX whose control line is
latched) to reduce the transitions on the ALU input ports.
This paper is organized as follows. Section 2 presents an

example illustrating the basic idea of our work. Section 3
describes RTL modeling and analysis of the multiple clock-
ing scheme. Section 4 presents our synthesis approach to low
power. Experimental results are in section 5, and the conclu-
sion in section 6.

2 Motivating Example

The data ow graph of Fig. 1(a) shows the behavior of a simple
circuit. This ow graph is scheduled in �ve time steps, T1, T2,
..., T5. In Figs 1(b) and (c) are two RTL circuit implemen-
tations of this behavior, Circuit 1, and Circuit 2, respectively.

+

+

+

+

-

a
b

c

d

e

x

y

u

v

w

-

T1

T2

T3

T4

T5

x, y, z u, v, w

+ - + -

bcd ea

abe c d

+ - +

x, u y, v z, w

Clock 1 Clock 2 Clock 1

T1 T3 T5 ...T2 T4 ...T1 T3 T5 ...

N3

N4

N5

N6

N2

N1

z

(a) Circuit Behavior

(b) Circuit 1: Single Clock

(c) Circuit 2: Non-Overlapping Clocks

Figure 1: Two Circuit Designs: Minimal Component and
Lower Power

Circuit 1 has been implemented by minimal resource alloca-
tion using two (+,-) ALUs. Speci�cally, we allocated nodes
N1, N2, N3 and N4, N5, N6 into the left and right side ALU
of Circuit 1, respectively. Circuit 2 is generated by allocat-
ing N1, N4; N2, N5 and N3, N6 into the left, middle and
right side ALU, respectively. The obvious di�erence between
these circuits is that Circuit 1 requires less resources than 2.
However, there is a more subtle di�erence. The two ALUs of
Circuit 1 work concurrently during the behavior using a sin-
gle clock . We notice that Circuit 2 is partitioned into two
disjoint subcircuits, shown in Fig. 1(c) by the unshaded and
shaded parts. The �rst subcircuit (unshaded) is active during
the odd time steps of the behavior, T1, T3, T5, ... whereas
the second subcircuit (shaded) is active during even intervals.
We achieved this partitioning by allocating behavioral nodes
at even and odd time steps, into separate subcircuits. Since
the activity of the two subcircuits occurs at non-overlapping

time intervals, it would be possible to use two non-overlapping
clocks for the corresponding subcircuits. The primary motiva-
tion for multiple clocking scheme of course would be to reduce
power consumption during inactive time slots. This is shown
in Fig. 2 illustrating the two non-overlapping clocks, Clock 1

and 2, as they relate to the original Clock.
There are two important remarks that we should make.

1) The frequency of the two clocks is f/2 where f is the fre-

quency of the original clock.
2) The e�ective frequency of the entire Circuit 2 is the same

as Circuit 1, i.e. f . In other words, although the disjoint
components of Circuit 2 are clocked at half the frequency of
Circuit 1, there is no loss of performance because the e�ective

frequency is the same. At the same time, there is potential for
power reduction on the disjoint subcircuits.
The potential power reduction can be argued as follows. Let

freq = f

Clock 1

freq = f/2

Clock 2

Single Clock

Figure 2: Multiple Clocking Scheme

us assume that the AC power consumption of Circuit 1 is given
by P1 = C1 V

2 f , where C1 is average load capacitance,
V is the supply voltage, and f the clock frequency applied.
For Circuit 2 we have P2 = (C21 + C22) V

2 f=2 where
now C21 and C22 are the load capacitances of the corre-
sponding disjoint sub-circuits of Circuit 2. Then, to achieve
power reduction in Circuit 2 we need C21 + C22 < 2C1,
which in the above example is quite feasible, con�rmed by ex-
perimetation (see Results section). Admittedly, this rationale
is approximate because it does not consider a more accurate
switching signal activity, nevertheless it provides the motiva-
tion for investigating lower power designs based on multiple
clocking schemes. For our results we take into account the
e�ect of switching activities in our power estimation.
The idea of multiple clocks of course applies to more than

two non overlapping clocks. Thus an implementation of the
Fig. 1(a) behavior using three clocks requires four ALUs. The
resulting circuit consists of three disjoint subcircuits. If the
load capacitances are C31; C32; C33 then to achieve power
reduction under the 3 clocking scheme we would need:
C31+C32+C33 < 3C1 and 2(C31+C32+C33) < 3(C21+C22).
Of course, there are tradeo�s between power and circuit cost
that may apply here.

3 Analysis of Multiple Clock Scheme

We now describe our basic RTL architecture model for a mul-
tiple clocking scheme. We focus on the datapath part of the
RTL structure, however, we also discuss the datapath inter-
actions with the controller [20] concerning important timing
issues. The analysis will be the basis of our synthesis method.
� RTL Structural Model. The basic datapath unit is the

Functional Block (FB). As shown in Fig. 3(a), FB consists of

3 layers of components, i.e, 2 Muxes { 1st layer { connected to
the two ports of an ALU { second layer { which is connected to
one or more memory elements (ME) { 3rd layer. The memory
elements could be registers or latches. The control points of
the Muxes and the ALU (select points) and the ME (load

point) are also shown. Shown also in Fig. 3(a) is the clock line
driving the FB registers. The Mux ports and the MEs serve
as the data input and output ports of the FB, respectively.
ADatapath Module (DPM), shown in Fig. 3(b), is composed

of a number of FBs using bus lines from the output of one

to the input of another. Speci�cally, every output port of
FBi to one or more input ports of other FBs, possibly FBi

itself. The external input and output ports of a DPM are

merely some of the input and output ports of its constituents
FBs. Moreover, the DPM has a number of control lines each

connected to a number of internal control points of the DPM.

From our viewpoint, the most important characteristic of the
DPM is that a single clock is used for its internal MEs.

ALU

Mux Mux

ControlControl

Control

RegReg

Control Control

Clock Clock

ALU

Mux Mux

RegRegReg

ALU

Mux Mux

Clock

Control

Data Input

Data Output

Data Input

Data Output

Datapath Module (DPM)Functional Block (FB)

(a) (b)

Figure 3: Functional Block and Datapath Module

A datapath structure consists of a number of interconnected
and disjoint DPMs, DPM1;DPM2;DPM3; ::: driven by the
non-overlapping clocks, respectively, CLK1; CLK2; CLK3; :::

This architecture model is shown in Fig. 4 for a 3-clock scheme.
The basic premise of this scheme is to consume power only
in one DPM at a time during its corresponding clock period,
while the other DPMs are essentially "turned o�".

DPM 1 DPM 2 DPM 3

Data Out

Data In

Clock 2 Clock 3

Control 1 Control 3Control 2

Clock 1

Figure 4: Multiple Clock data path Module architecture

� Timing Relationships and Power. Consider two dat-
apath modules, DPM1 and DPM2, Fig. 5(a). Assuming that
their memory elements are latches, the timing relationship of
the stored signal values R1 and R2 is depicted in Fig. 5(b).
Signal R1 switches only at clock period and it is stable else-
where. Since the input signals of DPM1, X1, Y1 etc, are fed by

DPM outputs they follow the same timing pattern as R1 and
R2. Note that the ALU output F1 must be stable right be-
fore Clock 1, at the latest, for R1 to make transition correctly.
This is illustrated in Fig. 5(b). The combinational delay of
the Mux and the ALU should satisfy this timing.

Let �12(k) denote the time interval between pulse k of CLK1

and k of CLK2 ; let �21(k) be the time interval between pulse
k � 1 of CLK2 and pulse k of CLK1. Also, �1(k) denotes the
k-th pulse of CLK1, and �11(k) = �12(k) + �2(k)+ �21(k) the
time interval between the pulses k and k + 1 of CLK1. This

notation is shown in Fig. 5(b).
Module DPM1 consumes power on its memory element for

WRITE, �1(k) and on its combinational part, Muxes and ALU.
The power cycle of DPM1 is as follows. Combinational power
begins consumption after pulse 1 of Clock 2 until F1 stabilizes,

Storage power is consumed during pulse 1 of Clock 1. 5(c). In

general, combinational power is consumed during �21(k � 1)
and storage power during �1(k), k � 1.
The basic requirements of our scheme with respect to power

consumption on module DPM1 are: a) no storage power dur-
ing �2(k), and b) no combinational power during �12(k).
Our design clearly satis�es requirement a). However, for b) to
be satis�ed there should be no value changes at the combina-
tional inputs of DPM1 during �12(k). This may or may not
occur for DPM1 depending on the type of input signals, type
(I) or (II) Fig. 5(d). Note type (I) signals occur when the
input is fed by di�erent DPM modules (di�erent clocks). For
type (II) the corresponding input is fed by outputs of the same
DPM. Although type (I) signal always satis�es our require-
ment, type (II) is not always unsatisfactory; only whenever
changes of value at Clock 1, �1(k), will cause combinational
power consumption during �12(k). Our scheduling of the com-
putational data ow provides this information of value changes
concerning every variable and this is used by our allocation
method (next section). However, it is not always possible to
allocate variables so that all inputs of each DPM will be fed by
outputs of the other DPMs and not by itself. Nonetheless, we
suggest the following design rules which make sure that type
(II) signals do not change value at clock 1, �1(k).
Rule 1. Extend the life span of a type (II) signal one cycle; this
may require an extra storage element to save the old value.
Rule 2. Ensure that the Mux control input remains unchanged
between adjacent clock 2 pulses, speci�cally during �2(k) +
�2(k+1) = 2=f where f is the system clock frequency. This
can be achieved by latching the control lines coming out of
the controller for the above time period, i.e. during adjacent
pulses of CLK1, 5(c).
� Latches versus Registers. The memory elements men-

tioned above pertain to registers or latches. The advantage of
using latches is that they consume signi�cantly less power than
registers and they are faster. However, in single clock systems,
registers have signi�cant advantages over latches, regarding
timing issues [11]. At the RTL, registers (edge-triggered or
master-slave) allow concurrent READs and WRITEs and this
property signi�cantly improves resource sharing at the RTL.
In non overlapping multiple clocking schemes it is quite possi-
ble to use latches provided the following basis requirement is
satis�ed [9]: �TComb � 2=f where f is the system clock
frequency (single clock).

4 RTL Synthesis with Low Power

The idea behind the lower power allocation is to force compo-
nents in the same partition to make transitions only during the
clock period dedicated to the particular partition. There are
two factors which force transitions, one is the control signals

and the other is the data being fed to the partition. Therefore,
by taking advantage of both of these considerations we can al-
locate our circuit into n partitions. We have shown that by
a careful partitioning of components and forcing the registers
feeding the components to hold their old value as long as pos-

sible we can reduce the power consumption e�ectively. In this
methodology, we use n non overlapping clocks, each assigned
to a distinct partition. To apply such a methodology for RTL
synthesis we must use special RTL synthesis techniques be-
cause conventional RTL synthesis (scheduling and allocation)

does not consider savings in input transition (and thus power)

Power

Comb

Power

Store

Power

Power

Comb

Power

Store

Power

No

Comb

Control 1

Clock 1

τ (κ)21

11τ (κ)

(κ) (κ+1)

Clock 2

2R

τ (κ)1τ (κ) 12τ (κ) 2

(κ)

1R
1X

1X

1

1

R

ALU 1

F

Mux 1’ Mux 1

111 1
XYUV

Control 1

Clock 1
R

F

XYUV
2 2 2 2

ALU 2

2

Mux 2’ Mux 2

2
Clock 2

ME 1 ME 2

Control 2

(c)

(b)

(a)

type (I)

type (II)

(d)

Figure 5: Timing Relationships of Data Path Modules in mul-
tiple clocking scheme

of components during clock cycles they do not operate.
In this section we describe our RTL allocation scheme which

not only implements partitions but also minimizes the input
transitions reducing power. We assume that the data ow
graph (DFG) schedule has been determined earlier by any
scheduling methodology such as in [14]. Our technique is a
\split-allocation" approach, i.e uses DFG partitioning based
on clock assignments and then proceeds to synthesize each
DFG part separately, connecting them at the end. The advan-
tage of the split allocator is that it can be easily adapted by
any existing allocator to generate partial datapaths with less
power requirements. Of course, the designer needs a clean-

up phase to glue independently generated partitions. We will
show that this clean-up is quite straight-forward and can be
done manually or automatically.
� Split Allocation for Multiple Clocking. There are

many conventional datapath allocation methods in the CAD

community with their own pluses and minuses. Most likely a
designer would prefer his/her own allocation tool. Our split
allocation approach can be adapted by any allocator to gener-
ate individual partitions. However, there is need for a clean-up
phase to interconnect the partitions and remove redundancies.

The basic idea is as follows. Suppose we have n non overlap-
ping clocks, CLK1; CLK2; � � � ; CLKn. Consider a scheduled
DFG which we partition into n disjoint sub-DFGs, based on
the schedule, P1; P2; � � � ; Pn clocked by CLK1; CLK2; � � � ; CLKn,
respectively. Clearly, the nodes of Pk are all nodes of the orig-
inal DFG located in steps clocked by the k-th clock. More

speci�cally, the nodes scheduled in time steps t (1 � t � T)
belong to Pk (1 � k � n � 1) if i mod k = j. Partition Pn
contains the nodes of time steps t where t mod n = 0.
Moreover, we preserve all scheduling information associated

with the sub-DFG Pk nodes that they have in the original
DFG. This means there will be \internal input" edges coming
into Pk from the other partitions, but for the purpose of the
split allocation, these edges will be treated as input edges of
Pk. Similarly, there are \output" edges of Pk that connect to
the nodes of the other partitions. Some edges of Pk may well
be primary inputs or primary outputs but it is possible that
Pk may not have any primary edges at all.
For the purpose of our method, we map the scheduling steps

of the original DFG into local steps of the partitions. Thus,
node N scheduled in global time step t will be mapped to
partition k = t mod n, and into local time step j = dt=ne.
Conversely, given local time step j and partition k then the
corresponding global step is t = (j � 1)n+ k.
Now, that we have generated all n scheduled sub-DFG's, all

we need to do is to \feed" each one to some allocator of our
choice. The results will be n datapath modules,
DPM1;DPM2; � � � ;DPMn clocked by CLK1; CLK2; � � � ; CLKn.

a d b y e v

+ + -

x uc

a b

d
e

x

y

z u

v

w

+

++

+

c
x

y

u

v
-

-

T=1’

T=1’’

Original Schedule

(a)

Partition 1 Partition 2

T=3’

T=2’

T=2’’

T=1

T=2

T=3

T=4

T=5

a b

c

d
e

x

y

z u

v

w

+

++

-

+

-

(b)

(c)

(d)

a d b y e v

+ + -

uwx z y v

uxc

y , vw , ux , z

Figure 6: Example of Split Allocation for Multiple Clock Dat-
apath Partitions

We describe our multiple clock datapath partitioning pro-

cess using a non-overlapping 2-clock example.
Step 1 (Partition the Schedule):

This partitioning is simply done based on odd and even time

steps in this example. Fig. 6 (a) and (b) show the original
schedule and two partitions based on odd and even time steps.
Note the following observations for the partitions:
{ Time steps 10; 20; 30 and 100; 200 are local time steps in each
partition to show the local sequencing.
{ Consider primary inputs and outputs for those edges cut
based on partitioning boundaries and their life span in the
original schedule. For example, in partition 1 y is considered
to be a primary input. x does not need to be introduced as
primary output in partition 1 because there is no operation in
even time steps (second partition) which consumes x after the
last time that it is used in odd time steps (i.e. by u in time step
3). These assumptions will create additional registers which
will be removed in the clean-up phase (i.e. Step 3).

Step 2 (Run Allocator on Partitions):
In this step the designer runs an allocation method of his/her
choice on the two schedules, independently. The allocator con-
siders the local time steps as real ones and uses the library
and its internal optimization methods (e.g. for ALU selec-
tion, REG minimization and MUX/BUS collapsing)[14]. The
output of this step will be two datapath partitions, shown in
Fig. 6(c), realizing two schedules.

Step 3 (Remove Redundancies):
To merge two datapath partitions to have a single datapath
with multiple clocking, we need to remove the redundancies
and establish necessary but missing connections as follows:
{ Look at the primary inputs of the original schedule. If some
of them are used in both partitions, we have a register or a
port in both partitions which can be merged. For example if
a is used in both partitions and allocator created one register
in each partion for it we can remove one of them and connect
the other one by a wire instead.
{ Those variables which were introduced as primary inputs or
outputs in the partitions but were not really primary (e.g. u
or v) do not necessarily need a register. So, the register should
be removed and a connection should be establishes instead.
{ Our clean-up phase also involves splitting those variables,
merged in the same memory element, having READ and WRITE
conicts so that they would be re-allocated into di�erent latches.
For example, in Fig. 6 (c), variables x and z have been merged
into the same memory element by the allocator. However, x
and z have READ and WRITE conict thus they can not be
stored into a single latch, resulting in a two latch implemen-
tation shown in Fig. 6 (d). Fig. 6(d) shows the �nal result at

the end of step 3.

5 Experimentation and Results

The allocation algorithm has been implemented in C on a SUN
SPARC-IPC workstation. To show the e�ectiveness of using

multi-clock datapath synthesis we have implemented some of
high-level synthesis benchmarks using COMPASS CAD sys-
tem [18]. In this section, we �rst explain our experimental
setup for datapath design and power estimation, and then
show the actual data for high-level synthesis benchmarks.

� Experimental Setup. To synthesize the circuits we used
�rst SYNTEST [14], a high level synthesis system producing
RTL datapaths which schedules an input circuit description in
behavioral VHDL. Then we applied our allocation technique to
synthesize multiclock circuit partitions in RTL. Finally we syn-

thesized the RTL circuit using a commercial tool, the COM-

PASS ASIC Synthesizer, based on 0.8 micron CMOS library
[17]. We computed the circuit power using the power option of
COMPASS which works by counting the transitions on each
node and computing an average frequency f over a given
amount of time T . Using the formula P = fCLV

2 with V be-
ing 4.65V for all experiments and CL being the loading capac-
itance on the particular node, the tool �nds the power for each
node. Then summing over all nodes in the circuit after time
T the simulator reports the overall average power consumed
by the circuit. We simulated the circuit with a large number
of random inputs, and having the tool report the power after
all patterns were executed. In other words, we allowed the
simulator to �nd the average transitions on nodes over a long
period of randomly inputed data. The random patterns were
only fed to the data lines, since we wanted to know the power
consumed while under operating conditions; as opposed to the
testing method where you feed random patterns to all lines
looking for fault coverage. Note that the ordering of inputs is
importantwhen considering transitions. However, we veri�ed
experimentallly that if the number of patterns is large any set
of random patterns will converge to the same result.
� Experimental Results. We present our results for four

example benchmarks generated by our allocation scheme as
compared to a conventional allocation scheme, without power
consideration. The results are tabulated in Tables 2 to 5. Each
table reports on �ve di�erent designs of the same example:
conventional allocation using non-gated single clock, conven-
tional allocation using gated single clock, commonly used in
industries [9]; and three datapaths based on latches.
In Table 2 we show our results for the FACET example[13].

As expected, there is a reduction of power as the number of
clocks increases, from 6.92 mW (for the conventional gated
clocks) to 3.52 mW (for 3 clock method) which is 49%. Also,
for our scheme with one clock the power has increased as com-
pared to the Conventional with Gated Clocks. This is because
of the increase of area with no reduction of the frequency.
Also, it is interesting the decrease in area from 1 to 2 and 2 to
3 clocks. This is best explained because of the multifunction
ALUs being used for the di�erent clocking scheme. The COM-
PASS tool does not reduce logic as well for most multifunction
ALUs, as opposed to the (+-) which reduces very well. The
role of the schedule can also help explain the area reduction.
The 3 clock scheme suits the particular schedule better than
the 2 clock scheme because of ALU utilization.

In Table 3 we show our results for the HAL example[12].
The results are mostly typical in that there is a continual de-
crease in power and an increase in area. The exception is
from the Conventional Gated to the 1 Clock where there is a
decrease in power and area. This can be explained by remem-

bering that we are using latches in our scheme and by looking
at the ALU allocation { again the (+-) ALU synthesizes well,
compared to other multifunction ALUs. The important results
here are the 8.12 mW (for the conventional gated clocks) to
3.73 mW (for our 3 clock method) or 54% reduction in power
versus the 5% increase in area.
In the remaining Tables we examine our results for the Bi-

quad Filter example and the Band Pass Filter example[15][16].
They are both similar to the previous results in terms of justi-
�cation. The Biquad Filter goes from 11.49 mW (for the con-

ventional gated clocks) to 7.19 mW (for our 3 clock method),

P (mW) Area ALUs R M

Non 1(-j),

Gated 9.85 2680425�2 1(*+), 1(&+), 1(/) 8 10

1(*+), 1(&+),

Gated 6.92 2383553�2 1(*+), 1(-j), 1(/) 8 10

1(*+j),

1 CLK 7.39 2668365�2 1(+-&), 1(/) 10 12

1(-j), 2(+)

2 CLK 6.41 2552425�2 1(/), 1(*&) 10 12

1(+&), 1(-), 1(*),

3 CLK 3.52 2484873�2 2(+), 1(/), 1(j) 14 4

Table 1: Multiple Clocks with Latches for the FACET example

Power Area ALUs Mem Mux

Non 1(+), 1(*-),

Gated 12.48mW 3080133�2 1(*+), 1(*->) 8 10

1(+), 1(*-),

Gated 8.12mW 2819025�2 1(*+), 1(*->) 8 10

2(*), 1(+-)

1 CLK 5.61mW 2627484�2 1(*>-) 12 20

3(*), 1(+-),

2 CLK 4.98mW 2901501�2 1(->), 1(*+) 14 20

1(*-), 5(*),

3 CLK 3.73mW 2954465�2 1(+), 1(>) 17 8

Table 2: Multiple Clocks with Latches for the HAL example

or 37% power reduction versus 9% increase in area. The Band
Pass Filter goes from 8.87 mW (for the conventional gated
clocks) to 5.78 mW (for our 3 clock method), or 35% power
reduction versus 12% increase in area.

6 Summary

We have presented an e�ective technique of low power design
for RTL circuits. The basis of our technique is a) to use a mul-
tiple clocking scheme of n non-overlapping clocks, b) to parti-
tion the circuit into disjoint modules and assign each module
to a distinct clock. The idea is to operate each module only
during its corresponding duty cycle, thus clocking each mod-
ule by a frequency f=n to reduce power. However, the overall
e�ective frequency of the circuit remains f the single clock fre-
quency. Our technique generates the module partitioning by
means of a resource allocation algorithm which uses behavioral
and scheduling information. And also makes sure that there is
no combinational power consumed by any module during its
o�-duty cycle time. Our method avoids READ-WRITE con-
icts of behavioral variables during the allocation process, thus
it is suitable for latch-based design, to further reduce power.

Our method has been implemented in C on Unix Sparcsta-
tions. For power estimation we perform simulation of circuit
transitions at the logic level using a commercial power esti-
mator from COMPASS. We have conducted extensive experi-
mentation and comparisons of our scheme, speci�cally, imple-

mentations single clock circuits with ungated and with gated
clocks, based on registers, to 1-clock, 2-clock and 3-clock imple-
mentations by our method, based on latches. We have reported
power savings up to 50% of the multiple clocking circuits.

References
[1] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-

Wesley, 1993.

[2] D. Dahl, \Designing High Performance Systems to Run from 3.3 V or
Lower Resources," Silicon Valley Personal Computer Conf., 1991.

[3] A. Chandrakasan, S. Sheng and R. Brodersen, \Low Power CMOS Digital
Design," IEEE Journal of Solid State Circuits., April 1992.

Power Area ALUs Mem Mux

Non 3(*+), 1(*-),

Gated 18.65mW 5118795�2 1(*+-) 18 35

3(*+), 1(*-),

Gated 11.49mW 4826283�2 1(*+-) 18 35

3(*+), 1(*+-),

1 CLK 11.31mW 5126718�2 1(*-) 20 47

4(*+), 1(*),

2 CLK 9.24mW 5194451�2 1(-), 1(*-) 20 56

4(*+),3(+-),

3 CLK 7.19mW 5327823�2 1(*), 1(-), 1(+) 26 45

Table 3: Multiple Clocks with Latches for the Biquad Filter

Power Area ALUs Mem Mux

Non

Gated 18.01mW 5588975�2 2(+-), 1(*) 23 39

Gated 8.87mW 4181238�2 2(+-), 1(*) 23 39

1 CLK 7.39mW 3049956�2 1(*), 1(-), 1(+) 15 50

2(*), 1(+-),

2 CLK 6.15mW 3729654�2 1(-), 2(+) 19 57

3 CLK 5.78mW 4728731�2 3(*), 3(-), 3(+) 25 66

Table 4: Multiple Clocks with Latches for the Band Pass Filter

[4] Y. Tamiya, Y. Matsunaga and M. Fujita, \LP based Cell Selection with
Constraints on Timing, Area and Power Consumption," ICCAD 94.

[5] K. Yano et al., \A 3.8 ns CMOS 16 multiplier using Complimentary

Pass Transistor Logic," IEEE Journal of Solid State Circuits., April 1990.
IEEE VLSI Signal Processing Workshop, Oct. 1992.

[6] A. Shen, A. Ghosh, S. Devedas and K. Keutzer, \On Average Power
Dissipation and Random Pattern Testability of CMOS Combinational
Logic Networks," ICCAD 92.

[7] S. Iman and M. Pedram, \Multi-Level Network Optimization for Low
Power," ICCAD 94.

[8] G. Hachtel, M. Hermida, A. Pardo, M. Pocino and F. Somenzi, \Re-
Encoding Sequential Circuits to Reduce Power Dissipation," ICCAD 94.

[9] L. Benini, P. Siegel and G. De Micheli, \Saving Power by Synthesizing

Gated Clocks for Sequential Circuits," IEEE J. of Design and Test of
Computers, 1994.

[10] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey and R. Brodersen,
\Optimizing Power Using Transformations," IEEE Trans. on CAD, Jan.
1995.

[11] E. J. McCluskey, Logic Design Principles, Prentice-Hall, 1986.

[12] P. G. Paulin and J. P. Knight, \Forced-Directed Scheduling for the Be-
havioral Synthesis of ASIC's," IEEE Trans. CAD vol. 8, No. 6, June 1989,
pp. 661-679.

[13] C. Tseng and D. P. Siewiorek, \FACET: A Procedure for the Automated
Synthesis of Digital Systems," DAC-83.

[14] H. Harmanani, C. Papachristou, S. Chiu and M. Nourani, \SYNTEST:
An Environment for System-Level Design for Test," European Design
Automation Conference (EURO-DAC), Sept. 1992.

[15] B. D. Green and L. E. Turner, \New Limit Cycle Bounds for Digital
Filters," IEEE Trans. Circuits and Systems, April 1988, pp. 365-374.

[16] S. Y. Kung, H. J. Whitehouse and T. Kailath, VLSI and Modern Signal
Processing, Prentice-Hall, 1985.

[17] VLSI Technology, \0.8-Micron CMOS VSC450 Portable Library," VLSI
Technology, Inc., 1993.

[18] Compass Design Automation, \User Manuals for COMPASS VLSI
V8R4.6," Compass Design Automation, Inc., 1994.

[19] R. Brodersen, A. Chandrakasan and S. Sheng, \Low-Power Signal Pro-
cessing Systems," IEEE VLSI Signal Processing Workshop, Oct. 1992.

[20] C. Su, C. Tsui, A. Despain, \ Saving Power in the Control Path of Em-
bedded Processors," IEEE Design and Test, pp. 24-30, 1994.

	Compendium95 Home Page
	ISLPD95
	Table of Contents
	Session Index
	Author Index

