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Abstract
In this paper, it is shown that for any rectangularly du-

alizable graph, a feasible topology can be obtained by us-
ing only either straight or Z-cutlines recursively within a
bounding rectangle. Given an adjacency graph, a potential
topology, which may be nonslicible and is likely to yield an
optimally sized 
oorplan, is produced �rst in a top-down
fashion using heuristic search in AND-OR graphs. The
advantage of this technique is four-fold: (i) accelerates top-
down search phase, (ii) generates a 
oorplan with minimal
number of nonslice cores, (iii) ensures safe routing order
without addition of pseudo-modules, and (iv) solves the
bottom-up algorithm e�ciently for optimal sizing of gen-
eral 
oorplans in the second phase.

1 Introduction
Floorplanning is important not only for layout synthe-

sis but even more during the early design stages for decid-
ing which design alternatives will probably yield optimal
quality. Finding a suitable topology and determining the
dimensions and aspect ratios of the modules in order to
satisfy certain optimization criteria such as area, perime-
ter of bounding rectangle, total wire length, etc., is the

oorplan optimization problem.

Constructive 
oorplanning approaches based on graph
dualization, [3, 4] generate only a feasible topology for a
given adjacency graph in polynomial time without consid-
ering any optimization criteria. The number of topologies
for a given interconnection pattern may be exponential [9].
The iterative approaches assume a given topology and try
to �nd an optimum implementation, given a set of aspect
ratios; module adjacencies may be altered. The problem of
minimizing area or perimeter for a given topology is known
as the sizing problem. Time complexity of this problem is
polynomial for slicing 
oorplans and NP-complete for gen-
eral ones [4]. Encouraging results have been obtained for
sizing by branch-and-bound method, simulated annealing
and generalization of Stockmeyer's algorithm for general

oorplans [4, 5], and for hierarchical nonslicible 
oorplans
of order 5 in [6, 10].

Techniques reported in [3, 12] provide an integrated ap-
proach to obtaining an area-optimal slicible 
oorplan from
a given adjacency graph. Several slicing trees are enumer-
ated in [12] and the minimum area for each slicing tree is
evaluated. A better integration is presented in [3] where
sizing features are utilized during slicing topology genera-
tion. For inherently nonslicible (INS) [8] and some slicible
rectangular graphs, the method in [12] forcibly produces
slicings by introducing pseudo-modules, whereas that in
[3] outputs slicings always except for INS graphs where it
aborts.

In this paper, a uni�ed approach is attempted for gen-
eral 
oorplans by (i) generation of a potential 
oorplan

topology that is likely to have both a minimum area im-
plementation and a minimal number of nonslice cores; (ii)
�nding the minimum area implementation for the topology
generated. Since the solution space of potential topologies
is huge, a well-known AND-OR heuristic search algorithm
[1] is adapted with novel heuristic estimates to reduce the
search e�ort. The decomposition is based on our result
that for any rectangularly dualizable adjacency graph, a

oorplan can always be found by considering only slices or
Z-cuts recursively. Moreover, such a 
oorplan has minimal
number of nonslice cores and a channel de�nition with safe
routing order. All channels are monotone [7], i.e., either
straight or Z-shaped, and number of Z channels is minimal.

In the second phase, the method reported in [10] is
extended to determine an optimal sizing e�ciently. The
proposed method outperforms existing approaches both in
time and in area.

2 Topology using Slices and Z-cuts
Preliminaries: A 
oorplan is a rectangular dissection

of a bounding rectangle by isothetic line segments called
cuts. The four sides of the bounding rectangle are denoted
by North, East, South and West. A 
oorplan is said to
be slicible if it is obtained recursively by using through-
cuts or slices only, otherwise it is nonslicible (Fig. 1a).
Formally, a 
oorplan is a plane graph Gd with each edge
either horizontal or vertical. The four degree-2 vertices on
the outermost cycle are denoted by NW, NE, SE, SW; all
other vertices are of degree-3. In the rectangular dualiza-
tion method [4, 9], interconnection requirements in a 
oor-
plan are represented by an adjacency graph G = (V;E),
where the vertex set V corresponds to the modules, and
an edge (u; v) 2 E implies adjacency of the modules u and
v. An adjacency graph is called rectangularly dualizable
(rectangular) if there exists a 
oorplan corresponding to
it. A complex n-cycle of a plane graph is a cycle of length
n such that there exists at least one vertex in the �nite re-
gion bounded by the cycle; this is denoted by Cn;m where
n = length of the cycle andm = number of vertices interior
to the cycle.

A rectangular graph may have more than one equiva-
lent 
oorplan realizations which may or may not be sli-
cible. Rectangular graphs which do not have any slicible
realization are known as Inherently Nonslicible (INS) [9].
A canonical embedding [9] of a 
oorplan is an equivalent

oorplan with the minimum number of nonslice cores.

A cut in the 
oorplan is a path in Gd between either
an exterior vertex of North (West) side and one of South
(East) side. The corresponding cut-set of edges in G de-
composes it into exactly two non-empty subgraphs Gl and
Gr. The two sequences of vertices on the two sides of these
cut-edges of G, called the two boundary paths Pl and Pr
of the cut, are essentially the new boundaries of the sub-

oorplans on the two sides of the cut, corresponding to



Gl and Gr. A chord free path (CFP) [11] in G is a path
P =< v1; v2; : : : ; vn > where for all i 6= j : a) vi 6= vj and,
b) if (vi; vj) 2 G, then ji � jj = 1. If P is not CFP, then
it has two vertices vi and vj such that ji� jj > 1 and the
edge (vi; vj) is in G; such an edge is called a chord of P . A
chord (vi; vj); i < j is called a maximal chord of P , if there
is no other chord (vk; vl) where k � i < j � l. If both of its
boundary paths of a cut are chord free, then it is called a
slice in a 
oorplan and both Gl and Gr are rectangular. A
vertical (horizontal) cut is between North and South (East
and West) sides. The cut-set in G corresponding to a slice
in a 
oorplan is referred to as a slice in G. Hence, a 
oor-
plan of a given G can be obtained in a top-down fashion
by recursively �nding slices among several possible cuts in
the 
oorplan. But for nonslicible 
oorplans, slices may not
exist at some levels of recursion.

2.1 Z Cuts and their properties
Although complete characterization of slicibility of a

rectangular graph is unknown, many su�cient conditions
for slicibility and properties of slicible 
oorplans appear
in earlier literature [8, 11]. Some new properties related
to nonslicible 
oorplans are presented below. Let F be a

oorplan and G the corresponding rectangular graph.
De�nition 1: A generalized k-cut in F is a cut for which
the number of maximal chords on either of its boundary
paths is at most k.
De�nition 2: A Z-cut in F is a generalized k-cut with
k = 1.

A cut-set in G for a generalized k-cut in F is referred to
as a k-cut of G. A slice is a generalized k-cut with k = 0.
Any generalized k-cut in F has a rectilinear embedding
with 2k bends or intermediate corners, and decomposes F
into two sub-
oorplans each having a rectilinear polygo-
nal boundary with 2k + 4 corners. It is easy to see that
any generalized k-cut can always be rectilinearly embed-
ded with 2k0 bends for any k0 > k . Floorplans with more
than 4 corners are called rectilinear 
oorplans. Both the
sub-
oorplans for a slice and a Z-cut (Fig. 1a) have rectan-
gular and L-shaped boundaries respectively. An L-module
has one concave and �ve convex corners. Four of these
convex corners are denoted by NW, NE, SE and SW in
a clockwise manner, where the NW corner is convention-
ally the leftmost one with maximum height; the remaining
two corners are labeled as MW (mid-west) and ME (mid-
east). Note that indivisible modules in F are rectangular,
not L-shaped or 2-concave rectilinear.

For the sake of e�ciency in optimal sizing and existence
of safe channel routing order, it is desirable to have a min-
imum number of nonslice cores in nonslicible 
oorplans.
Moreover, it was shown in [9] that a canonical embedding
has either 0 or 1 nonslice core at each level of its unique
maximal rectangular hierarchy (MRH). One nonslice core
within a maximal rectangle implies the existence of a Z-
cut. Thus any canonical embedding can be obtained by
recursively subdividing a rectangle with slices or Z-cuts de-
pending on whether there are 0 or 1 nonslice cores at that
level of its MRH. However, the non-uniqueness of canon-
ical embeddings leads to the observation that for a Z-cut
in F , the corresponding cut-set in G may be a slice of G.
Hence obtaining a particular nonslicible canonical embed-
ding from a given G in a top-down fashion is non-trivial.
On the other hand, the following pertinent question can
be raised:for any G, does there exist any rectangular dual
which can be recursively decomposed by using slices or Z-
cuts only? The a�rmative answer follows from the lem-
mata below.
Lemma 1: For any rectilinear 
oorplan, there exists an
equivalent rectilinear Frect having a slice.
Lemma 2: Let G be a rectangular graph, Cv be a k-cut in
G which decomposes it into Gl and Gr, and Pl(Cv) and

Pr(Cv) be the corresponding boundary paths in G on left
and right of Cv. If exactly one of Pl(Cv); Pr(Cv) has a
chord in it, then both Gl and Gr admit rectilinear 
oor-
plans.

Lemma 1 is proved by applying a theorem in [11] stating
that if a C4;n exists in G, a slice may not exist. General-
ized k-cuts may be necessary to rectangularly dualize it.
Fig. 1b shows a C4;1; recursive bipartitioning of the rect-
angular graph yields the 
oorplan of Fig. 1a with slices
and Z-cuts only. Therefore:
Observation 1. In any rectangular 
oorplan realization
of a C4;1 with four distinct corner vertices, generalized k-
cuts with k � 1 are su�cient to decompose it recursively.
There may be more than one possible Z-cut in C4;1.
Lemma 3: In a rectangular graph, the rectangular dual-
ization problem for the subgraph interior to a C4;k in G,
can be considered independent of that of the rest of G.
Lemma 4: In a complex 4-cycle C4;n(n � 1), if all four
of its exterior vertices are chosen as corners, a Z-cut can
always be obtained.
Hence the following important theorem:
Theorem 1: For obtaining a rectangular 
oorplan from a
rectangular graph using recursive bipartitioning, it is suf-
�cient to use generalized k-cuts, where k � 1, (i.e., slices
and Z-cuts only).
The above theorem suggests that a rectangular dual for a
given G can be obtained by a hierarchical bipartitioning
scheme using slices and Z-cuts; subgraphs interior to com-
plex 4-cycles in G can be independently dualized. Only Z-
cuts are used for complex 4-cycles. Moreover, from Lemma
4 these Z-cuts do not partition the subgraph interior to
the complex 4-cycle. Such special Z-cuts, called sZ-cuts,
are used in the proposed method in order to prune the
search space to a moderate size even for the general 
oor-
plans. In practice, the sZ-cuts may be used only when the
four corners chosen for a complex 4-cycle are distinct. For
rectangular graphs without any complex 4-cycle [11], our
method always produces a slicible 
oorplan. For graphs
with complex 4-cycles, it may or may not produce slicible

oorplan, depending on the sizing constraints. Observa-
tion 2: The number of nonslice cores, i.e., the number of
sZ-cuts in the topology generated is minimal.

The rectangular dual produced by this scheme can be
represented by a binary 
oorplan tree, TF where the root
represents the bounding rectangle and a cut in it, an inte-
rior vertex is either a rectangle with a slice or a Z-cut in it
or an L-shaped module with a slice in it, and the leaves are
the indivisible rectangular modules. Furthermore, the Z-
cuts and slices at each level simultaneously yield a unique
channel de�nition for the topology generated. Nonslici-
ble topologies with straight channels do not have a safe
routing order, since the channel dependency digraph has
directed cycles. Channel de�nition based on slices and Z-
cuts only lead to an acyclic channel dependency graph, as
shown below.

Let CGF be the channel dependency graph de�ned by
sZ-cuts and slices obtained by applying Theorem 1. Let
F be the 
oorplan topology produced by our top-down
scheme.
Lemma 5: (a) For any sZ-cut in TF , there is a unique
composite rectangle in F which is partitioned by the sZ-
cut.
(b) In CGF , there is no common directed cycle for the
vertices corresponding to two sZ-cuts on di�erent levels of
TF .
(c) In CGF of the unique composite rectangle for any sZ-
cut, there are no directed cycles.
The theorem below follows.
Theorem 2: CGF has a safe routing order.



2.2 AND-OR graph search
In our two-phase method for 
oorplan optimization, the

�rst phase of topology generation is formulated as an AND-
OR graph search. The entire set of possibilities explored
in order to achieve the solution to a problem, is either a
network or a tree and is called the search graph. A cost
function is associated with each arc or each node of the
search graph which contributes to the cost of the solu-
tion(s). In the decomposition scheme, a given problem is
recursively divided into several subproblems until no fur-
ther decomposition is possible. At any stage there can be
many possible decompositions. The root problem can then
be reconstructed in several ways by considering the pos-
sible combinations of the subproblems. Such an approach
is generally represented by an AND-OR graph, where each
node is either an AND node representing an actual de-
composition or an OR node representing a set of possible
decomposition strategies. A solution is a subgraph of the
AND-OR graph, and called a solution graph. In a combi-
natorial optimization problem, the objective is to �nd the
solution subgraph with optimum cost for the root. Heuris-
tic search methods exist [1] to tackle an NP-complete prob-
lem in this framework.

An optimal topology is determined by the top-down
search algorithm AO-FP � based on AO�, similar to [3].
In the AND-OR search graph, the root node s represents
the original adjacency graph with a chosen set of corners,
each AND node corresponds to a bipartition of an adja-
cency graph or its subgraph, and each OR node is the set
of possible bipartitions. The AND and OR nodes occur
at alternate levels, having associated costs based on sizing
constraints. Fig. 2 shows a portion of the AND-OR par-
titioning of an adjacency graph. A solution graph where
each OR node has one successor, gives a binary 
oorplan
tree TF and thus a topology (Fig. 3).

The work reported here being a generalization of [3],
the salient developments over the previous work are out-
lined below. The major addition in the �rst phase is de-
termination of Z-cuts and the associated rectilinear corner
assignments in the two subgraphs of the cut. From Lemma
4, it follows that within a complex 4-cycle with four dis-
tinct corner vertices, Z-cuts are to be looked for, whereas
in other cases, both slices and Z-cuts need to be searched.
The criterion for maximal chord is tested incrementally
during path-�nding. Bipartition of composite modules is
followed by a proper assignment of corners [2] to the sub-
modules. There can be four di�erent orientations for the
L-modules due to rotation and re
ection symmetry.

The de�nition of score of a cut, method of cost compu-
tation for any node in the AND-OR graph and Algorithm
AO-FP � for the �rst phase described in [3], hold good. In
order to improve the quality of solution, the partial cost
computation method mentioned in [3] may also be em-
ployed here. It should be noted that the second component
in the score of a cut, derived from the estimated range of
dimensions along the cut to minimize dead (wasted) area
in parent composite module, is considered for three inde-
pendent segments in the case of a Z-cut.

3 Optimal Sizing
The second phase of our method achieves optimal sizing

in a bottom-up fashion. Using the given set of possible im-
plementations of the leaf modules of TF produced by the
�rst phase, the implementations of its 
oorplan can be ob-
tained by bottom-up post-order traversal of TF and combi-
nation of the implementation lists of children of an internal
vertex to form that of their parent. An optimal implemen-
tation of the 
oorplan can then be obtained by selecting
one with minimum area from the irredundant set of im-
plementations for the root. Since area is a non-decreasing

function of length and width, minimum area of the 
oor-
plan implies minimum dead area.

A module can have many possible implementations. An
implementation of an L-module is represented by a 4-tuple
(w1; w2; h1; h2), where w1; w2(h1; h2) represent the lengths
of the longer and shorter horizontal (vertical edges, respec-

tively. A rectangle is a degenerate L-module with w1 = w2

and h1 = h2. For the de�nitions of redundant implemen-
tation of a module and R- (L-) lists for irredundant lists
of implementations for a rectangular (L-shaped) module,
the reader is referred to[10]. For convenience of processing
and to have a higher degree of pruning, the implementa-
tions in an R-list are arranged in order of increasing height
and decreasing width, and that in an L-list are in order of
increasing heights of left vertical and right vertical edges,
and decreasing width of the larger horizontal edge.

The non-slicing structures generated by the proposed
method are equivalent to the 5-wheel or nested 5-wheel.
The di�erent structures of 
oorplans generated by our
method indicate the presence of �ve types of vertices in
TF . A brief description of these types (Figs. 4a - 4e) is
given below.
Type A : a rectangle formed by the combination of two
smaller rectangles, as in Stockmeyer's algorithm.
Type B : an L-module formed by combining two rectan-
gular modules ( �-node [10] ).
Type C : an L-module obtained by joining a rectangular
module along either of the longer edges of an L-module (
�-node [10] ).
Type D : an L-module obtained by joining a rectangular
module along either of the shorter vertical edges of an L-
module ( 
-node [10] ).
Type E : a rectangle obtained by attaching two L-modules
with facing concave edges.
An irreducible R-list or L-list at a vertex of TF is obtained
by appropriately combining the irreducible R-lists or L-
lists of the successors. There are �ve basic procedures,
called type i procedure, i 2 fA;B;C;D;Eg for construct-
ing a set of irreducible R-lists or L-lists for a type i vertex.
The procedures for types A;B;C;D appear in the refer-
ences mentioned in the above paragraph and that for the
new type E is brie
y described below.

Let m be a vertex of type E with its successors m1

and m2 representing two L-modules which are combined
to form a rectangle. The dimensions of m1 and m2 are

given in two sets of L-lists Lm1
= fL1

m1
; L2

m1
; : : : ; LMm1

g

and Lm2
= fL1

m2
; L2

m2
; : : : ; LNm2

g. The dimensions of m is
formed by combining these L-lists sequentially and stored
in a single R-list, which is pruned e�ciently to remove re-
dundant elements. If the p-th element of Lim1

and the q-th

element of Ljm2
are (w1

1 ; w
2

1; h
1

1; h
2

1) and (w1

2 ; w
2

2; h
1

2; h
2

2) re-
spectively, the composite rectangle will have dimensions
given by (max(w1

1 + w2

2; w
2

1 + w1

2);max(w1

1 + w2

2 ; w
2

1 +

w1

2);max(h11; h
1

2; h
2

1 + h22);max(h11; h
1

2; h
2

1 + h22)) for verti-

cal Z-cut and (max(w1

1 ; w
1

2; w
2

1 + w2

2);max(w1

1; w
1

2 ; w
2

1 +

w2

2);max(h11+h22; h
1

2+h21);max(h11+h22; h
1

2+h21)) for hor-
izontal Z-cut.

4 Experimental Results
The algorithm has been implemented in C on DEC

Alphastation 250 4/266 with 266 MHz clock rate. Ta-
ble I summarizes for some benchmark examples and INS
graphs the performance in terms of total CPU time for
both phases, search space requirements and wasted area.
The results are highly encouraging. Moreover, the topolo-
gies obtained (some shown in Figs. 5-8), have safe routing
order and a minimal number of Z-cuts (may not be mini-
mum always). For slicible graphs, the method outputs ei-



Table I : Experimental results on benchmarks { topology generation and sizing

Problem # blocks # implemen- Area Wasted (%) CPU time Distinct nodes # sZ
tations obtained area (secs.) generated

Xerox [12] 10 310 30 0.00 0.008 82 0
Ex. in [8] (Fig. 5) 16 316 90 0.00 0.27 790 2

Ex. in [11] 22 322 11730 1.64 10.2 6437 0
EX6 [10] (Fig. 8) 24 2:03� 1016 1024 0.00 3.24 2373 5

EX10 [10] 40 440 242 0.83 1121.34 88962 0
Ex. in [8] (Fig. 6) 18 318 72 0.0 0.36 918 2
EX2 [10] (Fig. 7) 25 425 160 6.67 2.76 2351 1

EX5 [10] 25 825 638 6.33 29.28 2335 1

ther a slicible (entries 1,3,5 in Table I) or a nonslicible (en-
tries 2 & 4) 
oorplan depending on the sizing constraints,
with (near)-minimumwasted area. For INS graphs (entries
6,7,8), it always yields a nonslicible 
oorplan { in fact, a
canonical embedding except for entry 6.

5 Conclusion
This paper demonstrates an AI-based graph search

method to a well-known problem of VLSI layout design
along with the result on su�ciency of slices and Z-cuts
for topology generation. It has produced promising re-
sults; the bottom-up algorithm runs fast for the examples
tested. Our search algorithm can be improved further by
doing depth-�rst search for rectangular graphs having ex-
ponential number of possible slices at the root. An inad-
missible heuristic may guarantee polynomial termination
of search with some degradation in the solution quality.
A minor modi�cation in the path-search routine can deal
with rectangular graphs with weighted adjacencies.
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