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Abstract y

IC manufacturing process variations are typically T = T

expressed in terms of joint probability density functions ® e z
(jpdf's) or as worst case combinations/corners of the  Device behavior Device model Model_ing error
device model parameters. However, since device models behavior

can only provide approximations to actual device :: igure 1 Device behavior partitioned into
. X _ WO components

behavior, the difference between the two being the : )

modelling error, only a part of the measured variation in §

device behavior can be modelled using device model * _ Ve + ”/,Mm

parameter variations and the remaining appears as T T o

H

modelling error variation. In this paper, we present a novel  Manufacturing Device Model Modgi'ing Error
statistical parameter extraction methodology that Variation Variation Variation
accounts for the effect of modelling error on device model Figure 2 Two components of

manufacturing variation
tational complexity and accuracy, which determines the
form of the device model equations. Device model param-
eters are typically determined \daterministic parameter
extraction which involves the measurement of device
1. Motivation behavior and the use of an optimization-based curve-fit-
ting procedure that minimizes theodelling error(Fig. 1).

Inevitable fluctuations in the IC manufacturing process  Since device model parameters are used to characterize
result in manufacturing yields of less than 100% [1]. How- the nominal manufacturing process, device model parame-
ever, statistical design techniques can be used to improveter variations are typically used to characterize manufac-
the yield, at a minimal cost, by modifying the circuit turing process fluctuations. We may, therefore, define a
design. These techniques require a characterization ofstatistical device modeh terms of a set of device model
manufacturing process fluctuations, which can be equations and device model parameter variations,
expressed as a joint probability density function (jpdf) or expressed in terms of a jpdf or as worst-case combinations
as worst-case combinations of the device model parame-of the device model parameters.
ters. Statistical parameter extractions the process of

Unfortunately, the greatest detriment to the practical obtaining the device model parameter jpdf or worst-case
use of statistical design techniques in industry has been thecorners of a statistical device model. It consists of two
fact that no general methodology for determining the jpdf steps. The first step, calledatistical parameter sample
of device model parameter exists. This paper addressesextraction involves obtaining a sample of device model
this issue by developing a general methodology for the parameter sets that correspond to a sample of manufac-

parameter statistics and can be used to quantify the
statistical suitability of conventional MOS device models.

characterization of manufacturing fluctuations. tured devices. A straight-forward approach to statistical
parameter sample extraction is to perform a deterministic
2. Introduction extraction for each device to obtain a sample of device

model parameter sets. However, since each device model
Recall that alevice modek a mathematical representa- parameter set has a different modelling error, the real
tion of device behavior, expressed by a selevice model ~ device behavior variation will be only partially repre-
equationswritten in terms of a set of circuit variables (e.g. sented by the variation in the device model parameters; the
device terminal voltages) and a set of device model param-remainder is in the form of modelling error variation (Fig.
eters. Device models represent a trade-off between compu-2). As a result, this direct approach will provide an errone-
ous characterization of manufacturing variations if the

. . . . modelling error component of the real device behavior
- This work has been supported in part by the Semicon- yariation is significant and is ignored. In previous work
ductor Research Corporation




[2][3][4], the effect of the modelling error has been largely
ignored with the implicit assumption that the modelling
error variation is insignificant. We will see that such an

assumption is not always valid.The second step, termed

parameter statistic estimatipns used to condense the
information contained in this sample of device model

parameter sets into a set of worst case combinations of the

device model parameters or an estimate of the jpdf.

In this paper, we shall present a novel methodology for
statistical parameter sample extraction that takes into
account the effect of modelling error on parameter statis-

tics. Our treatment of the parameter statistic estimation

step will be brief and be restricted to the examples since it
is accomplished using well-known techniques.

3. Notation & problem definition

Let ¢ be ak-vector of measured device behavipr, be

the k-vector of the corresponding behavior predicted by
the device model, andg  be thevector of modelling

error. Then,
9= 9+L €
Let p be the m-vector of parameters of the device

model. Bothg andp are functions of , and while the
dependence op op is not known explicitly, the func-

tional dependence a¢f qn s explicitly known. et , ,
and I be théxm dimensional Jacobians, respectively, of

@, ¢, andZ with respect tp

We can state the statistical parameter sample extraction

problem as follows: Given a set of measurements from

identically designed devices in a manufactured sample and

a device model, determine a sample of device model

parameter sets that can be used to mirror the measurec

variations in device behavior. If such a sample cannot be
determined, ascertain the same.
Fig. 3 is a flowchart of the proposed statistical parame-

ter sample extraction methodology; each step is describedset of sufficiently linearly independent columns Jof

more fully below.

4. Typical device

Given a sample of devices, thypical devicas defined
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parameter vector deviatiomyp , for each device in the

sample is defined as the deviation of the sample device
parameter vector from the typical parameter vector.

5. Parameter subset selection

While a large number of parameters may be required to
describe the nominal behavior of a device, manufacturing

variations can usually be adequately characterized in terms

of only a subset of these, called #ignificant statistical

parametersThere are two reasons for this:

Device model parameters are functions of basic physi-

cal characteristics of the device. Typically, these basic

physical characteristics are outnumbered by the device
model parameters. Consequently, only a subset of
device model parameters are truly independent.

* Since the sensitivities of the behavior of the device to
different parameters vary widely, the most sensitive
parameters may be used to account for most of the
manufacturing-induced variations in behavior.
Theparameter subset selectipmocedure identifies the

set of significant statistical parameters as the parameters

corresponding to aufficientlylinearly independent subset

of the columns of  using an algorithm based on the singu-
lar value decomposition (SVD) [5] 6f , which is given as:

u'v = H )
0

Since the diagonal elements of the m-dimensional diag-
onal matrix, , are the singular valuesbf , we can use

them to determine the rank &f asn (<= myib o, , ,

whereo,, is the n-th largest singular valueJof . Then we

can partitionv asVv' = [VT VT] , Wherev, is nxm. We
172

wish to partition] as) = [jl jz] ,such that  contains a

. In

the SVD, an interchange of columnsXbf corresponds to
an interchange of the corresponding row¥.ofherefore,
to determine a set of sufficiently independent columns of

J, we can perform a QR decomposition, using column

as a device from the sample that is representative of thepivoting, of vV, and force a set of independent columns
sample. It may be chosen to be the device whose measureinto its first n positions. This ordering of the rows can then

characteristics are closest to the median of the characteris-

tics of the input devices. Its parameter vecmr, , can be
extracted using a deterministic parameter extractor [9].The

Device Model

Device Measurement Sample Parameter Sample

¥

Typical Device Selectio
and Extraction

1 Determination of Model Validit

Parameter Subget | Parameter Sample ExtractiFn
Selection

Figure 3 Flow-chart of statistical parameter
sample extraction methodology

be used to order the columns df to g}lat . Thus, the
dimensionalities op p, ,andp are reduced ton.

6. Parameter sample extraction

To obtain values for the device model parameters for
each device in the input sample, henceforth referred to as
the manufactured devigdt is convenient to introduce a
few variables.

* A = @(p.+Ap) —@p.) :manufacturing-induced varia-
tion in'behavior of manufactured device.



—@(p.) : device model componeoit
the mén’ﬁfactbrin’g' ariation - component that is
accounted for by device model.

* AL = Lp,+Ap) - L(p : modelling error componeruf
the manufacturing variation - component that is not
accounted for by the device model.

We intend to determinap  fromg

s AQ = @p,+Ap)

. However, since

Ag is unknown, a first step involves determinitg from
Ag, by solving the following non-linear program:
. A _
"Ap (8- AU (- Agi] -

Since the above non-linear program involves paramet-
ric fluctuations [6], it is only mildly non-linear. Therefore,
the Gauss-Newton method [7] can be used to solve it.

In order to illustrate some significant points, we shall
ignore the value of\p obtained from (3) and determine
Ap from A, as follows: Expanding(p, +4p)  in a Taylor
series aboup,

yields @(p,+2p) = @(p,) +3op . So thatAp = Jap  This

3

In order to use the above condition to determine the sta-
tistical validity of a device model, the validity matrix
needs to be estimated from an estimate]zof obtained

using theAg and thap values of the devices in the input

sample.We define AP = [A91 "'AE’r] and

AP = [Ac_pl A‘Pr] , wherer is the number of devices in

the input sample. Sincag = JAp , it can be seen that

AP = JAP, which consists ok over-determined systems

of r linear equations im unknowns. These can be solved

in a least squares sense to obtain an estimate of the ele-
ments ofJ J; can then be estimated using the relation,

=J-1J.
For any application, as N gets larger, the region of

validity shrinks. N is typically is chosen to insure that the
manufacturing-induced variation can be accurately repre-

(&
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and neglecting terms higher than first order Sénted by the device model parameter variations. If the

region of invalidity encloses the range of valuegpf  that
characterize all or most of the manufacturing variations of

over-determined system of linear equations can be solvedinterest then the model is not of much use.

in a least squares sense to obisin

7. Determining model validity

A strong condition for a device model to be a good sta-
tistical model is that the modelling error component of the
manufacturing variation is small compared to the device

model component i.e|ag| » |AZ| . This means that most
of the manufacturing variation is accounted for by the
device model component. If thg horm is used, this is

equivalent to,A{pTA@» N AgTAg , where N is a large posi-

8. Examples

The following examples used an input device sample
consisting of 61 dies, each containing ten NMOS devices
of varying combinations of widths and lengths. In each of
the examples, one of these dies was chosen as the typical
die and the typical parameter vector was extracted from
the measurements made on all of the devices within the
typical die using a commercial parameter extractor [9].

8.1 MOS linear region model

In this example, devices with W/L ratios of 26/

tive number. Since the focus of this work is on studying 20,m, a width-length combination at which short channel

lier,Ap = 3Ap, Ap = JAp, andAg = J,Ap . Therefore, the

above condition is equivalent tmxpTBAp>O where,

ATA . . . .
B=JJ-N JZTJZ, is thevalidity matrix A necessary and

sufficient condition for this to hold is that the eigenvalues
of B be positive.Then the device model is suitable for use
as a statistical model for all values & . Otherwise, its

validity is restricted to theegion of validity,a region in
the Ap space bounded h;QTBAp =0 , and illustrated in
Fig. 4 for a hypothetical 2-dimensional case.

Ap,;
Region of Validity

Qi 'Apl

Figure 4 Regions of validity and invalidity for a
hypothetical device model.

Region of Invalidity

[8]were used. Drain current measurements were made on
the devices with zero Vbs and a low Vds of 0.1V, a range
in which the devices operate in their linear regions.

The mobility parametegy, the threshold voltagd/to,
and the mobility degradation paramet@&rwere identified
as significant statistical parameters. This agrees very well
with what would be determined using knowledge of
device physics.

Two-way scatterplots of the extracted values of the
three significant statistical parameters are shown in Fig. 5.

A test of the goodness of the linear approximation used
in determining these parameters was performed by com-
puting the norm of the second order term in the Taylor

series expansion af that was ignored. It was found that,

g - .
0670 0675 0680 068

theta (in 1)

Figure 5 Two-way scatterplots of the
extracted parameters
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identified 4 additional devices as being in the region of
invalidity. Clearly, the second test is more accurate, since
it deals with the actual values of the device model and the
modelling error components of the manufacturing varia-
004 010 016 e o6 08 10 15 150 15 tion. Also, the value of the validity matrix used for the test
Fi d "%“"”H. ‘ ”’“"""V’f the ext ”“'”‘EV) d atore was only an estimate, since its true value is unknown.
Igure 6 Ristograms ot he extracted parameters _ Since about 25% of the extracted parameter sets were
the second order term was much smaller than the first found to lie in the region of invalidity, meaningful results
order term for all the devices and, therefore, the linear cannot be obtained from the parameter statistic estimation
approximation is justified. o ) . step. Thus we have an example of the inability of some
The eigenvalues of the validity matrix, using N=10, device models to model the measured variations in device
were positive and, therefore, this model was determined to behavior. Our conclusion is that the BSIM model is inap-
be a good statistical model. For the parameter statistic esti-propriate for use as a statistical model here.
mation step, we can obtain a set of worst case combina-
tions of the device model parameters using Fig. 5. 9. Conclusions
Identifying extreme combinations of the parameters gives
us the following set of worst-case corner¥to(0,u)= In this paper, a statistical parameter extraction method
(0.685,0.125,565.061); (0.669,0.131,540.187); has been presented. Its use of only the significant statistical
(0.668,0.130,577.422); (0.676, 0.122,571.210). In prac- parameters, obtained via the SVD method in this paper, to
tice, the specific worst-case combinations chosen will be characterize manufacturing fluctuations, can help avoid
application-dependent. the problems with spurious correlations that often occur
From the outset, we expected this model to prove to be with conventional methods.
a good statistical model because, for a wide-long device  The concept of the typical device used in this method,
with negligible short and narrow channel effects, it mainly provides an easy mechanism to separate the components
models a single physical phenomenon - the behavior of the of manufacturing variation that are and are not modelled
MOS device as a resistor - and does so very accurately. by device model parameter variations and, thus, can be
used to determine the statistical goodness of a device
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8.2 The MOS BSIM model model. To the best of our knowledge, this is the first
In this example, devices with widths ofy2@ and min- ﬁ%edrglp;t. to quantify the statistical suitability of device

imum lengths and the BSIM model [8], were used. The
extracted model had 61 parameters, of which 38 were T
length and width dependence parameters. A total of 1632 10. Bibliography
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