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Abstract

IC manufacturing process variations are typically
expressed in terms of joint probability density functions
(jpdf ’s) or as worst case combinations/corners of the
device model parameters. However, since device models
can only provide approximations to actual device
behavior, the difference between the two being the
modelling error, only a part of the measured variation in
device behavior can be modelled using device model
parameter variations and the remaining appears as
modelling error variation. In this paper, we present a novel
statistical parameter extraction methodology that
accounts for the effect of modelling error on device model
parameter statistics and can be used to quantify the
statistical suitability of conventional MOS device models.

1.  Motivation

Inevitable fluctuations in the IC manufacturing process
result in manufacturing yields of less than 100% [1]. How-
ever, statistical design techniques can be used to improve
the yield, at a minimal cost, by modifying the circuit
design. These techniques require a characterization of
manufacturing process fluctuations, which can be
expressed as a joint probability density function (jpdf) or
as worst-case combinations of the device model parame-
ters.

Unfortunately, the greatest detriment to the practical
use of statistical design techniques in industry has been the
fact that no general methodology for determining the jpdf
of device model parameter exists. This paper addresses
this issue by developing a general methodology for the
characterization of manufacturing fluctuations.

2.  Introduction

Recall that adevice model is a mathematical representa-
tion of device behavior, expressed by a set ofdevice model
equations, written in terms of a set of circuit variables (e.g.
device terminal voltages) and a set of device model param-
eters. Device models represent a trade-off between compu-

tational complexity and accuracy, which determines the
form of the device model equations. Device model param-
eters are typically determined viadeterministic parameter
extraction, which involves the measurement of device
behavior and the use of an optimization-based curve-fit-
ting procedure that minimizes themodelling error(Fig. 1).

Since device model parameters are used to characterize
the nominal manufacturing process, device model parame-
ter variations are typically used to characterize manufac-
turing process fluctuations. We may, therefore, define a
statistical device model in terms of a set of device model
equations and device model parameter variations,
expressed in terms of a jpdf or as worst-case combinations
of the device model parameters.

Statistical parameter extraction is the process of
obtaining the device model parameter jpdf or worst-case
corners of a statistical device model. It consists of two
steps. The first step, calledstatistical parameter sample
extraction, involves obtaining a sample of device model
parameter sets that correspond to a sample of manufac-
tured devices. A straight-forward approach to statistical
parameter sample extraction is to perform a deterministic
extraction for each device to obtain a sample of device
model parameter sets. However, since each device model
parameter set has a different modelling error, the real
device behavior variation will be only partially repre-
sented by the variation in the device model parameters; the
remainder is in the form of modelling error variation (Fig.
2). As a result, this direct approach will provide an errone-
ous characterization of manufacturing variations if the
modelling error component of the real device behavior
variation is significant and is ignored. In previous work
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Figure 1  Device behavior partitioned into
two components
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Figure 2  Two components of
manufacturing variation
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[2][3][4], the effect of the modelling error has been largely
ignored with the implicit assumption that the modelling
error variation is insignificant. We will see that such an
assumption is not always valid.The second step, termed
parameter statistic estimation, is used to condense the
information contained in this sample of device model
parameter sets into a set of worst case combinations of the
device model parameters or an estimate of the jpdf.

In this paper, we shall present a novel methodology for
statistical parameter sample extraction that takes into
account the effect of modelling error on parameter statis-
tics. Our treatment of the parameter statistic estimation
step will be brief and be restricted to the examples since it
is accomplished using well-known techniques.

3.  Notation & problem definition

 Let  be a k-vector of measured device behavior,  be
the k-vector of the corresponding behavior predicted by
the device model, and  be thek-vector of modelling
error. Then,

(1)

Let  be the m-vector of parameters of the device

model. Both  and  are functions of , and while the

dependence of  on  is not known explicitly, the func-

tional dependence of  on  is explicitly known. Let , ,

and  be the kxm dimensional Jacobians, respectively, of

, , and  with respect to .
We can state the statistical parameter sample extraction

problem as follows: Given a set of measurements from
identically designed devices in a manufactured sample and
a device model, determine a sample of device model
parameter sets that can be used to mirror the measured
variations in device behavior. If such a sample cannot be
determined, ascertain the same.

 Fig. 3 is a flowchart of the proposed statistical parame-
ter sample extraction methodology; each step is described
more fully below.

4.  Typical device

Given a sample of devices, thetypical deviceis defined
as a device from the sample that is representative of the
sample. It may be chosen to be the device whose measured
characteristics are closest to the median of the characteris-
tics of the input devices. Its parameter vector, , can be

extracted using a deterministic parameter extractor [9].The
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Figure 3  Flow-chart of statistical parameter
sample extraction methodology
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parameter vector deviation, , for each device in the
sample is defined as the deviation of the sample device
parameter vector from the typical parameter vector.

5.  Parameter subset selection

While a large number of parameters may be required to
describe the nominal behavior of a device, manufacturing
variations can usually be adequately characterized in terms
of only a subset of these, called thesignificant statistical
parameters. There are two reasons for this:
• Device model parameters are functions of basic physi-

cal characteristics of the device. Typically, these basic
physical characteristics are outnumbered by the device
model parameters. Consequently, only a subset of
device model parameters are truly independent.

•  Since the sensitivities of the behavior of the device to
different parameters vary widely, the most sensitive
parameters may be used to account for most of the
manufacturing-induced variations in behavior.
Theparameter subset selection procedure identifies the

set of significant statistical parameters as the parameters
corresponding to asufficiently linearly independent subset
of the columns of  using an algorithm based on the singu-

lar value decomposition (SVD) [5] of , which is given as:

(2)

Since the diagonal elements of the m-dimensional diag-
onal matrix, , are the singular values of , we can use

them to determine the rank of  as n (<= m) if ,

where  is the n-th largest singular value of . Then we

can partitionV as: , where  is nxm. We

wish to partition  as, , such that  contains a

set of sufficiently linearly independent columns of . In

the SVD, an interchange of columns of  corresponds to
an interchange of the corresponding rows ofV. Therefore,
to determine a set of sufficiently independent columns of

, we can perform a QR decomposition, using column
pivoting, of  and force a set of independent columns
into its first n positions. This ordering of the rows can then
be used to order the columns of  to get . Thus, the

dimensionalities of , , and  are reduced to n.

6.  Parameter sample extraction

To obtain values for the device model parameters for
each device in the input sample, henceforth referred to as
the manufactured device, it is convenient to introduce a
few variables.
• :manufacturing-induced varia-

tion in behavior of manufactured device.
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• : device model component of
the manufacturing variation - component that is
accounted for by device model.

• : modelling error component of
the manufacturing variation - component that is not
accounted for by the device model.
We intend to determine  from . However, since

 is unknown, a first step involves determining  from

, by solving the following non-linear program:

(3)
Since the above non-linear program involves paramet-

ric fluctuations [6], it is only mildly non-linear. Therefore,
the Gauss-Newton method [7] can be used to solve it.

In order to illustrate some significant points, we shall
ignore the value of  obtained from (3) and determine

 from , as follows: Expanding  in a Taylor

series about  and neglecting terms higher than first order

yields . So that,  This

over-determined system of linear equations can be solved
in a least squares sense to obtain .

7.  Determining model validity

A strong condition for a device model to be a good sta-
tistical model is that the modelling error component of the
manufacturing variation is small compared to the device
model component i.e., . This means that most
of the manufacturing variation is accounted for by the
device model component. If the l2 norm is used, this is

equivalent to, , where N is a large posi-
tive number. Since the focus of this work is on studying
parametric variations, as per the assumptions stated ear-
lier, , , and . Therefore, the

above condition is equivalent to  where,

, is thevalidity matrix. A necessary and
sufficient condition for this to hold is that the eigenvalues
of  be positive.Then the device model is suitable for use
as a statistical model for all values of . Otherwise, its
validity is restricted to theregion of validity,a region in

the  space bounded by , and illustrated in

Fig. 4 for a hypothetical 2-dimensional case.
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Figure 4  Regions of validity and invalidity for a
hypothetical device model.

In order to use the above condition to determine the sta-
tistical validity of a device model, the validity matrix
needs to be estimated from an estimate of  obtained

using the  and the  values of the devices in the input

sample.We define  and

, wherer is the number of devices in

the input sample. Since , it can be seen that

, which consists ofk over-determined systems
of r linear equations inn unknowns. These can be solved
in a least squares sense to obtain an estimate of the ele-
ments of .  can then be estimated using the relation,

.
 For any application, as N gets larger, the region of

validity shrinks. N is typically is chosen to insure that the
manufacturing-induced variation can be accurately repre-
sented by the device model parameter variations. If the
region of invalidity encloses the range of values of  that
characterize all or most of the manufacturing variations of
interest then the model is not of much use.

8.  Examples

The following examples used an input device sample
consisting of 61 dies, each containing ten NMOS devices
of varying combinations of widths and lengths. In each of
the examples, one of these dies was chosen as the typical
die and the typical parameter vector was extracted from
the measurements made on all of the devices within the
typical die using a commercial parameter extractor [9].

8.1  MOS linear region model

In this example, devices with W/L ratios of 20µm/
20µm, a width-length combination at which short channel
effects are negligible, and the SPICE MOS level 3 model
[8]were used. Drain current measurements were made on
the devices with zero Vbs and a low Vds of 0.1V, a range
in which the devices operate in their linear regions.

The mobility parameter,µ, the threshold voltage,Vto,
and the mobility degradation parameter, θ, were identified
as significant statistical parameters. This agrees very well
with what would be determined using knowledge of
device physics.

Two-way scatterplots of the extracted values of the
three significant statistical parameters are shown in Fig. 5.

A test of the goodness of the linear approximation used
in determining these parameters was performed by com-
puting the norm of the second order term in the Taylor
series expansion of  that was ignored. It was found that,
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Figure 5  Two-way scatterplots of the
extracted parameters
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the second order term was much smaller than the first
order term for all the devices and, therefore, the linear
approximation is justified.

The eigenvalues of the validity matrix, using N=10,
were positive and, therefore, this model was determined to
be a good statistical model. For the parameter statistic esti-
mation step, we can obtain a set of worst case combina-
tions of the device model parameters using Fig. 5.
Identifying extreme combinations of the parameters gives
us the following set of worst-case corners: (Vto,θ,µ)=
(0.685,0.125,565.061); (0.669,0.131,540.187);
(0.668,0.130,577.422); (0.676, 0.122,571.210). In prac-
tice, the specific worst-case combinations chosen will be
application-dependent.

From the outset, we expected this model to prove to be
a good statistical model because, for a wide-long device
with negligible short and narrow channel effects, it mainly
models a single physical phenomenon - the behavior of the
MOS device as a resistor - and does so very accurately.

8.2  The MOS BSIM model

In this example, devices with widths of 20µm and min-
imum lengths and the BSIM model [8], were used. The
extracted model had 61 parameters, of which 38 were
length and width dependence parameters. A total of 1632
measurements, covering the Vgs-Vds-Vbs space, were
made for each device. The parameter subset selection
algorithm identified the following 4 parameters:∆L, the
length reduction, tox, the oxide thickness, Vfbo, the flat-
band voltage, and phio, the surface potential at strong
inversion. These results agree very well with the observa-
tions made in [10]. In [10], the authors have identified
Vfbo, tox, ∆L, and∆W as being the significant statistical
parameters for use in MOS digital design. Since we are
dealing with only one width-length combination,∆L and
∆W are not independent parameters. Also, since our mea-
surements span a large range of back bias voltages, unlike
in digital circuits, our method identified phio as a signifi-
cant statistical parameter.

Fig. 6 shows histograms of the extracted values of the 4
significant statistical parameters. Verification of the ade-
quacy of the linear approximation, produced results that
were similar to those obtained in the previous example.

The eigenvalues of the validity matrix, using N=10,
indicated that there was a non-trivial region of invalidity
for this device model. A physical interpretation of a value
of 10 for N is that, we are allowing up to 25% of the man-
ufacturing variation to be not modelled by the device
model. Two tests were performed to identify the devices in
the input sample for which the extracted parameters were
in the region of invalidity. In the first test, the condition,

, was used. Ten devices were identified as hav-

ing values of  which were in the region of invalidity.

The second test used the condition, , and
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Figure 6  Histograms of the extracted parameters
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identified 4 additional devices as being in the region of
invalidity. Clearly, the second test is more accurate, since
it deals with the actual values of the device model and the
modelling error components of the manufacturing varia-
tion. Also, the value of the validity matrix used for the test
was only an estimate, since its true value is unknown.

Since about 25% of the extracted parameter sets were
found to lie in the region of invalidity, meaningful results
cannot be obtained from the parameter statistic estimation
step. Thus we have an example of the inability of some
device models to model the measured variations in device
behavior. Our conclusion is that the BSIM model is inap-
propriate for use as a statistical model here.

9.  Conclusions

In this paper, a statistical parameter extraction method
has been presented. Its use of only the significant statistical
parameters, obtained via the SVD method in this paper, to
characterize manufacturing fluctuations, can help avoid
the problems with spurious correlations that often occur
with conventional methods.

The concept of the typical device used in this method,
provides an easy mechanism to separate the components
of manufacturing variation that are and are not modelled
by device model parameter variations and, thus, can be
used to determine the statistical goodness of a device
model. To the best of our knowledge, this is the first
attempt to quantify the statistical suitability of device
models.
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