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Abstract

We present a new methodology for high-level syn-

thesis, which incorporates placement in an early phase

of the synthesis process. This placement, prior to in-

terconnect and storage allocation, allows for early and

accurate estimates on area and net length. These cost

factors are critical for the quality of the chip. The

system has been implemented and extensive tests ver-

ify the estimates to be accurate.

1 Introduction

As of today, the overall synthesis process of a digital
circuit is partitioned into two major phases, generally
referred to as high-level synthesis and physical design.
High-level synthesis is the process of computing a net
list for a given behavioral description. One main as-
pect of physical design is placement and routing of
the net list onto a rectangular surface, given area es-
timates on the width and height of each circuit block
(node of the net list). Major cost terms considered in
both phases are area and delay.

In high-level synthesis only rough estimates can be
given for the placement costs, for example the sum of
active hardware area (ALUs, registers, multiplexers)
and the number of nets. Generally, these estimates
form lower bounds on the exact area, as the overhead
for wasted chip area and routing area due to place-
ment are not known. Furthermore, without knowledge
of the placement the length of each net cannot be ac-
curately estimated. Yet, the maximum net length or
path length, respectively, is critical for many designs,
especially in DSP applications [1].

The incorporation of physical design issues during
high-level synthesis is becoming commonplace. Sev-
eral approaches [2, 3, 5, 11, 17, 23] have been pre-
sented throughout the last years. McFarland [17] was
�rst to present an approach to high-level synthesis and
placement. He synthesizes towards a two-dimensional
data path architecture, with local buses within each
data path and global buses connecting the local buses.
By clustering the operations of the data-ow before

scheduling and allocation, and cutting the cluster tree
at di�erent heights, di�erent design alternatives can
be evaluated. Unfortunately, the height of the data
paths cannot be predicted. Therefore, neither wasted
area nor net length can be minimized during the clus-
tering phase.

Ewering [3] presents a synthesis methodologywith a
tight coupling between high-level synthesis and place-
ment. He computes a linear placement of the func-
tional units prior to register and interconnect allo-
cation. In contrast, our target architecture is two-
dimensional and allows for the synthesis of di�erent
design-styles within the data path, e.g. bit-sliced ver-
sus regular.

Recently, Fang and Wong [5] presented an inte-
grated approach for iterative binding of functional
units and oorplanning. Their approach binds opera-
tions of the data-ow to preallocated functional units.
These functional units have already been assigned to
a �xed oorplan. As in the 3D-scheduling approach
by Weng and Parker [23], the inuence of register and
interconnect allocation on chip width and height is
neglected in this approach.

Our approach uses a uni�ed methodology, inte-
grating the process of high-level synthesis and place-
ment. Placement is done in an early phase of high-
level synthesis, after scheduling and module alloca-
tion, but prior to memory and interconnect allocation.
The structure to be placed is a communication graph,
where the nodes represent physical hardware devices
(ALUs) and the edges represent data transfers to be
routed between these devices. The target architecture
is a two-dimensional partitioned bus architecture (sec-
tion 2).

Any placement prior to register and interconnect
allocation can only be successful, if memory and inter-
connection requirements can be estimated beforehand
(a priori) and incorporated into the placement. Oth-
erwise, the placement will be of poor quality. In our
method, we estimate memory and interconnect area
during placement and validate these estimates later



on. Our estimates prove to be accurate on typical
data-ow dominated benchmarks.

Our paper is organized as follows. We present our
target architecture in section 2. Section 3 deals with
our methodology in detail as well as with the subprob-
lems solved within our approach. Finally, we evaluate
our results in section 4 and give conclusions in section
5.

2 Target Architecture
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Figure 1: (a) Target architecture consists of a set

of parallel stacks. (b) Interconnection within a stack

through partitioned buses.

Figure 1(a) shows the target architecture. The ar-
chitecture has the following characteristics (references
point to similar architectures in the literature):

� The overall chip is composed of a set of parallel
data paths, called stacks. These stacks are con-
nected through global buses. [2, 16, 17, 22].

� A stack consists of a set of functional units, inter-
connected by partitioned buses [3, 18, 19]. Parti-
tioned buses reduce not only wiring area, but also
signal capacity. A data transfer does not require
driving the complete length of a bus, but only
those bus segments that lie on the route from its
source to its target. Switches disconnect the ac-
tive bus segments from the inactive ones. Thus,
this architecture has advantages in reducing net
length and therefore fetch cycle delay as well as
minimizing power.

� Each functional unit includes local memory. This
feature provides multiple storage locations for

each value of the data-ow and hence exible
scheduling of communications [3, 7, 13].

� The routing graph has a tree structure and
thus, for each communication the global route
is uniquely determined. This is advantageous,
when computing the communication density dur-
ing placement (section 3).

We use two-phase clocking in our architecture. This
clocking necessitates each value that is produced by an
ALU to be stored in the local memory at the end of
the execute phase. These values are then available for
transfer at the beginning of the next fetch phase, at
the earliest. The length of the execute phase is de-
termined by the delay of the ALUs, and therefore de-
pends predominantly on module selection. The delay
of the fetch phase depends on the signal capacity of the
bus segments to be driven. To a �rst approximation,
we can assume the delay of the fetch cycle to be pro-
portional to the maximum length of any data transfer.
Thus, minimizing the maximum transfer length also
minimizes the length of the fetch cycle.

We do not know of any high-level synthesis system,
which can accurately estimate or compute the length
of the fetch phase without knowledge of placement.
To the best of our knowledge, APPlaUSE is the �rst
system to minimize the length of the fetch cycle and
the area of the resulting chip by integrating placement
into high-level synthesis.

3 APPlaUSE methodology
Input to our system is a control/data ow graph

(CDFG). We use the CASTLE system [24] for gen-
erating the CDFG from a behavioral description in
VHDL, Verilog or C/C++. The design ow of AP-
PlaUSE is depicted in �gure 2.

As in many high-level synthesis systems, we start
o� by performing data-ow graph scheduling, module
selection and module allocation, followed by binding
of operations to allocated modules. In the current
implementation we use an integer programming for-
mulation as in [9, 10] or a force directed approach [20]
for time constrained DFG scheduling. All methods
presented in this paper can handle a scheduled DFG,
which includes pipelined ALUs and multicycling. The
resulting data structure is a communication graph (�g-
ure 3(c)). The nodes of the graph correspond to allo-
cated modules, the edges correspond to values of the
data-ow, which have to be transferred over the buses.
Each edge is labeled with the production time of its
value and, for each terminal node, with the consump-
tion time of this value at the corresponding ALU.

Many high-level synthesis systems continue with al-
location of interconnect and memory. In contrast, we
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Figure 2: APPlaUSE: Synthesis Methodology
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Figure 3: Example of a communication graph result-

ing from a data-ow graph. (a) program code (b)

scheduled data-ow graph (c) communication graph

�rst determine the placement of the communication
graph onto our target architecture. Placement of com-

munication graphs is the task of determining a location
for each functional unit within the stacks, such that
area, net length and the number of simultaneous data
transfers in every region of the stack are minimized.
The control step, at which these data-transfers are
scheduled onto the buses, is variable within the given
production and consumption time frame. Scheduling

of communication graphs is the task of determining
a control step for each data-transfer, such that the
number of simultaneous transfers in every region of
the stack is minimized. Consequently, placement and
scheduling of communication graphs are interdepen-
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Figure 4: Two di�erent schedules for the example in

�gure 3, resulting in (a) three buses and four registers

and (b) two buses and six registers

dent tasks. The knowledge of transfer times inuences
the placement and the knowledge of placement inu-
ences the communication schedule. We resolve this
interdependency using the following idea:

In order to determine transfer times, we cannot use
the actual target architecture, since the placement is
not yet known. Therefore, we use a simpli�ed archi-
tecture, which is composed of a single linear data-path
with non-partitioned buses as in �gure 3. Each value,
that is written onto a global bus, drives the com-
plete length of the bus. Therefore, the locations of
the source and target functional units are irrelevant to
bus load. This architecture trivializes the placement
problem su�ciently for computing the estimates. Our
results justify this approach (section 4). For this ar-



chitecture we solve an a priori scheduling of commu-

nications problem, using integer programming. We
minimize a weighted sum of buses and registers. In-
creasing the priority of buses will increase the num-
ber of registers and vice versa, resulting in wider or
higher designs, respectively. Details on how we solve
this problem have been presented in [7].

FU
1

A
L

U

REGS

FU
k

A
L

UREGS

Figure 5: Linear data path architecture without par-

titioned buses

For any given placement of the communication
graph on our two-dimensional partitioned bus archi-
tecture, we use the a priori communication schedule
for calculating the local bus load (local communica-
tion density) and the local register requirement (local
lifetime density) at each functional unit. Thus, we
are able to estimate interconnect and storage alloca-
tion and, therefore, we can extend the bounding box
of each ALU to include the area for the registers and
the buses required for the respective functional unit
(�gure 6). This approach of added area during place-
ment is also common in oorplanning with wiring-area
estimation [14, 25]. Also, care has to be taken in es-
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Figure 6: Memory and interconnect estimation in

APPlaUSE. (a) Bounding box without extra area. (b)

New bounding box for each functional unit incorpo-

rating estimated area for registers, buses, multiplex-

ers, and drivers.

timating the area for multiplexers, bus drivers, and
switches. The exact number of drivers and multiplex-
ers as well as the number of switches partitioning the
buses can be determined only after bus and register
assignment. For each estimated register, we add ex-

tra area of half the width of a multiplexer and one
and a half the width of a driver. We have extracted
these approximate static factors by inspecting our syn-
thesized results for the benchmark set [8] (section 4).
The number of switches is estimated by analyzing the
communication load in each data path [6].

After placement, we determine an optimal com-
munication schedule with respect to this placement,
which we call a posteriori scheduling of communica-

tions. We extend the integer program formulation
for the non-partitioned architecture to the partitioned
two-dimensional architecture. Here again, we have the
possibility to trade o� buses against registers.

After this phase, we know the placement of the
functional units and the data transfer times. With this
knowledge, the number of registers and buses is deter-
mined. We proceed with register and bus assignment,
as well as multiplexer, bus driver and switch gener-
ation and �nally complete the resulting data path.
These subtasks are modeled as well-known graph theo-
retic problems and are solved using optimal or heuris-
tic approaches. Speci�cally, we use the left-edge al-
gorithm for register assignment [12], Tseng's heuristic
[21] for bus assignment and we solve a minimumclique
partitioning problem on interval graphs for switch gen-
eration. Details of these methods are given in [6].

4 Results
In order to evaluate our system, we have to answer

two questions.

1. How good are the estimates on area and net
length, which we compute during placement? In
order to answer this question, we compare the
estimates of the minimal cost placement, which
we choose after simulated annealing, to �nal chip
area and net length.

2. How good are our designs in comparison to other
systems? This question is somewhat more di�-
cult to answer. There have only been few publi-
cations of data path chip area for the benchmark
set. We compare our system with HAL [20], PAR-
BUS [3] and CASS [2].

We have synthesized the well-known benchmarks
Di�erential Equation Solver, 5th Order Elliptical Fil-

ter, and Discrete Cosine Transformation (DCT) [8]
with di�erent bounds on the number of control steps
and also di�erent module libraries, resulting in di�er-
ent schedule lengths and numbers of allocated ALUs.
Here we present the results for the DCT example. Ta-
ble 1 shows our results for this example and answers
the �rst question above. The estimated area and net
length are given and, after each �gure, respectively,
the deviation in percent from the �nal area and the



maximum net length is presented. For example, in
row 1 APPlaUSE estimated an area of 11.52 mm2

and a maximum net length of 6188 �m. The exact
values were 11.88 mm2 for the area and 5870 �m for
the maximum net length. For all benchmarks the es-
timates were within a range of -12% to 12% for both
the area and the maximumnet length. Note, that this
maximum net length estimates the length of the fetch
phase in a �rst approximation. The main deviation is
in the width of the data path, because we use static
estimates for the number of multiplexers and drivers.

The �rst four designs for the DCT use a schedule
length of 7 clock cycles and 14 ALUs, the other four
use a length of 10 clock cycles and 9 ALUs. Thus, each
block of four designs refer to the same communication
graph. Each of the four designs vary in two other pa-
rameters � and �. � controls the number of buses and
registers. A small value of � minimizes the number of
buses and a large value of � minimizes the number
of registers. Similarly, a small value of � minimizes
the maximum net length and a larger value of � min-
imizes area. The accuracy of the estimates allows for
an evaluation of physical design parameters and the
selection of the "optimal" design of all design space
alternatives prior to register and interconnect assign-
ment. Our experiments have shown, that the time for
a design space exploration with di�erent parameters
of � and � can be reduced by approximately 25% to
40%, due to the fact that the �nal assignment phase
is performed only once.

Ewering [4] presented results on data path chip
area for a linear, partitioned bus architecture in the
PARBUS system. He compared his results to designs
made by HAL [20]. The designs by HAL are targeted
towards a multiplexed architecture, which Ewering
handed over to a sophisticated place-and-route tool
[15] for computing the chip area and net lengths. In
order to compare to the results of Ewering, we use his
hardware library, which corresponds to a 2�m tech-
nology. Further, we take over his assumption, that

� � Area (mm2)
max. Net
Length (�m)

Est % Est %

0.2 0.5 12.62 -3 6188 5
0.8 0.5 14.13 5 6340 37 cycles

14 ALUs 0.2 0.9 11.53 -1 8088 6
0.8 0.9 11.39 3 7040 8

0.2 0.5 8.76 9 6012 1
0.8 0.5 8.71 12 5580 110 cycles

9 ALUs 0.2 0.9 7.10 6 6712 0
0.8 0.9 6.87 11 6316 5

Table 1: Results for the DCT

multipliers can be designed in a bit-sliced fashion and
therefore only one linear data path is feasible.

The multiplexed architectures by HAL proved to be
nearly twice as large in area as those of PARBUS. Our
results are 1% to 8% better than those of PARBUS
and also 5% to 8% better than those of CASS.

Figure 7: Screen dump of the synthesized Discrete

Cosine Transformation. This design is optimized for

area.

5 Summary and Conclusions

We have integrated placement into high-level syn-
thesis by placing an intermediate structure, called
the communication graph. The nodes of the commu-
nication graph are labeled with tight estimates on the
width and height of the hardware needed for each func-
tional unit. We derive these estimates by scheduling
the data transfers of the data ow on a restricted archi-
tecture prior to placement. After placement we com-
pute the optimal communication schedule together
with the allocation of register and interconnect. The
tight estimates on physical design data allows a con-
siderable reduction in design time, because the designs
can be evaluated prior to interconnect and register al-
location and assignment. This di�cult and thus rather
time consuming optimization procedure only need to
be performed once for the best design.
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