
PROP: A Recursive Paradigm for Area-E�cient and Performance

Oriented Partitioning of Large FPGA Netlists

Roman Ku�znar1 Franc Brglez2

1Dept. of Electrical & Comp. Eng., University of Ljubljana, Tr�zaska 25, 61000 Ljubljana, Slovenia
2CBL, Dept. of Electrical & Comp. Eng. Box 7911, North Carolina State University, Raleigh, N.C. 27695, U.S.A.

(WWW: http://www.cbl.ncsu.edu/www/)

Abstract { In this paper, we introduce a new recursive
partitioning paradigm PROP which combines partitioning,
replication, optimization, to be followed by another recursion
of partitioning, etc. We measure the quality of partitions in

terms of total device cost, logic and terminal utilization, and
critical path delay. Traditionally, the minimum lower bound
into which a given netlist can be partitioned is determined by
disregarding the logic interconnect while distributing the logic
nodes into a minimum number of devices. PROP paradigm
challenges this assumption by demonstrating feasible partitions
of some large netlists such that the number of device partitions
is smaller than minimum lower bounds postulated initially.
Overall, we report consistent reductions in the total number

of partitions for a wide range of combinational and sequential
circuit benchmarks while, on the average, reducing critical path
delay as well.

I. Introduction

Much of research on partitioning algorithms considers min-
imization of the cutset. However, minimizing this objective
alone does not necessarily lead to a good solution of the par-
titioning problem into multiple FPGAs. Iterative algorithms
derive feasible solution by exchanging modules between par-
titions [1], [2]. Some of these techniques utilize clustering [3]
or cell replication [4], [5], [6] to improve the results. Other
techniques also exist which e�ectively solve the multi-way par-
titioning problem, such as spectral methods [7], [8], Boolean
programming [9], geometric embeddings [10] placement tech-
niques [11] and others [12], [13], [14].
Approaches that focus on FPGA partitioning, reporting

benchmark results, have been proposed in [15], [16]. Contribu-
tions that address performance oriented partitioning of FPGA
are only recent [17], [18]. This work addresses and extends
the FPGA partitioning problem as de�ned in [6], [19], [20].
We introduce a new recursive partitioning paradigm PROP
by combining partitioning, replication, optimization, to be fol-
lowed by another recursion of partitioning, etc. While it can
be shown that either replication or optimization can improve
the quality of partitions, it is the combination of processes that
consistently achieves the best results to date.
Following problem formulation, the paper illustrates a trend

of monotonically decreasing number of partitions that clearly
challenge bounds attainable with traditional partitioning tech-
niques. After highlights of the proposed algorithm PROP, the
paper concludes with a comprehensive report of the bench-
marking experiment: from results with a simple bipartitioning
strategy to results that invoke all phases of PROP. All exper-
iments have been extensively documented for ease of compar-
ison and reproducibility [21].

Roman Ku�znar was supported by Slovenian Ministry of Research and Tech-

nology under grant S28-0781-030/11535/93. Franc Brglez was supported by

contracts from the Semiconductor Research Corporation (94-DJ-553), SE-

MATECH (94-DJ-800), and ARPA/ARO (P-33616-EL/DAAH04-94-G-2080).

XACT tools from Xilinx Inc. facilitated reporting results of our experiments.

II. Problem Formulation

We extend the notation from [6], [19], [20].
Hypergraph. The unpartitioned circuit is a directed hyper-

graph H0 = (fX0;Y0g; E0). There are two node types: interior
nodes X0 and board terminal nodes Y0; E0 is the set of edges.
We refer to Y0 as primary input nodes (PIs) and primary out-
put nodes (POs). After partitioning, nodes in Y0 connect to
device terminal nodes. Interior nodes are multi-output combi-
national logic nodes, register nodes, and fanout nodes.
Combinational nodes describe a logic function of arbitrary

complexity and are multi-output directed acyclic hypergraphs.
Typically, they represent cells in a library and are generated
during technology-mapping. All register nodes are D-
ip
ops
implicitly synchronized with a single clock, with a single data
input designated as a pseudo-primary output (PPO), and
a single data output designated as a pseudo-primary input
(PPI). Circuit delays are measured on simple paths between
PIs, PPIs and POs, PPOs.
A fanout node in a directed hypergraph has a single input

and any number of outputs. Subsequently, all nets in E0 can
be represented as two-terminal wires. The notion of splitting
fanout nodes during partitioning has been introduced in [22].

Partitioned Hypergraph. Consider the example in Figure 1a.
The unpartitioned hypergraph H0 consists of 8 board termi-
nal nodes and a total of 15 logic and register nodes, and 7
fanout nodes. Assuming that the largest available device can
accept at most 6 terminal nodes and 10 logic/register nodes, we
generate a partitioned hyperpgraph H3 consisting of 3 feasible
partitions: P1;P2;P3. In general, a partitioned hyperpgraph
Hk consists of k non-overlaping partitions Pj where each par-
tition is itself a hypergraph Pj = (fXj ;Yjg; Ej). Unlike the
set of board terminal nodes which is unique, the set of device
terminal nodes is not; it is highly dependent on the algorithm
used for partitioning.
As shown in Figure 1b, partitioning has been achieved by

(1) splitting the fanout node h, (2) assigning board nodes to
terminal nodes of 3 partitions, and (3) assigning cuts to 4
more two-wire connections such that the device terminal and
logic capacity constraints of each partition were met. In this
paper, we also consider additional degrees during partitioning:
replication of logic nodes to reduce the size of the cutset along
with optimization and resynthesis of each partition.

Device Library. For continuity, we use the library introduced

in [6], [19], [20]. Without loss of generality, we label library de-
vices as a 5-tuple Di = (ci; ti; di; li; ui), representing the num-
ber of elementary logic units contained in the device, the num-
ber of terminals, the price, and the lower and upper bounds
on the utilization of elementary circuit units. A hypergraph
Pj = (fXj ;Yjg; Ej) meets the constraints of the device Dij ,
denoted as Pj j= Dij , if and only if lici � jXj j � uici and
jYj j � ti. A k{way partition is called feasible if each Pj sat-
is�es the relation Pj j= Dij for some ij , j = 1; 2; :::; k. We
extend the library by associating the propagation delays with

a1

a2 b

c1

c2

d

e1

e2

f g

h

j

k

l

m

n1

n2

o

y3-3 Y3-3

y1-1 Y1-1

y2-1 Y2-1

x1-1

x2-1

x2-2

x3-2

x4-2

Z1-1

x8-3

Z6-2

Z7-3

x9-2

x7-3

Z5-1x6-1

Z4-2

p

x3-3

x4-3

Z3-1q

Z2-3

q

s

AAZ3

AAZ1

AAZ2

x1

AA
AA

AAx2

AAx3

AAx4

AAx5

(b)

a1

a2 b

c1

c2

d

e1

e2
f g

h

j

k

l

m

n1

n2

o

y1 Y1

y2 Y2

i

y3 Y3

p

q

q

s

x1A

A
Ax2

A
x3

A
x4

A
Ax5

A
A

Z3

A
Z1

A
A Z2

(a)

AAAAAregister node (DFF)

AAAAAAA
AAAAAAAdevice terminal node (IBUF)

AAAAAAA
AAAAAAAdevice terminal node (OBUF)

AAAAAAboard terminal I-node

AAAAAA
board terminal O-node

AAAAAA1-output logic node (LUT)

AAAAAA
AAAAAAa wire with a cut

(inducing partitions 2, 3)
2 3 AAAA

AAAAfanout node

AAAAAA2-output logic node (LUT)

AAA
A
A

AA
AA

A
AA
AA A

A

AA
AA
AA
AA

Fig. 1. (a) initial and (b) partitioned directed hypergraph.

the node types as used by the XACT tool [23]. The values are
summarized in the Table I. By convention, the propagation
delay of a D-
ip
op is associated with its PPO.

TABLE I

A subset of the Xilinx XC3000 device library

Device ci ti di li ui

type (CLB) (IOB) (N$)

XC3020x-x 64 64 1.00 0.8 0.9
XC3030x-x 100 80 1.36 0.8 0.9
XC3042x-x 144 96 1.84 0.8 0.9
XC3064x-x 224 110 3.15 0.8 0.9
XC3090x-x 320 144 4.83 0.8 0.9

Node type Propagation delay

(XC3000xxx-150) (XC3100xxx-3)

1-output, 2-output LUT 4.6ns 3.2ns
D-
ip
op 4.0ns 4.0ns

IBUF (unclocked) 2.8ns 2.2ns

OBUF (unclocked) 19.5ns 9.0ns

Delay Modeling. We need to characterize the delay of individ-
ual partitions Pj as well as of the partitioned hypergraph Hk.
We measure the delays on simple paths that start either at PI
or PPI and terminate at PO or a PPO. The topological criti-
cal path is de�ned and evaluated as described in [24]. In this
work, we make no attempt to identify false paths.
Critical path delay in a hypergraph and each of its partitions

can be conveniently represented in a matrix form. Given the
example in Figure 1a, we �nd

�H0
=

x1
x2
x3
x4
x5
y1
y2
y3

2
6666664

Z1 Z3 Z2 Y1 Y2 Y3
36:1 36:1 � 25:2 20:6 29:8
36:1 36:1 36:1 25:2 20:6 43:6
� � 36:1 � � 43:6
� � 36:1 � � 43:6
� � � � � 29:8
35:3 33:3 � 22:4 17:8 27:0
28:7 28:7 � 20:6 16:0 22:4
� � 24:1 � � 13:2

3
7777775

i.e. the topological critical path in the unpartitioned hyper-
graph H0 is < x4 � k� l� n2 � p�m� d� g� o� Y 3 > and
has the delay of 43.6 ns. Additional bu�er nodes introduced
by the cuts on the same path in the partitioned hypergraph
H3 in Figure 1b increase the delay to 132.8 ns:

�H3
=

x1
x2
x3
x4
x5
y1�1
y2�1
y3�3

2
6666664

Z1 Z3 Z2 Y1�1 Y2�1 Y3�3
36:1 36:1 � 25:2 20:6 52:1
36:1 36:1 58:4 25:2 20:6 132:8
� � 58:4 � � 132:8
� � 58:4 � � 132:8
� � � � � 96:7
33:3 33:3 � 22:4 17:8 49:3
28:7 28:7 � 20:6 16:0 44:7
� � 24:1 � � 13:2

3
7777775

We traversed partitions P2 and P3 twice in this evaluation.
Similarly, we traverse node c twice in the partition P1, �rst
through the output c2, and the second time through the output
c1. Critical path delays of partitions P2 and P3 are:

�P2 =
x2�2
x3�2
x4�2
x9�2

2
64
Z4�2 Z6�2
31:5 31:5
31:5 31:5
� 31:5
26:9 �

3
75 �P3 =

x3�3
x5�3
x7�3
x8�3
y3�3

2
664

Z2�3 Z7�3 Y3�3
� 26:9 �

� 26:9 �

� � 11:4
31:5 31:5 16:0
24:1 28:7 13:2

3
775

Performance Measures. Let ni be the number of devices of
type i to be used in the k{way partition, and cPj , tPj , be the
number of elementary logic units and the number of terminals,
respectively. The topological critical path delay �k is based on
the partitioned hypergraph Hk. Then:

k
�
=

qX
i=1

ni (Total number of partitions) (1)

$k
�
=

qX
i=1

dini (Total device cost) (2)

ck
�
=

kX
j=1

cPj=

qX
i=1

cini (Average logic utilization) (3)

tk
�
=

kX
j=1

tPj=

qX
i=1

tini (Average terminal utilization)(4)

�k
�
= max

8 paths
(�Hk

) (Topological critical path delay) (5)

The optimization objective in this paper is simply minimiza-
tion of $k for the set of all feasible partitions, while also re-
porting values of ck, tk, and �k.

Lower Bounds on the Device Cost. Given the formulation in
(2), we generate a lower bound on the total device cost $k by
solving an ILP problem [20]. This bound is based on the sim-
plifying assumption of disregarding all circuit nets. In practice,
one would therefore expect the bound to be very conservative;
i.e. total number of actual partitions into library devices may
signi�cantly exceed the bound.
This paper demonstrates that the number of circuit par-

titions of digital logic need not necessarily be considered
bounded from below even by such conservative lower bounds.
To simplify presentation and experiments, we consider parti-
tions of equal size only. Then, the nominal bound on the cost
of a partition for a given device Di is simply

LBi = dmax(
jX0j

uici
;
jY0j

ti
)e (6)

For example, take the circuit c6288 with 833 logic nodes and
a device type XC3020 as described in[19]. With 90% logic
utilization, we can partition the circuit c6288 into at most 15
devices of type XC3020. The smallest number of XC3020 de-
vices that make up a partition of this circuit has been reported
at 16, with average logic utilization of ck ranging from 0.81 to
0.86. However, as shown in Table II, we now can partition the
same circuit into only 12 devices of type XC3020, with average
logic utilization of ck = 0:87:

III. Motivation

Consider three versions of a simple, logically equivalent, cir-
cuit in Figure 2. The circuit in Figure 2a shows a netlist of
three cells that were generated with a Xilinx tool [23] upon
submitting a netlist of simple 2-input gates shown in the same
�gure. Assume, that the maximum size capacity of each par-
tition is at most two cells. Currently, the size of the cutset
fB;C;D; Y 3g is 5. Moving the middle cell across the cut-
line eliminates nets fD;E; Y 3g from the cutset while adding
nets fX3; Ag to the cutset, decreasing the cutsize by 1 net.
Moving the top cell across the cutline introduces nets fW;Ag
to the cut set, increasing the size of the cut set by 2 nets.
The most e�ective operation is a functional replication of the
middle cell shown in the Figure 2b, reducing the cutset by
2 nets: fQ; Y 3g. Each functional replication increases logic
cell count by 1 cell. For the case shown here, replication can
also introduce redundant logic. Cell outputs fY 3; X3rg are
unobservable and thus any logic, observable at these outputs
only, is redundant. By resynthesizing each of the partitions
independently of the other, we can remove all redundant logic
as well. The newly optimized technology-independent repre-
sentation of each partition may now be remapped again { and
possibly into a smaller number of cells. As shown in Figure
2c, we have now reduced the size of each partition by 1 cell.
This example illustrates that optimizing each partition dur-

ing partitioning may be as important as minimizing the size of
the cutset between partitions. Notably, the concept of func-
tional replication such as in [6], [19] not only reduces the size of
the cutset beyond the traditional approach but may also raise
the amount of reconvergence. Compared to the lower partition
in the Figure 2a which has no signal reconvergence at output
X2, we now have a reconverging signal at the output X2 in
Figure 2b. Partitions based on signal reconvergence have been
shown to lead to much improved optimization results for large
circuits [22].
We report on large scale partitioning experiments with

PROP in Table II. Figure 3 depicts the trend of monotonically
reducing the number of devices towards the easily computed
lower bounds of 172 and 81 when partitioning into XC3020
and XC3042 devices, respectively. The trend is unmistakeable

X2

X1

Y1

X3

Y3

Cut line

A

B C D E Q

W

(a)

X1

Y1

X3

Y3

X3r

Y3r

X2

Cut line

A W

BCDE Q

(b)

X1

X3

X2

Cut line

WA

BC DE Q

(c)

Fig. 2. On reducing the cutset during bipartitioning.

only after increasing the sophistication of the partitioning al-
gorithm: from (p, p), (p, r, p) as reported in [20], [19] to
(p, o, p) and (p, r, o, p) as reported in this paper. Notably,
these results are based on total device counts in all partitions.
As pointed out earlier and shown in Table II, we can demon-
strate special cases of benchmarks where partitions consist of
less devices than predicted with the lower bound.

AA
AA
AA
AA

A
A
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
A
A
A
A

AA
AA

(p, p) (p, r, p) (p, o, p) (p, r, o, p)
0

50

100

150

200

250

172

81

A XC3020

A
A

XC3042
Number of Devices (Partitions)

Fig. 3. Impact of distinct partitioning strategies.

IV. Algorithm PROP

PROP is a greedy heuristic which combines logic re-
synthesis with replication-based partitioning until each trial
partition becomes feasible. We present an overview of the algo-
rithm, including some of the more important choices and deci-
sions. Next, we discuss procedure for technology-independent
optimization, technology-mapping, and dynamic balancing cri-
teria. We conclude with an example to illustrate the progres-
sion of the algorithm for a large benchmark example.

Overview. As in [6], [19], PROP makes use of the the recur-
sive paradigm using functional replication. For a given circuit,
it applies a highly optimized bipartitioning procedure to ex-
tract the �rst feasible partition that �ts a given device, and
then repeats the procedure on the circuit remainder until the
remainder �ts at least one device from the target library.

The distinguishing feature of PROP is that during each re-
cursion k, it bipartitions the remainder circuit Rk into two
partitions: a trial partition Pk+1 j= Dijuk+1 with the utiliza-
tion bounds [lk+1,uk+1] set above upper utilization bound li of
the target device Di, and a remainder partition Rk+1. For
each k, the algorithm produces a bipartition with at least one
feasible partition Pk+1 at the end of the iteration. The process
repeats for as long the remainder partition does not meet the
constraint of the device: i.e. Rk j6= Di. Key steps of PROP are
illustrated in Figure 4. We outline procedures Optimize(Pk+1)
and Update(�) next.

Input: H0(fX0;Y0g; E0), fDig

Output: k, $k, P1;P2; ::;Pk
k = 0; R0 = H0; /* initialize k, remainder */
Initialize(�;
; uk+1; lk+1); /* init. optim. param. */
while (Rk j6= Di) begin

if (Rk j= Dijuk+1) then
Optimize(Rk); /*optimize remaider */

if (Rk j= Di) then
Pk+1 Rk;

while (Pk+1 j6= Di) begin
Partition Rk = fPk+1;Rk+1g

subject to Pk+1 j= Dijuk+1;
Optimize(Pk+1); /* optimize partition */
if (Pk+1 j6= Di) then

Update(�);
uk+1 = �uk+1; lk+1 = �lk+1;

end

end while;
Output(Pk+1);
k = k + 1;

end while

Fig. 4. Top view of algorithm PROP.

Procedure Optimize(Pk+1). The main task of optimization is

to minimize the amount of logic within the partition since each
trial partition initially exceeds the bounds of the target de-
vice. If the optimization produces a feasible partition, e.g.
a partition which meets the constraints of the target device
(Pk+1 j= Di), we store the solution and continue partition-
ing the remainder. If the optimizer fails to produce a feasible
partition, we decrease utilization bounds and repeat biparti-
tioning, starting with a new trial partition. By maximizing
the number of over-utilized trial partitions that become fea-
sible after optimization, we take full advantage of the func-
tional replication and reduce total interconnect between the
partitions while reducing the cell count jXkj in the remainder
circuit. Experimental results demonstrate that the reduction
of the remainder circuit also tends to reduce the total device
count.

Since the size of each feasible partition is measured after
technology mapping, the number of logic modules (e.g. Xil-
inx Con�gurable Logic Blocks, CLBs) must not exceed the
target utilization of a given FPGA device. We separate opti-
mization steps into technology independent logic optimization

which is performed with sis [25] and technology mapping of
the logic into Con�gurable Logic Blocks, which is perfomed
with the technology mapper xnfmap [23]. Although sis can
perform technology mapping into XC3000 family for combi-
national circuits, we use the technology mapper xnfmap for
the following reasons: (1) a netlist mapped with sis is usually
harder to route in XC3000 family, (b) sis technology mapping
produced inferior results compared to xnfmap results in terms
of CLB count for a set of combinational circuits, and (3) sis
cannot be used for technology mapping of sequential circuits
into the XC3000 family.
Currently, we only perform the combinational optimization

for combinational and sequential benchmark circuits. For each
CLB in the partition, we extract the functionality of Look-Up
Tables (LUTs) in order to translate the netlist into blif format
for technology-independent optimization by sis. All
ip-
ops
are replaced with PPIs and PPOs. The initial netlist which
is passed to sis is based on the XC3000 device netlist and is
thus bounded to have at most n = 5 inputs. However, upon
minimization of logic nodes in sis, we do not use operations
for vertex minimization such as xl cover and xl partition since
this may lead to poor technology mapped results with xnfmap.
We obtain better results by using a script which in the last
step performs the decomposition into simpler local functions
instead of performing vertex minimization. To date, we �nd
that the following script produces the best results:

eliminate 2; simplify; xl_part_coll; xl_coll_ck;

simplify; decomp -q; full_simplify;

For the combinational circuits, the netlist from sis is imme-
diately mapped by xnfmap. For sequential circuit, the combi-
national part of the circuit is merged with the
ip-
ops, i.e. all
PPIs and PPOs are eliminated from the combinational netlist,
and the netlist with
ip-
ops is then mapped by xnfmap.

Procedure Update(�). The question arises how to choose the

'best' balancing constraints when generating over-utilized trial
partitions. Setting the utilization bounds [lk+1,uk+1] too high
may prevent the optimizer from producing a feasible parti-
tion. In this case, we have to backtrack and repeat partition-
ing and optimization until a feasible partition, which meets
the constraints, is found. Since optimization of partitions can
be CPU-intensive, repeating several optimizations during each
bipartitioning iteration may drastically increase the execution
time of the partitioning process. Conversely, too low an uti-
lization of trial partitions may not e�ectively reduce the size of
the remainder partitions, resulting in a suboptimal solution.
We balance the size of the over-utilized trial partitions in

each bipartition step according to the following criteria:

�
ci (1� �) � jPk+1j � �
ci (1 + �) if jRkj > 2
ci(1 + �);

jPk+1j � �
jRkj

2
(1 + �) otherwise (7)

where ci represents the number of logic modules per device
i,
 re
ects the expected ratio of the size reduction achieved
with the optimization, and the � is a balancing factor which
permits maximum deviation in size of feasible partition. Here,
� is the scaling factor by which the utilization bounds decrease
if optimization fails. Initially, in each new bipartitioning iter-
ation, � = 1. If the optimization fails, the scaling factor gets

updated: �new = �old
(1��)

(1+�)
< 1.

In all experiments, we set the parameters
 = 0:95, � =
0:05 and � = f1:00; 0:90g for �rst and second optimization
attempt in one bipartitioning step. These values are based
on experimental observation that optimization in most cases

PROP Version 1.1

================

Device Library = XC3042

F E A S I B L E || R E M A I N D E R

Step. #of CLB #of IOB || #of CLB #of IOB LB

(p,r) (p,r,o,p)

===

0 --- -- || 842 102 7

1 (125) 107 74 || 739 56 6

2 (143) 119 27 || 605 79 5

3 (129) 115 37 || 491 92 4

4 (132) 101 85 || 373 96 3

5 (143) 108 82 || 235 84 2

6 (108) 93 65 || 129 83 1

7 (129) 93 83 || --- ---

===

TOTAL:(909) 736 453 || --- ---

===

Fig. 5. Progression of PROP for circuit s15850.

reduces the size of the partitions on average by 15% and that
the average percentage of the replicated cell over all benchmark
circuits is around 5% [6]. Such parameters also ensure that
feasible partitions which meet the constraints of the target
device are found at most in the second optimization attempt
in each bipartitioning step for 90% target device utilization.

Illustrative Example. We illustrate the progression of the
PROP algorithm by partitioning the benchmark circuit s15850
into a set of XC3042 devices. The maximum utilization bound
of the device is set to ui = 0:9. For the given circuit the num-
ber of interior nodes jX0j = 842, the number of terminal nodes
jY0j = 102, and the calculated lower bound on the device count
is

LBs15850 = dmax(
jX0j

(ciui)
;
jY0j

ti
)e = dmax(

842

(144x0:9)
;
102

96
)e = 7:

During the �rst �ve bipartitioning steps, the bounds of
the over-utilized feasible partition are calculated as jXj j 2
f[130; 144]; [122; 130]g respectively (�rst and second optimiza-
tion attempt), and to jXj j � 129 during the last bipartitioning
step.

Figure 5 illustrates the progression of the partitioning pro-
cess. Columns show the iteration step, size and terminal count
of the feasible partition and the remainder partition, and the
calculated lower bound for the remainder partition. Values
of the logic modules count under (p, r) and (p, r, o, p) are
given for the non-optimized over-utilized trial partitions, and
optimized partitions, respectively. Data shown in Figure 5 in-
dicates that terminal constraint was never an active constraint;
I/O terminal count of feasible partitions does not approach the
I/O constraints of 96 terminals per device. We can conclude
that functional replication was quite e�ective in reducing the
interconnect between partitions. However, total number of
logic modules in non-optimized partitions increased from the
initial 842 to 909 logic modules. Simple calculation shows that
with 909 logic modules the lower bound on total device count
for XC3042 devices LB = d 909

144x0:9
e = 8, indicating that using

functional replications without optimization of each partition
leads to suboptimal implementation. Using optimization on
each of the partitions, we not only maintain the lower bound
of 7 devices but also reduce total logic module count from an
initial 842 to 736 CLBs, decreasing the average density of logic
per device.

V. Experimental Results

Charaterization of partititioning benchmarks and FPGA li-
braries introduced in [20] and [19] has been extended to include
a simple delay model in [21]. This section summarizes a subset
of extensive experiments with PROP that have been archived
for easy access, comparison, and reproducibility, in directories
accessible from [21].
The main objective of current experiments is strictly the re-

duction of the total device count ($k, k) while reporting all of
the additional performance measures introduced in (3-5): ck,
tk, and �k. In Table II we report results of partitioning into
either XC3020 or XC3042 device family. The columns labeled
as �0 and LB�i are fundamental reference points. The criti-
cal path delay �0 (in nanoseconds) refers to the unpartitioned
CLB-level netlists, using XC3000xxx-150 delay parameters in
Table I. The lower bound LB�i is based on a simple formula
in the footnote of the table for each device family. Except for
the delay �k, columns under (p; p) and (p; r; p) are copies of
the best results from [19]. These results can now be directly
compared to the best results, in columns under (p; o; p) and
(p; r; o; p), attainable with PROP as presented in this paper.
The chart in Figure 3 relates the total number of devices in

all partitions in Table II to the respective total lower bound
of 172 and 81. There is a clear trend of consistent reduction
in total device count when we move from the earlier strategies
based on (p; p) and (p; r; p) to the newly proposed strategy
based on (p; o; p) and (p; r; o; p). While no attempt has been
made to reduce the total delay across all partitioned devices, it
is encouraging that the current strategy of reducing the total
device count has not impacted total delay in any major way.
Overall, there is only a slight increase in the total delay when
moving from (p; o; p) to (p; r; o; p). In both cases, the total
delay is better than one reported under (p; p) and (p; r; p).
In addition to a consistent trend overall, data in Table II

depicts several instances of interesting and surprising results.
Consider the circuit c6288. With 90% logic utilization, we can
partition this circuit into at most 15 devices of type XC3020.
While results based on (p; p) and (p; r; p) report partitions of
16 devices with average logic utilization of ck ranging from
0.81 to 0.86, a strategy based on (p; o; p) and (p; r; o; p) par-
titions the same circuit into only 12 devices with ck = 0:87:
In addition, there is a noticeable reduction in delay when we
achieve a 12-device partition, compared to the 15-device par-
tition. Similarly, when partitioning largest benchmark s38584,
only the reduction of total device count using (p; r; o; p) results
in a reduction of the critical path delay across all partitions!

VI. Conclusions

Experimental results reported in this paper and in [21] show
the greatest reduction in the total number of devices under
the column (p; r; o; p) in Table II; i.e. when we use PROP to
combine logic re-synthesis with replication-based partitioning
until each trial partition becomes feasible.
Results under the column (p; r; o; p) also show that we cur-

rently achieve the average utilization of devices in each device
at 0.70 for both device sets. This utilization is below the target
utilization of 80%-90%. Such result suggest that some parti-
tions may have greater minimization and resynthesis potential,
an issue not addressed in the current implementation. A new
version of PROP will be guided by estimating the resynthesis
potential of each feasible partition before it is passed to the
partitioner, improving the decisions during the progression of
the partitioning process.
In addition, analysis of delay performance of partitions re-

ported in this paper indicates that it should be possible to
reduce critical path delay further.

TABLE II

Partitioning into sets of XC3020 and XC3042 devices

Partitioning into XC3020 devices

Best from [19] Best with PROP

(p,p) (p,r,p) (p,o,p) (p,r,o,p)

Circuit �0 ck tk �k k ck tk �k k ck tk �k k ck tk �k k LB�i

c3540 128 0.74 0.90 216 6 0.80 0.79 213 6 0.64 0.91 211 6 0.66 0.80 189 6 5
c5315 78 0.65 0.86 144 9 0.73 0.90 144 8 0.55 0.81 149 9 0.62 0.90 154 8 7
c6288 440 0.81 0.50 708 16 0.86 0.45 708 16 0.87 0.60 573 12 0.87 0.55 662 12 15
c7552 73 0.76 0.77 206 10 0.77 0.81 184 10 0.64 0.79 167 9 0.62 0.77 176 9 9
s5378 64 0.54 0.87 153 11 0.68 0.81 176 10 0.49 0.82 126 11 0.61 0.78 171 9 7
s9234 67 0.79 0.58 167 10 0.79 0.58 167 10 0.72 0.75 144 9 0.72 0.65 173 9 8
s13207 87 0.75 0.63 265 23 0.75 0.67 252 23 0.63 0.84 216 21 0.68 0.69 265 19 16
s15850 87 0.69 0.76 281 19 0.78 0.67 281 19 0.72 0.77 291 17 0.75 0.69 274 16 15
s38417 58 0.75 0.68 241 46 0.83 0.50 215 48 0.73 0.64 221 44 0.81 0.53 201 44 39
s38584 81 0.76 0.70 227 60 0.81 0.62 277 60 0.74 0.69 238 60 0.77 0.61 180 56 51

1163 0.72 0.73 2615 210 0.80 0.68 2616 210 0.67 0.76 2336 198 0.70 0.70 2445 188 172

�Lower bound on partitions, given 90% utilization of each device LBi = d(Total CLBs in the circuit)=(0:9� 64)e

Partitioning into XC3042 devices

Best from [19] Best with PROP

(p,p) (p,r,p) (p,o,p) (p,r,o,p)

Circuit �0 ck tk �k k ck tk �k k ck tk �k k ck tk �k k LB�i

c3540 128 0.66 0.74 194 3 0.71 0.68 194 3 0.66 0.75 225 2 0.69 0.89 212 2 3
c5315 78 0.51 0.77 122 5 0.53 0.78 122 5 0.54 0.87 109 4 0.53 0.83 109 4 4
c6288 440 0.85 0.89 642 7 0.85 0.45 686 7 0.79 0.59 545 6 0.86 0.55 537 5 7
c7552 73 0.83 0.49 184 4 0.85 0.89 184 4 0.49 0.84 149 5 0.67 0.90 127 4 4
s5378 64 0.53 0.88 153 5 0.73 0.83 153 4 0.48 0.86 148 4 0.57 0.89 139 4 3
s9234 67 0.79 0.73 190 4 0.85 0.52 156 4 0.70 0.78 111 4 0.72 0.65 142 4 4
s13207 87 0.58 0.84 243 11 0.76 0.65 229 10 0.61 0.75 207 9 0.69 0.76 225 8 8
s15850 87 0.73 0.75 327 8 0.78 0.69 322 9 0.66 0.82 251 8 0.67 0.73 282 7 7
s38417 58 0.77 0.64 178 20 0.76 0.46 165 20 0.76 0.67 184 20 0.81 0.41 178 19 18
s38584 81 0.75 0.62 251 27 0.84 0.35 205 27 0.76 0.67 189 25 0.80 0.56 176 25 23

1163 0.70 0.74 2507 94 0.77 0.63 2416 93 0.65 0.75 2118 87 0.70 0.72 2127 82 81

�Lower bound on partitions, given 90% utilization of each device LBi = d(Total CLBs in the circuit)=(0:9� 144)e

References

[1] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on

Computers, 38(1):62{81, January 1989.

[2] C. W. Yeh and C. K. Cheng. A general purpose multiple way partitioning

algorithm. In In 28th DAC ACM/IEEE, pages 421{426, 1991.

[3] J. Cong and M. Smith. A Parallel Bottom-up Clustering Algorithm

with Applications to Circuit Partitioning in VLSI Design. In 30th DAC,

ACM/IEEE, pages 755{760, June 1993.

[4] C. Kring and A. R. Newton. A Cell-Replicating Approach to Mincut-

Based Circuit Partitioning. In IEEE ICCAD-91, pages 2{5, November

1991.

[5] J. Hwang and A. El Gamal. Optimal Replication for Min-Cut Partition-

ing. In IEEE ICCAD, pages 432{435, November 1992.

[6] R. Ku�znar, F. Brglez, and B. Zajc. Multi-way Netlist Partitioning into

Heterogeneous FPGAs and Minimization of Total Device Cost and Inter-

connect. In ACM/IEEE 31st DAC, pages 238{243, June 1994.

[7] P.K. Chan, M.D.F Schlag, and J.Y. Zien. Spectral K-Way Ratio-Cut

Partitioning and Clustering. In 30th DAC, ACM/IEEE, pages 749{754,

June 1993.

[8] C. J. Alpert and So-Zen Yao. Spectral Partitioning: The More Eigenvec-

tors, The Better. In 32th DAC, ACM/IEEE, pages 195{200, June 1995.

[9] M. Shih and E.S. Kuh. Quadratic Boolean Programming for Performance-

Driven System Partitioning. In 30th DAC, ACM/IEEE, pages 761{765,

June 1993.

[10] C. J. Alpert and A. B. Kahng. Multi-Way Partitioning Via Space�lling

Curves and Dynamic Programming. In 31th DAC, ACM/IEEE, pages

652{657, June 1994.

[11] B. M. Reiss, K. Doll, and F.M. Johannes. Partitioning Very Large Cir-

cuits Using Analytical Placement Techniques. In 31th DAC, ACM/IEEE,

pages 646{651, June 1994.

[12] G. Saucier, D. Brasen, and J. P. Hiol. Partitioning with Cone Structures.

In IEEE ICCAD, pages 236{239, November 1993.

[13] H. Yang and D. F. Wong. E�cient Network Flow Based Min-Cut Bal-

anced Partitioning. In IEEE ICCAD-94, pages 50{55, November 1994.

[14] J. Cong, W. Labio, and N. Shivakumar. Multi-Way VLSI Circuit Par-

titioning Based on Dual Net Representation. In IEEE ICCAD-94, pages

56{62, November 1994.

[15] N.-S. Woo and J. Kim. An E�cient Method of Partitioning Circuits

for Multiple- FPGA Implementation. In 30th DAC, ACM/IEEE, pages

202{207, June 1993.

[16] N.C. Chou, L.T. Liu, C.K. Cheng, W.J. Dai, and R. Lindelof. Circuit Par-

titioning for Huge Logic Emulation Systems. In 31th DAC, ACM/IEEE,

pages 244{249, June 1994.

[17] P. Sawkar and D. Thomas. Multi-Way Partitioning For Minimum Delay

For Look-Up Table Based FPGAs. In 32th DAC, ACM/IEEE, pages 201{

205, June 1995.

[18] L. T. Liu, M. T. Kuo, C. K. Cheng, and T. C. Hu. Performance-

Driven Partitioning using a Replication Graph Approach. In 32th DAC,

ACM/IEEE, pages 206{210, June 1995.

[19] R. Ku�znar, F. Brglez, and B. Zajc. A Uni�ed Cost Model for Min-Cut

Partitioning with Replication Applied to Optimization of Large Hetero-

geneous FPGA Partitions. In EURO-DAC '94, September 1994.

[20] R. Ku�znar, F. Brglez, and K. Kozminski. Cost Minimizations of Par-

titions into Multiple Devices. In ACM/IEEE 30st DAC, pages 315{320,

June 1993.

[21] R. Ku�znar. Latest Partitioning Results Update and Directories. Avail-

able from http://www.cbl.ncsu.edu/~kuznar/, August 1995. For an

autoreply on up-to-date access to all benchmark directories, send e-mail

to benchmarks@cbl.ncsu.edu.

[22] S. Dey, F. Brglez, and G. Kedem. Circuit Partitioning for Logic Synthesis.

IEEE Journal of Solid-State Circuits, 26(3):350 { 363, March 1991.

[23] Xilinx. User Guide and Tutorials. Xilinx Incorporation, 2100 Logic Drive,

San Jose, California, 1991.

[24] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw

Hill, New York, 1994.

[25] E. M. Sentovich et. al. SIS: A System for Sequential Circuit Synthesis.

Dept. of Electrical Engineering and Computer Science, University of Cal-

ifornia, Berkeley,CA 94720, 1992.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

