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Abstract
Current approaches to compute and exploit the flexibility of a com-
ponent in an FSM network are all at the symbolic level [23, 30, 33,
31]. Conventionally, exploitation of this flexibility relies on state
minimizers for incompletely specified FSM’s (ISFSM’s) or pseudo
non-deterministic FSM’s (PNDFSM’s) [33]. However, state-of-the-
art state minimizers cannot handle large ISFSM’s or PNDFSM’s
[12, 14, 34, 8, 15]. In addition, these exploitation techniques are at
the symbolic level, not directly at the net-list logic level. We present
a general approach to exploit exact or approximate flexibility directly
at the net-list logic level, and we demonstrate that many sequential
logic optimization techniques can be applied in exploitation. More-
over, we propose a new procedure for input don’t care sequences. As
a result, both computation and exploitation of input don’t care se-
quences in larger FSM networks can be made efficient and effective.
Finally, we give preliminary results on some artificially constructed
FSM networks. Preliminary results indicate that our approach can be
effective in reducing the size of a component of an FSM network.

1 Introduction
As digital system design complexity increases, hierarchical specifi-
cation becomes vital. For example, hardware description languages,
such as Verilog or VHDL, are typically used to specify industrial
designs. Once the design is verified, logic synthesis tools are used to
optimize the circuit implementation with respect to some objective.
The objective can be minimum area,minimum delay, maximum testa-
bility, minimum power consumption, or any combination of these.
An underlying model for a hierarchical specification in the synthesis
and verification community is a network of interacting finite state
machines (FSM’s). In this paper, synchronous FSM networks with
known initial states are considered. A severe limitation of current
synthesis tools for sequential circuits is that only a single FSM is
considered at a time, e.g., SIS [27].

Theoretically, we can collapse an FSM network into a single FSM.
However, this is not preferred, because of the following reasons. (1)
This single FSM may be too big to be handled by synthesis tools,
e.g., state encoding programs. (2) Some components in the network
may be non-deterministic FSM’s which are not synthesizable, e.g.,
an abstract description of the environment. (3) The hierarchy speci-
fied by designers may contain important information which is useful
for an efficient implementation. (4) Some modules may already be
synthesized well and should not be touched. With hierarchical spec-
ification, each component is likely specified in a reasonable size.
Therefore, another approach to synthesizing an FSM network is to
synthesize one component at a time. Due to interaction with other
components, the controllability and observability of a component are
reduced, so the flexibility for implementing this component increases.
By exploiting this flexibility, the quality of the implementation may
be improved. Therefore, a key to logic optimization in a hierarchical
specification is to consider the interaction between components.

The flexibility in the context of an isolated combinational circuits
can be expressed by don’t cares, and for an individual component in a
hierarchically specified combinational circuit, a Boolean relation [3]
(observability relation [24] ) is required to express all its flexibility.
Similarly, exploitation of flexibility is important for sequential cir-
cuits. Several approaches have been proposed. For example, in [20],
unreachable or equivalent states are used in the optimization of an
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isolated sequential circuit. In this approach, a circuit implementation
is given as the starting point.

In the case of an individual component in an FSM network, there
are several approaches. The first approach [33] used a pseudo non-
deterministic FSM (PNDFSM), called the E-machine, to express all
flexibility. Later, [17, 1] proposed different construction methods for
the E-machine, but subset construction [22] is required in the general
case. The exploitation of the E-machine usually is done by state
minimization of PNDFSM’s [34, 8, 15].

Another approach (which is an approximate one) is based on the
notion of don’t care sequences [23]. There are two kinds; input
and output don’t care sequences. Consider the cascade machine in
Figure 1(a), where M1 is the driving machine andM2 the driven ma-
chine. Kim and Newborn [16] proposedan elegantcomplete solution.
For a two-way-communication network of FSM’s, N2, as shown in
Figure 1(b), Wang and Brayton [30] gave an efficient computation,
and demonstrated that state minimization for incompletely specified
FSM’s (ISFSM’s) [12, 14] can be used to exploit input don’t care
sequences in general FSM Networks.

On the other hand, the flexibility in implementing M1 when cas-
caded with M2 is called output don’t sequences. Devadas [9] pro-
posed a method to exploit sequential output don’t cares, and later
Rho et al. [23] generalized Devadas’ procedure to compute fixed-
length output don’t care sequences. Another approach based on FSM
equivalence checking for approximating the set of output don’t care
sequences was proposed in [31].

The above algorithms for computing the flexibility of an individ-
ual component in an FSM network are all based on the manipulation
of transition relations of FSM’s, i.e., symbolic information is ma-
nipulated. Currently, exploitation of this flexibility hinges on state
minimizers for ISFSM’s [12, 14] or PNDFSM’s [34, 8, 15]. Af-
terwards, state encoding and sequential optimization techniques are
applied to the state-minimized machine. Presently, no existing state
minimizer can handle large ISFSM’s or PNDFSM’s [12, 14, 34, 8, 15].
For example, the computation of input don’t care sequences in FSM
networks can be efficiently done; however, the exploitation of them
using state minimization is difficult [30] since the problem of exact
state minimization of ISFSM’s is NP-hard. To circumvent this, ap-
proximations are required to trade off between quality and efficiency
[23, 30]. As a result, much flexibility may be lost.

Furthermore, in contrast to net-list logic optimization techniques
for sequential circuits, these algorithms do not use a circuit imple-
mentation as the starting point; the exploitation is not performed at
the net-list logic level. In terms of efficiency, effectiveness, and the
size of circuits, optimization techniques for sequential net-list logic
circuits are in a more mature stage than symbolic methods, since
most are able to produce acceptable results in larger circuit designs.
However, manipulating symbolic information is indispensable for
computing the flexibility of a component in an FSM network.

With this motivation, we propose a general approach which takes
a circuit implementation as the starting point and computes the flex-
ibility at the symbolic level, but exploitation is directly at the net-list
logic level. In addition, we discuss the difficulties in previous ap-
proaches [16, 30], and then we propose a new procedure which makes
both computation and exploitation of input don’t care sequencesmore
efficient and effective. This procedure does not require a subset con-
struction [22] as in the Kim and Newborn’s procedure [16]. As a
result, this procedure look promising for larger FSM networks. Fi-
nally, we give preliminary results on some artificially constructed
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Figure 1: (a) N1 : A cascade circuit of two FSM’s. (b) N2 : A
two-way-communication network of FSM’s.

FSM networks.

2 Preliminaries
2.1 Finite Automata and Finite State Machines
A deterministic finite automaton (DFA), A, is a quintuple (K;Σ; �;
q0; F ) where K is a finite set of states, Σ an alphabet, q0 2 K
the initial state, F � K the set of final states, and � the transition
function, � : K � Σ ! K . A non-deterministic finite automaton
(NFA), A, is a quintuple (K;Σ; �; q0; F ) where �, the transition
relation, is a finite subset ofK�Σ��K , and Σ� the set of all strings
obtained by concatenating zero or more symbols from Σ. An input
string is accepted by A if it ends up in one of final states of A. The
language accepted by A, L(A), is the set of strings it accepts.

A finite state machine (FSM), M , is a quintuple (I;O;Q; T; q0)
where I is a finite input alphabet,O a finite output alphabet,Q a finite
set of states,T , the transition relation, a finite subsetofI�Q�Q�O,
and q0 the initial state. An FSM can be represented by a state transition
graph (STG). An FSM is input-complete if for all input symbols
from every state, the transitions are defined; otherwise, it is input-
incomplete. A deterministic FSM (DFSM) is an FSM in which for all
transitions (i; p; n; o) 2 T , (i; p) is associated with a unique (n; o).
Otherwise, an FSM is called a non-deterministic FSM (NDFSM).
A pseudo non-deterministic FSM (PNDFSM) is an input-complete
FSM and in which for all transitions (i; p; n; o) 2 T , (i; p; o) is
associated with a unique next state n. A completely specified FSM
(CSFSM) is an FSM which is input-complete and deterministic. An
incompletely specified FSM (ISFSM) is either an NDFSM or an input-
incomplete FSM, and in which for all transitions (i; p; n; o) 2 T ,
(i; p) is associated with a unique next state n. A CSFSM is of
Moore type if the output value does not depend on inputs, and Mealy
otherwise. A cascade of FSM’s M1 and M2, denoted M1 ! M2,
is shown in Figure 1(a). M1 is called the driving machine, M2 the
driven machine.

The single stuck-at fault model assumes that a single fault at a
given wire in the circuit causes that wire to be permanently at a high
voltage level (stuck-at-1), or a low-voltage level (stuck-at-0). LetM
be a logic implementation of a CSFSM. A sequence of input vectors
is a test for a fault f of M if it causes output values different from
those of the fault-free machine when it is applied to machineM with
the single fault f starting from the reset state. If a fault f has no test,
it is redundant.

2.2 Set Computation and Operators
We denote B designate as the set f0; 1g. Let E be a set and S � E.
The characteristic function of S is the function �S : E ! B
defined by �S(x) = 1 if x 2 S, and �S(x) = 0, otherwise.

Definition 1 Let f : Bn ! B be a Boolean function, and x =
fx1; :::; xkg a subset of the input variables. The existential quan-
tification (smoothing) of f by x, with fa denoting the cofactor of f
by literal a is defined as :

9xif = fxi + fxi , 9xf = 9x1 :::9xkf .

Definition 2 Let f : Bn ! B be a Boolean function, only depend-
ing on a subset of variables y = fy1; :::; ykg. Let x = fx1; :::; xkg
be another subset of variables, describing another subspace of Bn

of the same dimension. The substitution of variables y by variables
x in f is the function of x obtained by substituting xi for yi in f :

(�y;xf)(y) = f(x) if xi = yi for all 1 � i � k.

Reduced ordered binary decision diagrams (BDD’s) [4] are well
suited to represent the characteristic functions of subsets of a set,
and efficient algorithms exist to manipulate them to perform all stan-
dard Boolean operations. As a result, the above set operations can be
done efficiently.

The reachable states can be computed efficiently using implicit
state enumeration techniques introduced by Coudert et al. [7]. This
approach is based on representing a set of states by a characteristic
function which can be manipulated effectively using BDD’s. In
the following, we represent a finite state machine implicitly by a
characteristic function using BDD’s.

Definition 3 The transition relation of a finite state machineM =
(I;O;Q; T; q0) is a function T : I � Q � Q � O ! B such that
T (i; p; n; o) = 1 if and only if state n can be reached in one state
transition from state p and produce output o when input i is applied.

The compatible projection operator is defined in [19] and can be
manipulated efficiently using BDD’s.

Definition 4 Lety1 � � � � � yn be an ordering of Boolean variables.
The distance between two vertices �, � 2 Bn is defined as [7, 28]
d(�;�) =

Pn

i
j�i � �ij2n�i.

Using the above distance metric, a total ordering of all the vertices
of a Boolean space relative to some reference vertex� can be defined;
order(x) = d(�;x).

Definition 5 Given � 2 Bn , C � Bn, the closest interpretation of
� in C for a given variable ordering is defined as [19]

P(�;C) = argminx2Cd(�;x) .

The closest interpretation P , relative to a reference vertex �, is
unique for a given variable ordering.

Definition 6 For a relation,R � Br�Bn, and� 2 Bn, the closest
interpretation of � relative to R (called compatible projection in
[19]) is :

?(�;R) = f(x; y)j(x; y) 2 R; y = P(�;Rx)g .

Conceptually, the ? operator selects a unique minterm y for each
minterm x defined in the relation R. Thus, ?(�;R) results in the
characteristic function of a function defined on the domain9yR(x;y);
?(�;R) : 9yR(x;y)�Bn ! B.

3 Logic Optimization of FSM Networks : General
Approach

3.1 Permissible Behaviors
Current approaches for synthesizing a component in an FSM network
have two steps : (1) computing the flexibility (i.e., a collection of per-
missible implementations), and (2) finding a permissible implementa-
tion, with respect to some optimization objective, using the flexibility.
There are many studies [16, 9, 23, 30, 33, 34, 8, 31, 15, 17, 1] in com-
puting and exploiting the flexibility. A key idea of these approaches
is to implicitly express a collection of permissible implementations
of a component in an FSM network using some variants of FSM’s. A
permissible implementation is called a permissible behavior. Watan-
abe and Brayton [33] demonstrated that an E-machine (a PNDFSM)
can express the whole set of permissible behaviors of a component in
an FSM network and then proposed a method to compute it. Later,
[17, 1] proposed different methods for computing the E-machine.
The fact that the set of permissible behaviors due to input don’t care
sequences can be expressed using an ISFSM was demonstrated in
[30] That is, a PNDFSM or an ISFSM can be used to implicitly
express a collection of permissible behaviors. They are defined as
follows and are consistent with the definitions of [33, 30].



1 2

0/1 0/0

0/0

1/0

1/1

(a) (b)

1 2
00

00

10
11

10

11,01

01

d

− −

Figure 2: (a) A PNDFSM M1. (b) AM1 .
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Figure 3: (a) An ISFSM M2. (b) AM2 .

Definition 7 The defined behavior of an FSMM = (I;O;Q; T; q0),
a set of sequences� (I � O)�, is the language of a finite automaton
DM = (K;Σ; �; q0; F ), whereK = Q [ fdg, Σ = I �O, F = Q,
and � = f(p; (i; o); n) j (i; p; n; o) 2 Tg [ f(p; (i; o); d) j (i; p; o)
are unspecified in Tg [f(d; (i; o); d) j (i; o) 2 I �Og. The defined
behavior of an FSM M is denoted as L(DM ). In general,DM may
be an NFA.

Definition 8 The set of permissible behaviors expressed by a
PNDFSM (or a CSFSM) M = (I;O; Q; T; q0), a set of sequences
� (I �O)�, is the language of a finite automaton, AM , where
AM = DM . That is, the set of permissible behaviors expressed by a
PNDFSM M is equivalent to its defined behavior. Note that AM is
a DFA.

The construction of AM of a PNDFSM (or a CSFSM) M can be
directly derived from M . The alphabet of AM is I � O. Every
state of M is a final state, and the initial state is the same. For those
(i; o) symbols which do not have specified transitions from a state p,
a transition is added from state p to the dead state d, the only non-
accepting state. This construction is pictorially explained in Figure
2.

Definition 9 The set of permissible behaviors expressed by an ISFSM
M = (I;O; Q; T; q0), a set of sequences � (I �O)�, is the lan-
guage of a finite automatonAM = (K;Σ; �; q0; F ), whereK = Q[
fu; dg, Σ = I�O,F = Q[fug, and � = f(p; (i; o);n) j (i; p; n; o)
2 Tg [ f(p; (i; o); u) j ((i; p) are unspecified in T ) ^ (o 2 O)g [
f(u; (i; o); u) j (i; o) 2 I�Og[f(p; (i; o); d) j ((i; p) are specified
in T )^ ((i; p; o) are unspecified in T )g [ f(d; (i; o); d) j (i; o) 2
I � Og. Note thatAM is a DFA.

The set of permissible behaviors expressed by an ISFSM may
not be equivalent to the defined behavior of an ISFSM, since an IS-
FSM may be input-incomplete, i.e., having unspecified transitions.
By definition, an unspecified transition never happens, so it can be
arbitrarily associated with any output value from that transition on.
Consequently,unspecified transitions should be interpreted to be per-
missible. We pictorially explain the construction in Definition 9 in
Figure 3. For the rest of the paper, the set of permissible behaviors
expressed by a PNDFSMM (a CSFSM, or an ISFSM) is denoted as
L(AM ).

Definition 10 A CSFSMR is a permissible realization (implemen-
tation) of a PNDFSMM (or an ISFSM) if L(AR) � L(AM ).

O (M)
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I

Figure 4: The FSM observability networkN ofNR with a flexibility
M .

Theorem 3.1 1 Let M = (I;O; Q; T; q0) be a PNDFSM. An FSM
R = (I;O;Q; T 0; q0), where T 0(i; p; n; o) = ?(�0; T (i; p; n; o))
and �0 is a minterm in (n; o) space, is a permissible realization of
M .

In this section, we do not concentrate on computing the flexibility
which can be found in [30, 33, 17, 1]. After computing the flexibility,
the optimization problem reduces to finding a permissible realization
from a PNDFSM or an ISFSM with respect to some objective, such
as area, testability, timing, power and etc. Conventional approaches
employ state minimizers for PNDFSM’s or ISFSM’s [12, 14, 34, 8,
15] to explore such a permissible realization. However, no existing
state minimizer can efficiently handle large PNDFSM’s or ISFSM’s.
For example, the problem for exact state minimization of ISFSM’s is
NP-hard. To trade off between quality and efficiency, approximations
on PNDFSM’s and ISFSM’s may be needed; consequently, much
flexibility may be lost. How much approximation is needed hinges
on the ability of state minimizers, since approximation needs to be
performed so that the state minimization can be completed. If too
much approximation is performed, it may turn out that very limited
information can be actually exploited. This becomes a problem when
we consider optimization of large FSM networks.

Furthermore, these state minimizers explore a permissible realiza-
tion at the symbolic level where the logic implementation objective
is hard to estimate. The optimization objective of standard state
minimizers is to find an FSM with the minimum number of states.
State minimality is only a heuristic and does not imply that the re-
sultant logic circuit after state encoding is optimized. In fact, it is
just regarded as a good starting point for state encoding. In addition,
if a circuit implementation is given as the starting point which may
be useful for further optimization, state minimizers will completely
ignore it. In this sense, state minimization techniques are ‘distant’
to optimality at the net-list logic level. In comparison, sequential
optimization techniques at the net-list logic level are more mature
in terms of their efficiency and effectiveness; hence the size of cir-
cuits they can handle is larger. Moreover, they work much closer to
the optimality at the net-list logic level. In the rest of this section,
we propose a general approach to exploit PNDFSM’s and ISFSM’s
directly at the net-list logic level.

3.2 FSM Observability Networks
In [24], the observability networkN of a combinational Boolean net-
workN 0 was proposed for logic optimization ofN 0 with a flexibility,
sayO(i; o) which is a Boolean relation (observability relation). Ini-
tially, N 0 is compatible with O(i; o). The observability network
N is a derived network of N 0 by adding a Boolean node O to N 0;
the logic function of node O is equal to O(i; o). With the notion of
the observability network, optimization ofN 0 with flexibilityO(i; o)
is reduced to optimization of N . As a result, no special logic opti-
mization techniques are required to optimize a combinational circuit
N 0 with flexibilityO(i; o), e.g., observability don’t cares of nodes in
N 0 with respect to a flexibility O(i; o) can be computed from N . In
the following, we generalize the notion of observability network to
sequential circuits.

Definition 11 Let M = (I;O;Q; T; q0) be a PNDFSM (an IS-
FSM), and the DFA accepting the set of permissible behaviors ex-

1Detailed proofs of the theorems in this paper are given in [32].



pressed by M be AM = (K;Σ; �; q0; F ) as defined in Defini-
tion 8 (Definition 9). The observability FSM of M is a CS-
FSM O(M) = (Σ;B;K; T 0; q0), where B = f0; 1g and T 0 =
f((i; o); p; n; 1) j (i; p; n; o) 2 T; n 2 Fg [ f((i; o); p; n; 0) j (i; p;
n; o) 2 T; n 62 Fg.

Let R be a permissible realization of M , i.e., R is a CSFSM and
L(AR) � L(AM), and NR be a net-list logic implementation (i.e.,
a Boolean network) of R. The FSM observability network N is
derived by adding an additional Boolean node O to NR , and O is
a logic implementation of observability FSM of M , O(M). This is
shown in Figure 4. Observability FSM O(M) is analogous to the
Boolean relation (observability relation) in the case of combinational
circuits. N has many interesting properties that can be used for
optimization and verification of NR with a flexibility M . This is
stated in the following theorem.

Theorem 3.2 The output of N is a tautology if and only if R is a
permissible realization of M , i.e., L(AR) � L(AM ).

Theorem 3.2 gives an approach to explore a logically optimized
implementation of M . Consider the FSM observability network of
M in Figure 4. Our goal is to optimize NR while the O(M) is kept
intact. This is the same as for combinational circuits; observability
don’t cares of nodes in NR with respect to the flexibility M can be
computed from N .

Theorem 3.3 A stuck-at-fault f in NR is redundant with respect to
the flexibility M if and only if f is redundant in N .

Theorem 3.3 implies that sequential ATPG techniques can directly
exploit the flexibility M . A stuck-at-fault f in NR may be testable,
but if for every test sequence of f its corresponding output sequence
is accepted by AM , then f becomes untestable in N , and thus re-
dundant. Thus, with the flexibility M , it is likely that NR has more
sequential redundancies. In the following, we consider three sets of
logic optimization techniques in more detail.

1. Don’t-care-based approach. This is the conventional ap-
proach [2], widely used in logic synthesis. This set of tech-
niques includes kernel extraction, re-substitution, elimina-
tion, and node simplification [2]. These techniques normally
can make a large improvement from a given initial circuit
[2, 26, 27]. Note that unreachable states can be regarded as
don’t cares during node simplification. Besides the node sim-
plification method, another powerful approach to exploit don’t
cares is Muroga’s transduction methods [21].

2. Sequential ATPG-based techniques. This is a greedy method
and needs a good starting point, so the first set of techniques
may be employed first. There are many existing efficient and
effective techniques based on sequential ATPG to improve
the quality of circuits. For example, techniques in [5, 6] are
based on redundancy removal. Entrena and Cheng [11] pro-
posed an approach based on redundancy addition and removal,
and demonstrated encouraging results. Their method cleverly
adds some redundancies in the Boolean network so that more
redundancies can be removed later. This idea is similar to
transduction methods in [21] but for sequential circuits.

3. Re-encoding and re-synthesis. After a few iterations of the
above two optimization techniques,NR may have been sim-
plified to a reasonable size for re-encoding, e.g., the number
of states may have been reduced. We may then be able to
re-encode and re-synthesize NR. There are good encoding
algorithms for both two-level and multi-level logic implemen-
tations [29, 18, 10] when the circuits are reasonably small.
Although state encoding does not guarantee more improve-
ment than previously optimized results, it is likely to be a
new good starting point for performing re-synthesis using the
above two techniques.
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It is easy to design a local search (steepest decent) algorithm
which iteratively runs these logic optimization techniques in some
order before a CPU run-time limit is reached or an acceptable logic
realization is achieved. Re-encoding and re-synthesis can be used to
jump out of a local optimum. Like state minimizers, our approach is
also a heuristic of exploiting PNDFSM’s and ISFSM’s to find a good
permissible realization with respect to some optimization objective.
However, our approach has the following main advantages.

� The flexibility can be exploited using existing state-of-the-art
sequential net-list logic optimization techniques. Most can
deal with larger sequential circuits and produce good results.
In comparison, state minimizers for ISFSM’s or PNDFSM’s
can only handle much smaller circuits.

� Circuit implementation objectives, such as area, timing, power
etc., can be considered directly during the exploitation. In
comparison, it is much harder to estimate these objectives at
the symbolic level.

� Even if state minimization and state encoding are first used,
our approach can still be applied.

The computation step for E-machines [17, 1] and input don’t care
sequences [16, 23, 30] requires subset construction in the general case.
The worst case complexity of subset construction is exponential in
the number of states [22]. To trade off between quality and efficiency,
approximations can be made using techniques in [23, 30]. However,
some flexibility may be lost. With a similar formulation to the FSM
observability network, in the next section we present a new procedure
for input don’t care sequences in general FSM networks. This new
procedure does not use an ISFSM to express the flexibility due to input
don’t care sequences, and no subset construction is required. The
exploitation is also performed at the net-list logic level. As a result,
both computation and exploitation of input don’t care sequences can
be made efficient and effective.

4 Logic Optimization of FSM Networks Using Input
Don’t Care Sequences

In this section, we concentrate on both computation and exploitation
of input don’t care sequences in general FSM networks. First, we
give an overview of previous work, and then discuss difficulties in
computing and exploiting input don’t care sequences. Afterwards,
we present a new procedure for input don’t care sequences in general
FSM networks.



4.1 K-N Procedure
Consider the cascade machine M1 ! M2 in Figure 1(a). Kim and
Newborn [16] proposed an elegant approach which solves the prob-
lem of computing input don’t care sequences for a driven machine in
a cascade. The procedure is :

1. Construct an NFA A0 to accept the language produced by
machineM1. This can be achieved by removing the input part
in the STG of M1, and assigning every state of M1 as a final
state. For a state s, if there are output symbols not emitted
from it, a transition is inserted from s to the dead state d with
those symbols. The dead state d is the only non-accepting
state. ThusA0 is completely specified but non-deterministic.

2. ConvertA0 to a minimized completely specified DFAA. This
can be done by using the subset construction [22] and then state
minimization for DFA [13]. Note that efficient (n log n) state
minimization for completely specified machines can be used,
since the subset construction produces a completely specified
deterministic machine.

3. A modified machineM2
0 is constructed as follows : construct

M2 �A and delete any transition to a state that contains the
dead state d in its subset. M2

0 is deterministic but possibly
incompletely specified. State minimizers for ISFSM’s are
used to minimize M2

0.

The key idea is that sequences not produced by M1 are the input
don’t care sequences forM2, and these are converted into unspecified
transitions of a modified machine M 0

2. The K-N procedure indeed
captures all input don’t care sequences for M2.

4.2 Input Don’t Care Sequences in General FSM
Networks

Intuitively, computation of input don’t care sequences for a compo-
nent in an FSM network of arbitrary topology is much more compli-
cated than for a cascade circuit. Nevertheless, it is not theoretically
harder.

Wang and Brayton [30] demonstrated that the problem of com-
puting and exploiting input don’t care sequences for a component in
an FSM networks with an arbitrary topology can be reduced to one
for a cascade circuit. They derive an abstract driving machine in
the computation of input don’t care sequences in an FSM network.
The pictorial explanation is shown in Figure 5. For example, the ab-
stract driving machine to M2 in Figure 1(a) is M1, while the abstract
driving machine toM2 in Figure 5(a) is M1�M2. The abstract driv-
ing machine for a component in an FSM network is the composite
machine of all components in this network, i.e., the network itself.
However, if a component M2 is in a one-way communication with
other components as in Figure 1(a), its abstract driving machine will
reduce to M1. Then steps 1 and 2 of the K-N procedure can be used
to compute the exact input don’t care sequences. The correctness
of the exploitation of input don’t care sequences was proved in [30].
Therefore, with the notion of the abstract driving machine, the K-
N procedure works in general FSM networks. In addition, in [30]
an efficient implementation of the K-N procedure using BDD’s was
proposed.

An abstract driving machine itself may be a non-deterministic
FSM which can be a collection of permissible FSM’s; however, this
does not affect the computation and exploitation of input don’t care
sequences in the K-N procedure. Consequently, we may start with a
network of machines some of which are non-deterministic (e.g., the
environment may be one of the machines).

4.3 Practical Issues of the K-N Procedure
Unfortunately, the worst case complexity for the transformation from
an NFA to a DFA (i.e., fromA0 toA) using subset construction is ex-
ponential in the number of states [22]. Further, even ifA can be built
in a reasonable time, the resultant product machine M2

0 may have a
large number of states before state minimization. Therefore, there

M1 M2I X O

M
(a)

M1 M2I X O

X

M
(b)

Figure 6: (a). M �M1 ! M2, where I is input and O output. (b).
M , where I is input, and X , O outputs.

are two purposes for approximations of input don’t care sequences.
(1) Control the possible state explosion in the subset construction.
(2) The resultant modified machine M2

0 should be small enough for
state minimizers.

Consider the cascademachineM1 !M2 in Figure 1(a). Note that
M1 may be the abstract driving machine forM2. Let output sequences
produced byM1 beL(Mo

1 ), a regular language over alphabetI2. For
computing and exploiting only a subsetof input don’t care sequences,
any regular language L0 such that L(Mo

1 ) � L0 � I2
� gives rise

to a feasible subsetL0 of input don’t care sequences. Approximation
methods in [23, 30] can be used.

Approximation needs to be performed so that the state minimiza-
tion of M2

0 can be completed in the K-N procedure. As a conse-
quence, even if input don’t care sequences can be efficiently com-
puted in an FSM network, after approximation it may turn out that
very limited information can be actually exploited. Also, even if we
use the exploitation approach in Section 3, we still have the problem
in the subset construction. In the rest of this section, we propose a
new procedure to circumvent the subset construction; as a result, both
computation and exploitation can be made efficient and effective.

4.4 Logic Optimization of the Driven Machine in a
Cascade Circuit

Consider a cascade circuit M � M1 ! M2 as shown in Figure
6(a), where M1 is the driving machine, and M2 the driven machine.
M1 and M2 are logic implementations. Our goal is to optimize M2
while the behavior of M1 is kept unchanged. We can employ logic
optimization techniques in Section 3.2 to optimize M2.

We require that the behavior ofM1 be kept unchanged and thatX is
the only communicating variable betweenM1 andM2. That is, we are
only concerned about the logic optimization ofM2. Therefore, some
logic optimization technique as described in Section 3.2 may need to
be modified to optimizeM2 only. For example, a simple modification
to the redundancy removal method is to set X as observable outputs.
This guarantees that the behavior of M1 is the same as before. That
no internal nodes in M1 are allowed to connect to M2 guarantees
that X is the only communicating variable. With this setting, we
can perform redundancy removal on M and then disassemble M1
from M afterwards. This results in an optimized circuit of M2
using redundancy removal. This is illustrated in Figure 6(b). Note
that M1 need not be deterministic. If it is non-deterministic, it can
be input determinized by adding additional inputs controlling the
non-determinism. The resulting network can be fed into SIS where
sequential redundancy removal can be performed.

From the K-N procedure [16], the flexibility of implementingM2
comes from input don’t care sequences. Logic optimization tech-
niques in Section 3.2 exploit input don’t care sequences in different
ways. In the next subsection, this is discussed in more detail.

4.5 External Don’t Cares and Sequential Redun-
dancies vs. Input Don’t Care Sequences

Let output sequences generated by M1 be L(Mo
1 ). Based on the

K-N procedure, the flexibility ofM2 when cascaded by M1 is due to
output sequences not generated by M1, i.e., L(Mo

1 ). In the follow-
ing, we investigate the relationship between this flexibility and logic
optimization techniques as described in Section 3.2.



X O

M

(a)

A

I X OM

(b)

1

tautology

D

A

Figure 7: (a). The specified behavior of M with restricted input
sequences L(A). (b). Construction of a driving machine D to M .
The set of output sequences of D is equivalent to L(A).

We consider two exploitation techniques. Node simplification
can exploit external don’t cares both effectively and efficiently [25].
Output values not generated by M1 are external don’t cares to M2.
Therefore, node simplification only exploits partial flexibility; never-
theless, when combined with other optimization techniques, such as
kernel extraction, elimination etc., we can efficiently get a good start-
ing point for sequential ATPG-based techniques. Let the transition
relation of M1 be T1(i; p1; n1; x), the output values not generated by
M1 are EDC(x) = 9i;p1;n1T1(i; p1; n1; x).

Output sequences not generated by M1 are input don’t care se-
quences to M2. We prove that they are precisely what is exploited by
sequential ATPG-based techniques. Consider the cascade machine
in Figure 6(a). We assume that M1 is deterministic.

Lemma 4.1 For a stuck-at fault f in M2, if there is a test sequence
from I , then there is a test sequenceS 2 L(Mo

1 ) from X .

Lemma 4.2 For a stuck-at fault f in M2, if there is a test sequence
S 2 L(Mo

1 ) from X , then there exists a test sequence from I .

Theorem 4.3 Let A be a finite automaton which accepts L(Mo
1 ),

i.e., L(A) = L(Mo
1 ). A stuck-at fault f in M2 is redundant with

respect to input sequences L(A) if and only if it is redundant in
M �M1 !M2 as shown in Figure 6(a).

Theorem 4.3 implies that sequential redundancies in M2 when
cascaded by M1 are because there is no test sequence S 2 L(Mo

1 )
fromX . A stuck-at faultf inM2, may have a test sequenceS fromX ,
but if S 62 L(Mo

1 ), f becomes untestable, and thus redundant. That
is, with limited input sequences, it is likely to have more sequential
redundancies in M2. This demonstrates that sequential ATPG-based
techniques in Section 3.2 can directly exploit the flexibility of M2
coming from input don’t care sequences.

Theorem 4.4 Let M1
0 and M1 both generate the same set of output

sequences, i.e., L(M1
0o) = L(Mo

1 ), and f be a stuck-at fault in
M2. Then f is redundant in M1 !M2 if and only if it is redundant
in M1

0 !M2.

Theorem 4.4 implies that any sequential circuitM1
0 with its set of

output sequences equivalent to L(Mo
1 ), can be used to replace M1

as the driving machine to M2. This means that we have freedom to
select such a machine M1

0 that can expedite sequential ATPG-based
algorithms, e.g., construction of BDD’s etc.

4.6 Logic Optimization of an FSM with Input Don’t
Care Sequences

Theorems 4.3 and 4.4 lead to a method to optimize a machine M
with input don’t care sequences which, say, are not accepted by A.
Figure 7(a) shows conceptually the specified behavior of M with
input sequencesL(A). When an input sequenceS is accepted byA,
there is a corresponding output sequence. If S is not accepted by A,
there is no output.

In practice,L(A) must be produced by another FSM (determinis-
tic or non-deterministic) such that it can be the set of input sequences
to M . Therefore, by the K-N procedure, we can assume that the
only non-accepting state ofA is the dead state d, and any transitions
to d correspond to the unspecified behavior. Therefore, to exploit
this flexibility, we can construct a CSFSMD whose set of output se-
quences isL(A) as the driving machine. This is shown in Figure 7(b).
There are many construction methods fromA to such a deterministic
FSM D. Automaton A can be deterministic or non-deterministic.
We give one simple construction method.

� Case 1: A is deterministic. The construction is as follows. In
automatonA, the dead state d is removed, and any transitions
edges to d are deleted. The remaining states in A are final
states. For each transition edge out of a state s, the output o
is set equal to input i. For any unspecified input in state s,
we arbitrarily assign it to any one of the specified transitions
from s with the corresponding output. The resultant FSM D
is completely specified and deterministic, and its set of output
sequences is equivalent to L(A).

� Case 2: A is non-deterministic. In automaton A, the dead
state d is removed, and any transitions edges to d are deleted.
The remaining states in A are final states. Let the maximum
number of transitions from any state inA be L, and 2k � L.
We choose k Boolean variables as new inputs to machine D.
For each transition edge out of a state s, its output value is
set to be its old input value, and then a distinct value from
Bk is assigned to be the new input value. Afterwards, for
any unspecified value in Bk , we arbitrarily assign it to any
one of the specified transitions from s with the corresponding
output. The resultant FSM D is completely specified and
deterministic, and its set of output sequences is equivalent to
L(A). This is a form of “input determinization”.

Since the above construction needs explicit enumeration which may
not be efficient, in the following, we provide an implicit method for
constructing such a CSFSMD directly from A. Note thatA has the
following properties — every state except the dead state d is a final
state, the input string in each transition is of length one, and there are
no �-transitions. Thus, we do not need to explicitly express the dead
state d in the transition relation, since it is implicit from all unspecified
transitions. We do not need to specify the set of final states, since
every state is a final state. As a consequence, we can represent the
transition relations ofA in the same way as FSM’s. Let the transition
relation of A be TA(p; i; n). To detect if A is deterministic is easy
using BDD’s; we computeTA0(p; i; n) = ?(�;TA(p; i; n)), where
� is a reference next state vertex. For each pair (p; i) defined in
TA(p; i; n), ? assigns a unique n. However, if TA0(p; i; n) equals
TA(p; i; n), nothing was changed, implying that T already had only
one such candidate. Hence, TA(p; i; n) is deterministic; otherwise
nondeterministic.

Theorem 4.5 If A is deterministic, the transition relation of one
possible CSFSMD, TD(i; p; n; o) can be derived as follows:

TD1(i; p; n; o) = TA(p; i; n) � (i � o). (1)

TD2(i; p; n; o) = f9nTA(p; i; n) � �i;oTA(p; i; n)g+

TD1(i; p; n; o). (2)

TD(i; p; n; o) = ?(�0; TD2(i; p; n; o)) (3)

where�0 is a minterm in (n; o) space.

Theorem 4.6 IfA is non-deterministic, the transition relation of one
possible CSFSMD, TD(i0; p; n; o) can be derived as follows:

TD1 (i
0
; p; n; o) = TA(p; i; n) � (i � o) � (n � i1). (4)

TD2 (i
0
; p; n; o) = f9n;oTD1(i

0; p; n; o) � 9i0TD1 (i
0
; p; n; o)g+

TD1 (i
0
; p; n; o). (5)

TD(i
0
; p; n; o) = ?(�0; TD2 (i

0
; p; n; o)) (6)



ckt I/X/O/S1 /S2 M2 K-N procedure Our procedure
lits SM enc + opt opt + red

S2
0 cpu lits cpu S2

0 lits cpu

ce1 9/19/7/20/47 248 7 0.2 95 8.9 12 37 20.4
ce2 2/2/3/8/27 348 15 0.1 63 3.7 16 75 19.0
ce3 18/19/7/25/47 248 8 0.3 39 2.4 16 34 29.2
ce4 18/19/7/25/47 248 4 0.1 14 1.0 5 15 17.3

ce5 7/7/2/16/19 314 18 1.3 193 53.2 18 170 40.3
ce6 7/2/3/19/27 348 19 0.1 120 11.7 20 94 41.4
ce7 19/7/2/47/19 314 15 7.5 178 41.5 16 93 107.4
ce8 11/9/19/32/20 280 8 83.8 239 59.3 9 66 552.5

ce9 7/7/19/16/48 617 - sout - - 44 454 169.6
ce10 7/19/7/48/47 248 - tout - - 35 165 534.7
ce11 19/7/19/47/48 617 - tout - - 45 441 438.0
ce12 11/9/10/32/30 596 - tout - - 27 375 405.6

Table 1: Experimental results of one-way-communication circuits.

M1 (M2): driving machine (driven machine).
I, O, X: number of PI’s, PO’s, interacting signals ofM1 ! M2, respectively.
S1 (S2): number of states ofM1 (M2), respectively.
M2 lits: number of literals (in factored form) of the initialM2.
lits: number of literals (in factored form) ofM2 after optimization.
S2

0: number of states ofM2 after exploiting input don’t care sequences.
SM: result for STAMINA.
enc + opt: encoded by JEDI, then optimized by running script.rugged twice.
opt + red: optimized by running (script.rugged + red removal) twice.
cpu: CPU time in seconds on a DEC 3000/500 AXP (160MB memory).
tout: set to 20,000 seconds of CPU time.
sout: spaceout

where i0 = (i; i1) and �0 is a minterm in (n; o) space.

Based on the discussion in Section 4.5, we can assign arbitrary
state encoding to FSM D, and then have a logic implementation of
FSM D. Subsequently, the methods in Section 3.2 can be employed
to optimize M . Theoretically, the logic implementation of D will
not affect the optimality ofM . However, efficiency may be affected.
For example, state-of-the-art sequential ATPG algorithms are based
on BDD’s, and state encoding of D will affect the size of BDD’s
for constructing the transition function of D. Currently, we are
investigating this effect.

4.7 Generalized K-N Procedure in Logic Optimiza-
tion of FSM Networks

Based on the discussions in Sections 4.5 and 4.6, we propose an
approach for logic optimization of a component in a general FSM
network using input don’t care sequences. Given a logic implemen-
tation of a componentM2 in an FSM network, our procedure works
as follows.

1. Construct the abstract driving machine M1, same in [30]. It
may be non-deterministic.

2. Construct an NFA A0 to accept the language produced by
machine M1, as in the first step of the K-N procedure.

3. As described in Section 4.6, construct a CSFSMD whose set
of output sequences is equivalent to L(A0). Then derive a
logic implementation of CSFSM D.

4. Use the various optimization techniques in Section 3.2 to op-
timize M2.

Note that if M1 is deterministic, it can be handled by sequential
optimization, hence we may use it directly in step 3. Our approach
can be regarded as a generalization of the K-N procedure, but no

ckt M2

after K-N procedure after (opt + red)
opt + red re-encoding + (opt + red)

lits(i) lits(f) cpu lits(i) lits(f) cpu

ce1 95 74 13.2 37 26 9.0
ce2 63 63 4.0 75 58 4.7
ce3 39 33 15.8 34 33 17.5
ce4 14 12 7.1 15 14 7.5

ce5 193 152 48.9 170 124 20.9
ce6 120 101 34.9 94 75 27.6
ce7 178 108 62.5 93 70 14.9
ce8 239 113 323.0 66 56 111.2

ce9 * - - - 454 396 1243.1
ce10 - - - 165 186 512.2
ce11 * - - - 441 377 1154.9
ce12 * - - - 375 312 1826.3

Table 2: Experimental results for re-encoding and re-synthesis.

M2: driven machine.
lits(i): initial number of literals (in factored form) ofM2.
lits(f): number of literals (in factored form) ofM2 after optimization.
opt + red: optimized by running (script.rugged + red removal) twice.
re-encoding
+ (opt + red): encoded using JEDI and then optimized by running opt + red.
cpu: CPU time in seconds on a DEC 3000/500 AXP (160MB memory).

* full simplify in script.rugged is set to 500 seconds.

subset construction is needed. This is because, in a sense, we do not
use an ISFSM M2

0 to express the flexibility due to input don’t care
sequences. Exact input don’t care sequences can be approximated.
Many approximation methods for dealing with large FSM networks
have been proposed in [30]. There are many other approximation
methods, e.g., hiding some state variables from A0, and grouping
states of A0 etc. With our approach and powerful state-of-the-art
sequential optimization techniques, less approximation is required,
i.e., more input don’t care sequences can be exploited.

5 Experimental Results
We present preliminary results on small networks. Due to the lack
of FSM network benchmark examples, most of the examples here
are obtained by connecting FSM’s from MCNC benchmarks. These
FSM’s are completely specified and state-minimal. We have imple-
mented the new procedure for input don’t care sequencesas described
in Section 4.7.

Table 1 shows experimental results for some cascade circuits con-
sisting of two FSM’s. The circuit topology of these examples is
shown in Figure 6(a). We employ both the K-N procedure and our
procedure to optimize M2 and then compare their results. Note that
M1 is a CSFSM, so in our approach we don’t use the methods in
Section 4.6 to construct a CSFSM D whose set of output sequences
is equivalent to that of M1. The logic optimizer used is SIS [27],
and its standard optimization procedure is called script.rugged
[26] which includes kernel extraction, re-substitution, elimination
and node simplification. In this experiment, we use unreachable
states as don’t cares which are exploited in node simplification. The
initial circuit ofM2 is obtained by running script.rugged once.
For the K-N procedure, we use the bounded subset construction in
[30]; the bound on the number of states is set to 64. The state mini-
mizer used here is STAMINA [12]. Afterwards, the state-minimized
machine is encoded using JEDI [18], and then optimized by running
script.rugged twice.

Our procedure takes the given circuit implementation ofM2 as the
starting point. External don’t cares, i.e., output values not generated
by M1, are extracted and then exploited in script.rugged. This
corresponds to the first set of optimization techniques in Section
3.2. We then use the construction in Figure 6(b), and apply the



red removal command in SIS to remove sequential redundancies.
This corresponds to the second set of optimization techniques in
Section 3.2. The results shown in Table 1 are obtained by running
these two sets of optimization techniques twice.

Our procedure achieves better results except for examples ce2
and ce4. For the third set of examples (ce9, ce10, ce11 and
ce12), STAMINA cannot efficiently exploit input don’t care se-
quences computed by the K-N procedure. As shown in Table 1, not
only the factored literal count is reduced, but also the number of states
is reduced. Most of CPU time for our procedure is spent either in
node simplification or in removing sequential redundancies.

We also conducted the following experiments: (1) Apply our pro-
cedure on the results obtained by the K-N procedure. (2) Perform
re-encoding and re-synthesis on the results obtained by our proce-
dure. We compare these results in Table 2. For the first experiment,
improved results are obtained, but half are still inferior to the results
obtained by our procedure alone (see Table 1). For the second exper-
iment, re-encoding and re-synthesis produce the best results except
for examples ce4 and ce10.

In our experiments, only redundancy removal is used, and we ex-
pect that better results can be achieved if redundancy addition and
removal in [11] is employed. These preliminary results indicate that
our approach together with the notion of abstract driving machines
[30] is promising for computing and exploiting input don’t care se-
quences in general FSM networks.

We plan to integrate the algorithm for computing E-machines in
[1] and our approach in Section 3, and then study various trade-offs
aboutefficiency and effectiveness between input don’t care sequences
and E-machines in FSM networks.

6 Conclusion
We presented a novel approach for exploiting exact or approximate
flexibility for a component in an FSM network directly at the net-
list logic level. With our approach, many existing sequential net-list
logic optimization techniques can be applied to exploit the flexibility.
Moreover, we proposed a new procedure to facilitate both computa-
tion and exploitation of input don’t care sequences in general FSM
networks. Multi-level logic optimization of larger FSM networks can
then be achieved. Preliminary results look promising but more FSM
networks must be experimented on.
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