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Abstract

Current approachesto compute and exploit the flexibility of a com-
ponent in an FSM network are all at the symbolic level [23, 30, 33,
31]. Conventionally, exploitation of this flexibility relies on state
minimizers for incompletely specified FSM'’s (ISFSM’s) or pseudo
non-deterministic FSM’s (PNDFSM’s) [33]. However, state-of-the-
art state minimizers cannot handle large ISFSM’s or PNDFSM’s
[12, 14, 34, 8, 15]. In addition, these exploitation techniques are at
the symbolic level, not directly at the net-list logic level. We present
ageneral approach to exploit exact or approximateflexibility directly
at the net-list logic level, and we demonstrate that many sequential
logic optimization techniques can be applied in exploitation. More-
over, we propose anew procedurefor input don’t care sequences. As
a result, both computation and exploitation of input don’t care se-
guencesin larger FSM networks can be made efficient and effective.
Finally, we give preliminary results on some artificially constructed
FSM networks. Preliminary resultsindicate that our approach can be
effective in reducing the size of acomponent of an FSM network.

1 Introduction

As digital system design complexity increases, hierarchical specifi-
cation becomesvital. For example, hardware description languages,
such as Verilog or VHDL, are typically used to specify industrial
designs. Oncethe designis verified, logic synthesistools are used to
optimize the circuit implementation with respect to some objective.
The objective can be minimum area, minimum delay, maximum testa-
bility, minimum power consumption, or any combination of these.
An underlying model for a hierarchical specification in the synthesis
and verification community is a network of interacting finite state
machines (FSM’s). In this paper, synchronous FSM networks with
known initial states are considered. A severe limitation of current
synthesis tools for sequential circuits is that only a single FSM is
considered at atime, e.g., SIS[27].

Theoretically, we can collapsean FSM network into asingle FSM.
However, thisis not preferred, because of the following reasons. (1)
This single FSM may be too big to be handled by synthesis tools,
e.g., state encoding programs. (2) Some componentsin the network
may be non-deterministic FSM’s which are not synthesizable, e.g.,
an abstract description of the environment. (3) The hierarchy speci-
fied by designers may contain important information which is useful
for an efficient implementation. (4) Some modules may aready be
synthesized well and should not be touched. With hierarchical spec-
ification, each component is likely specified in a reasonable size.
Therefore, another approach to synthesizing an FSM network is to
synthesize one component at a time. Due to interaction with other
components, the controllability and observability of acomponent are
reduced, sotheflexibility for implementing thiscomponentincreases.
By exploiting this flexibility, the quality of the implementation may
beimproved. Therefore, akey to logic optimization in a hierarchical
specification is to consider the interaction between components.

Theflexibility in the context of anisolated combinational circuits
can be expressed by don’t cares, and for anindividual componentina
hierarchically specified combinational circuit, a Boolean relation [3]
(observability relation [24] ) is required to express al its flexibility.
Similarly, exploitation of flexibility is important for sequential cir-
cuits. Several approacheshave been proposed. For example, in [20],
unreachable or equivalent states are used in the optimization of an
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isolated sequential circuit. Inthisapproach, acircuit implementation
is given as the starting point.

In the case of an individual component in an FSM network, there
are several approaches. The first approach [33] used a pseudo non-
deterministic FSM (PNDFSM)), called the E-machine, to express all
flexibility. Later, [17, 1] proposed different construction methodsfor
the E-machine, but subset construction [22] is required in the general
case. The exploitation of the E-machine usually is done by state
minimization of PNDFSM’s [34, 8, 15].

Another approach (which is an approximate one) is based on the
notion of don't care sequences [23]. There are two kinds; input
and output don’'t care sequences. Consider the cascade machine in
Figure 1(a), where M is the driving machine and M5 the driven ma-
chine. Kimand Newborn[16] proposed an elegant completesolution.
For a two-way-communication network of FSM's, A2, as shown in
Figure 1(b), Wang and Brayton [30] gave an efficient computation,
and demonstrated that state minimization for incompletely specified
FSM'’s (ISFSM’s) [12, 14] can be used to exploit input don’t care
seguencesin general FSM Networks.

On the other hand, the flexibility in implementing M1 when cas-
caded with M5 is called output don’t sequences. Devadas [9] pro-
posed a method to exploit sequential output don't cares, and later
Rho et al. [23] generalized Devadas' procedure to compute fixed-
length output don’t care sequences. Another approach based on FSM
equivalence checking for approximating the set of output don’t care
seguenceswas proposed in [31].

The above algorithms for computing the flexibility of an individ-
ual componentin an FSM network are all based on the manipulation
of transition relations of FSM’s, i.e., symbolic information is ma-
nipulated. Currently, exploitation of this flexibility hinges on state
minimizers for ISFSM’s [12, 14] or PNDFSM’s [34, 8, 15]. Af-
terwards, state encoding and sequential optimization techniques are
applied to the state-minimized machine. Presently, no existing state
minimizer can handlelarge| SFSM’sor PNDFSM’s[12, 14, 34, 8, 15].
For example, the computation of input don’t care sequencesin FSM
networks can be efficiently done; however, the exploitation of them
using state minimization is difficult [30] since the problem of exact
state minimization of ISFSM’s is NP-hard. To circumvent this, ap-
proximations are required to trade off between quality and efficiency
[23, 30]. Asaresult, much flexibility may belost.

Furthermore, in contrast to net-list logic optimization techniques
for sequential circuits, these algorithms do not use a circuit imple-
mentation as the starting point; the exploitation is not performed at
the net-list logic level. In terms of efficiency, effectiveness, and the
size of circuits, optimization techniques for sequential net-list logic
circuits are in a more mature stage than symbolic methods, since
most are able to produce acceptable results in larger circuit designs.
However, manipulating symbolic information is indispensable for
computing the flexibility of acomponentin an FSM network.

With this motivation, we propose a general approach which takes
acircuit implementation as the starting point and computes the flex-
ibility at the symbolic level, but exploitation is directly at the net-list
logic level. In addition, we discuss the difficulties in previous ap-
proaches[16, 30], and then we proposeanew procedurewhich makes
both computation and exploitation of input don’t caresequencesmore
efficient and effective. This procedure does not require a subset con-
struction [22] as in the Kim and Newborn’s procedure [16]. As a
result, this procedure look promising for larger FSM networks. Fi-
nally, we give preliminary results on some artificially constructed
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Figure 1: (a) N1 : A cascade circuit of two FSM’s. (b) A2 : A

two-way-communication network of FSM'’s.

FSM networks.
2 Prdiminaries

2.1 Finite Automata and Finite State Machines

A deterministic finite automaton (DFA), A, is a quintuple (K, %, 6,
qo, F') where K is a finite set of states, ¥ an alphabet, g0 € K
the initial state, /' C K the set of final states, and § the transition
function, § : K x ¥ — K. A non-deterministic finite automaton
(NFA), A, is a quintuple (K, %, 4, g0, F') where 4, the transition
relation, isafinite subsetof K" x 2* x K, and 2* the set of all strings
obtained by concatenating zero or more symbols from ~. An input
string is accepted by A if it ends up in one of final states of .A. The
language accepted by A, £(.A), isthe set of stringsit accepts.

A finite state machine (FSM), M, isaquintuple (1,0, Q, T, qo)
where I isafiniteinput alphabet, O afinite output alphabet, @ afinite
set of states, T, thetransition relation, afinitesubsetof I x Q@ x Q x O,
and qo theinitial state. An FSM can berepresented by astatetransition
graph (STG). An FSM is input-complete if for al input symbols
from every state, the transitions are defined; otherwise, it is input-
incomplete. A deterministicFSM (DFSM) isan FSM in which for al
transitions (i, p, n, o) € T, (1, p) Is associated with a unique (n, o).
Otherwise, an FSM is called a non-deterministic FSM (NDFSM).
A pseudo non-deterministic FSM (PNDFSM) is an input-complete
FSM and in which for al transitions (7, p, n,0) € T, (i,p,0) is
associated with a unique next state n. A completely specified FSM
(CSFSM) is an FSM which is input-complete and deterministic. An
incompletely specified FSM (ISFSM) iseither an NDFSM or aninput-
incomplete FSM, and in which for all transitions (i, p, n,0) € T,
(¢,p) Is associated with a unique next state n. A CSFSM is of
Mooretypeif the output value does not depend on inputs, and Mealy
otherwise. A cascade of FSM’'s M3 and M>, denoted M1 — Mo,
is shown in Figure 1(a). M is called the driving machine, M> the
driven machine.

The single stuck-at fault model assumes that a single fault at a
given wire in the circuit causesthat wire to be permanently at a high
voltage level (stuck-at-1), or alow-voltage level (stuck-at-0). Let A
be alogic implementation of a CSFSM. A sequenceof input vectors
isatest for afault f of M if it causes output values different from
those of the fault-free machinewhenit is applied to machine M with
thesingle fault f starting from the reset state. If afault f hasno test,
it isredundant.

2.2 Set Computation and Operators

We denote B designateasthe set {0, 1}. Let F beasetand S C F.
The characteristic function of S is the function ys : £ —
definedby xs(z) =1ifz € S, and xs(z) = O, otherwise.

Definition 1 Let f : B" — B be a Boolean function, and z =
{z1, ...,z } a subset of the input variables. The existential quan-
tification (smoothing) of f by =, with f, denoting the cofactor of f
by literal « is defined as:
Joif=foi+tfer  Fof=Fum..3u f.
Definition 2 Let f : B"™ — B beaBoolean function, only depend-
ing on a subset of variablesy = {y1,...,yx }. Letz = {z1,...,zx}
be another subset of variables, describing another subspace of B™

of the same dimension. The substitution of variables y by variables
x in f isthe function of = obtained by substituting z; for y; inf:

0y f)y)= f(z) if 2, =y; forall 1< i <k.

Reduced ordered binary decision diagrams (BDD’s) [4] are well
suited to represent the characteristic functions of subsets of a set,
and efficient algorithms exist to manipulate them to perform all stan-
dard Boolean operations. Asaresult, the above set operations can be
done efficiently.

The reachable states can be computed efficiently using implicit
state enumeration techniquesintroduced by Coudert et al. [7]. This
approach is based on representing a set of states by a characteristic
function which can be manipulated effectively using BDD’s. In
the following, we represent a finite state machine implicitly by a
characteristic function using BDD's.

Definition 3 Thetransition relation of a finite state machine M =
(1,0,Q,T,qo0) isafunctionT : I x @ x @ x O — B such that
T(1, p,n,0) = 1if and only if state n can be reached in one state
transition from state p and produce output o when input : is applied.

The compatible projection operator is defined in [19] and can be
manipulated efficiently using BDD's.

Definition 4 Lety; < --- < y,, beanordering of Boolean variables.
The distance between two vertices«, 3 € B™ isdefined as[7, 28]

d(o, B) = 37 i — Bi]2" 7"

Using the above distance metric, atotal ordering of all the vertices
of aBoolean spacerelativeto somereferencevertex o can be defined;
order(z) = d(a,z).

Definition 5 Givena € B",C C B", the closest inter pretation of
a inC for a given variable ordering is defined as[ 19]

Pla,C) = argmin,cod(a, ).

The closest interpretation P, relative to a reference vertex «, is
unique for a given variable ordering.

Definition 6 For arelation, R C B" x B™,anda € B", theclosest
interpretation of « relative to R (called compatible projection in
[19])is:

J—(a7R) = {(x,y)|(x,y) eER,y= 'P(oz,Rm)} .

Conceptually, the L operator selects a unique minterm y for each
minterm = defined in the relation R. Thus, L(«, R) results in the
characteristic function of afunction defined onthedomain3, R (z, y);
L(a,R):3,R(z,y) x B" = B.

3 Logic Optimization of FSM Networks: General
Approach

3.1 Permissible Behaviors

Current approachesfor synthesizingacomponentin an FSM network
havetwo steps: (1) computing the flexibility (i.e., acollection of per-
missibleimplementations), and (2) finding apermissibleimplementa-
tion, with respect to someoptimization objective, usingtheflexibility.
Therearemany studies[16, 9, 23, 30, 33, 34, 8, 31, 15,17, 1] incom-
puting and exploiting the flexibility. A key idea of these approaches
1s to implicitly express a collection of permissible implementations
of acomponentin an FSM network using somevariantsof FSM’s. A
permissibleimplementation is called apermissible behavior. Watan-
abe and Brayton [33] demonstrated that an E-machine (a PNDFSM)
can expressthe whole set of permissible behaviorsof acomponentin
an FSM network and then proposed a method to compute it. Later,
[17, 1] proposed different methods for computing the E-machine.
The fact that the set of permissible behaviors due to input don't care
sequences can be expressed using an ISFSM was demonstrated in
[30] That is, a PNDFSM or an ISFSM can be used to implicitly
express a collection of permissible behaviors. They are defined as
follows and are consistent with the definitions of [33, 30].
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Definition 7 Thedefined behavior ofanFSM M = (1,0, Q, T, qo),
a set of sequencesC (7 x 0)*, isthe language of a finite automaton
DM = (K,5,6,q0, F), where K = QU {d},Z=1x 0, F = Q,
and § = {(p, (¢,0),n) | (4,p,n,0) € TTU{(p, (i,og7 d) | (1,p,0)
areunspecifiedin 7'} U {(d, (¢, 0),d) | (1,0) € I x O}. Thedefined
behavior of an FSM M is denoted as £(D*). In general, DM may
be an NFA.

Definition 8 The set of permissible behaviorsexpressed by a

PNDFSM (or a CSFSM) M = (1,0, Q, T, q0), a set of sequences
C (I x 0)*, is the language of a finite automaton, AM | where
AM = DM Thatis, the set of permissible behaviorsexpressedby a

PNDFSM MM is equivalent to its defined behavior. Note that A™ is
aDFA.

The construction of .4* of a PNDFSM (or a CSFSM) M can be
directly derived from M. The alphabet of .A™ is T x O. Every
state of M is afinal state, and the initial stateis the same. For those
(¢, 0) symbolswhich do not have specified transitions from a state p,
atransition is added from state p to the dead state d, the only non-
accepting state. This construction is pictorialy explained in Figure
2.

Definition 9 The set of permissiblebehaviorsexpressed by an |SFSM
M = (1,0,Q,T, q), a set of sequences C (I x O)*, is the lan-
guageof afinite automaton A = (K, Z, 5, qo, F'), where K = QU
{u,d},Z =1Ix0,F =QU{u},andé = {(p, (1,0),n) | (i,p,n,0)
€ T u{(p,(4,0),u) | ((1,p) areunspecifiedin T') A (0 € O)} U
{(u, (i,0),u) | (1,0) € I X Oy U{(p, (1,0),d) | ((i, p) arespecified
in TYA ((,p, 0) are unspecified in 1)} U {(d, (2,0),d) | (i,0) €
I x O}. Notethat A™ isa DFA.

The set of permissible behaviors expressed by an ISFSM may
not be equivalent to the defined behavior of an ISFSM, sincean IS
FSM may be input-incomplete, i.e., having unspecified transitions.
By definition, an unspecified transition never happens, so it can be
arbitrarily associated with any output value from that transition on.
Consequently, unspecified transitions should be interpreted to be per-
missible. We pictorially explain the construction in Definition 9 in
Figure 3. For the rest of the paper, the set of permissible behaviors
expressed by aPNDFSM M (a CSFSM, or an ISFSM) is denoted as

L(AM),

Definition 10 ACSFSM R isapermissiblerealization (implemen-
tation) of a PNDFSM M (or an ISFSM) if £(A®) C £(AM).

Figure 4: The FSM observability network V' of A’z with aflexibility
M.

Theorem3.1 ' Let M = (1,0, Q, T, qo) be a PNDFSM. An FSM
R=1(1,0,Q,T, q),whereT’(i,p,n,0) = L(ao,T(s,p,n,0))
and ap is a mintermin (n, o) space, is a permissible realization of
M.

In this section, we do not concentrate on computing the flexibility
which canbefoundin [30, 33, 17, 1]. After computing the flexibility,
the optimization problem reducesto finding a permissible realization
from a PNDFSM or an ISFSM with respect to some objective, such
as area, testability, timing, power and etc. Conventional approaches
employ state minimizers for PNDFSM’s or ISFSM’s [12, 14, 34, 8,
15] to explore such a permissible realization. However, no existing
state minimizer can efficiently handlelarge PNDFSM’s or ISFSM'’s.
For example, the problem for exact state minimization of ISFSM’sis
NP-hard. Totradeoff between quality and efficiency, approximations
on PNDFSM'’s and ISFSM’s may be needed; consequently, much
flexibility may be lost. How much approximation is needed hinges
on the ability of state minimizers, since approximation needs to be
performed so that the state minimization can be completed. If too
much approximation is performed, it may turn out that very limited
information can beactually exploited. Thisbecomesaproblemwhen
we consider optimization of large FSM networks.

Furthermore, these state minimizers explore a permissible realiza-
tion at the symbolic level where the logic implementation objective
is hard to estimate. The optimization objective of standard state
minimizers is to find an FSM with the minimum number of states.
State minimality is only a heuristic and does not imply that the re-
sultant logic circuit after state encoding is optimized. In fact, it is
just regarded as a good starting point for state encoding. In addition,
if a circuit implementation is given as the starting point which may
be useful for further optimization, state minimizers will completely
ignore it. In this sense, state minimization techniques are ‘distant’
to optimality at the net-list logic level. In comparison, sequential
optimization techniques at the net-list logic level are more mature
in terms of their efficiency and effectiveness; hence the size of cir-
cuits they can handleis larger. Moreover, they work much closer to
the optimality at the net-list logic level. In the rest of this section,
we propose a general approach to exploit PNDFSM's and ISFSM’s
directly at the net-list logic level.

3.2 FSM Observability Networks

In [24], the observability network A of acombinational Boolean net-
work A’ was proposed for logic optimization of /' with aflexibility,
say O(1, o) which is a Boolean relation (observability relation). Ini-
tially, A"’ is compatible with O(i, 0). The observability network
N is a derived network of A/ by adding a Boolean node O to AV
the logic function of node © is equal to O(z, o). With the notion of
the observability network, optimization of A/ with flexibility O(i, o)
is reduced to optimization of A/. As aresult, no special logic opti-
mization techniques are required to optimize a combinational circuit
N with flexibility O(i, 0), e.g., observability don't caresof nodesin
N with respect to aflexibility O(s, o) can be computed from A, In
the following, we generalize the notion of observability network to
seguential circuits.

Definition 11 Let M = (1,0,Q,T,qo) be a PNDFSM (an IS
FSM), and the DFA accepting the set of permissible behaviors ex-

!Detailed proofsof the theoremsin this paper are givenin [32].



pressed by M be AM = (K,Z,8,q0, F) as defined in Defini-
tion 8 (Definition 9). The observability FSM of M is a CS
FSM O(M) = (£, B,K,T’,q0), where B = {0,1} and T’ =
{((z,0), p, n,gl)FI}gi,p, n,0) €T,n € F}U{((1,0),p,n,0) [ (i, p,

n,o)e€i,n

Let R be apermissible realization of M, i.e., R isa CSFSM and
L(A%) C C(AMB(, and A’z be anet-list logic implementation (i.e.,
a Boolean network) of R. The FSM observability network A is
derived by adding an additional Boolean node O to Az, and O is
alogic implementation of observability FSM of M, O(M). Thisis
shown in Figure 4. Observability FSM O(M) is analogous to the
Boolean relation (observability relation) in the case of combinational
circuits. A has many interesting properties that can be used for
optimization and verification of Az with a flexibility M. Thisis
stated in the following theorem.

Theorem 3.2 The output of A/ is a tautology if and only if R isa
permissiblerealizationof M, i.e, L(A®) C £(AM).

Theorem 3.2 gives an approach to explore a logically optimized
implementation of M. Consider the FSM observability network of
M inFigure 4. Our goal is to optimize A’z while the O(M) is kept
intact. Thisis the same as for combinational circuits; observability
don’t cares of nodesin Az with respect to the flexibility M can be
computed from .

Theorem 3.3 A stuck-at-fault £ in Nz is redundant with respect to
the flexibility M if and only if f is redundantin \.

Theorem 3.3 implies that sequential AT PG techniques can directly
exploit the flexibility M. A stuck-at-fault f in A’z may be testable,
but if for every test sequenceof f its corresponding output sequence

is accepted by AM then f becomes untestable in A/, and thus re-
dundant. Thus, with the flexibility M, it islikely that \z has more
seguential redundancies. In the following, we consider three sets of
logic optimization techniquesin more detail.

1. Don'’t-care-based approach. This is the conventional ap-
proach [2], widely used in logic synthesis. This set of tech-
niques includes kernel extraction, re-substitution, elimina-
tion, and node simplification [2]. These techniques normally
can make a large improvement from a given initial circuit
[2, 26, 27]. Note that unreachable states can be regarded as
don’t cares during node simplification. Besides the node sim-
plification method, another powerful approachto exploit don’t
caresis Muroga'stransduction methods [21].

2. Sequential AT PG-based techniques. Thisisagreedy method
and needs a good starting point, so the first set of techniques
may be employed first. There are many existing efficient and
effective techniques based on sequential ATPG to improve
the quality of circuits. For example, techniquesin [5, 6] are
based on redundancy removal. Entrena and Cheng [11] pro-
posed an approach based on redundancy addition and removal,
and demonstrated encouraging results. Their method cleverly
adds some redundanciesin the Boolean network so that more
redundancies can be removed later. This idea is similar to
transduction methodsin [21] but for sequential circuits.

3. Re-encoding and re-synthesis. After afew iterations of the
above two optimization techniques, Vg may have been sim-
plified to a reasonable size for re-encoding, e.g., the number
of states may have been reduced. We may then be able to
re-encode and re-synthesize A'r. There are good encoding
algorithmsfor both two-level and multi-level logicimplemen-
tations [29, 18, 10] when the circuits are reasonably small.
Although state encoding does not guarantee more improve-
ment than previously optimized results, it is likely to be a
new good starting point for performing re-synthesis using the
above two techniques.

(@) M

-

(b)

.

(e}

Figure 5: (a). A two-way-communication circuit A2. (b). A2 :
An equivalent one-way-communication FSM network to A>. (c).
An equivalent one-way-communication circuit for computing input
don’t care sequencesof M.

It is easy to design a local search (steepest decent) algorithm
which iteratively runs these logic optimization techniques in some
order before a CPU run-time limit is reached or an acceptable logic
realization is achieved. Re-encoding and re-synthesis can be used to
jump out of alocal optimum. Like state minimizers, our approachis
also aheuristic of exploiting PNDFSM’s and ISFSM’s to find agood
permissible realization with respect to some optimization objective.
However, our approach has the following main advantages.

e Theflexibility can be exploited using existing state-of-the-art
seguential net-list logic optimization techniques. Most can
deal with larger sequential circuits and produce good resullts.
In comparison, state minimizers for ISFSM’s or PNDFSM'’s
can only handle much smaller circuits.

o Circuitimplementation objectives, suchasarea, timing, power
etc., can be considered directly during the exploitation. In
comparison, it is much harder to estimate these objectives at
the symbolic level.

e Evenif state minimization and state encoding are first used,
our approach can still be applied.

The computation step for E-machines[17, 1] and input don’t care
seguences|[16, 23, 30] requires subset construction in thegeneral case.
The worst case complexity of subset construction is exponential in
the number of states[22]. Totrade off between quality and efficiency,
approximations can be made using techniquesin [23, 30]. However,
some flexibility may be lost. With a similar formulation to the FSM
observability network, in the next section we present anew procedure
for input don't care sequencesin general FSM networks. This new
proceduredoesnot usean | SFSM to expresstheflexibility dueto input
don't care sequences, and no subset construction is required. The
exploitation is also performed at the net-list logic level. Asaresult,
both computation and exploitation of input don’t care sequencescan
be made efficient and effective.

4 LogicOptimization of FSM NetworksUsing | nput
Don't Care Sequences

In this section, we concentrate on both computation and exploitation
of input don't care sequencesin general FSM networks. First, we
give an overview of previous work, and then discuss difficulties in
computing and exploiting input don’t care sequences. Afterwards,
we present a new procedure for input don’t care sequencesin general
FSM networks.



41 K-N Procedure

Consider the cascade machine M1 — M> in Figure 1(a). Kim and
Newborn [16] proposed an elegant approach which solves the prob-
lem of computing input don’t care sequencesfor adriven machinein
acascade. The procedureis:

1. Construct an NFA A’ to accept the language produced by
machine M;. Thiscan be achieved by removing theinput part
in the STG of M, and assigning every state of M; asafinal
state. For a state s, if there are output symbols not emitted
from it, atransition is inserted from s to the dead state d with
those symbols. The dead state d is the only non-accepting
state. Thus.4’ is completely specified but non-deterministic.

2. Convert.A’ to aminimized completely specified DFA .A. This
can be doneby using the subset construction [22] and then state
minimization for DFA [13]. Note that efficient (n log n) state
minimization for completely specified machines can be used,
since the subset construction produces a completely specified
deterministic machine.

3. A modified machine M>’ is constructed asfollows : construct
M> x A and delete any transition to a state that contains the
dead state d in its subset. AL’ is deterministic but possibly
incompletely specified. State minimizers for ISFSM’s are
used to minimize M.

The key ideais that sequencesnot produced by A are the input
don't care sequencesfor M5, and these are convertedinto unspecified
transitions of a modified machine Af;. The K-N procedure indeed
captures all input don't care sequencesfor M.

4.2 Input Don’'t Care Sequences in General FSM
Networks

Intuitively, computation of input don’t care sequencesfor a compo-
nent in an FSM network of arbitrary topology is much more compli-
cated than for a cascade circuit. Nevertheless, it is not theoretically
harder.

Wang and Brayton [30] demonstrated that the problem of com-
puting and exploiting input don’t care sequencesfor a component in
an FSM networks with an arbitrary topology can be reduced to one
for a cascade circuit. They derive an abstract driving machine in
the computation of input don’t care sequencesin an FSM network.
The pictorial explanation is shown in Figure 5. For example, the ab-
stract driving machineto M in Figure 1(a) is M1, while the abstract
driving machineto M; in Figure 5(a) is M1 x M;. The abstract driv-
ing machine for a component in an FSM network is the composite
machine of all componentsin this network, i.e., the network itself.
However, if a component M5 is in a one-way communication with
other componentsasin Figure 1(a), its abstract driving machine will
reduceto M;. Then steps1 and 2 of the K-N procedure can be used
to compute the exact input don't care sequences. The correctness
of the exploitation of input don’t care sequenceswas proved in [30].
Therefore, with the notion of the abstract driving machine, the K-
N procedure works in general FSM networks. In addition, in [30]
an efficient implementation of the K-N procedure using BDD’s was
proposed.

An abstract driving machine itself may be a non-deterministic
FSM which can be a collection of permissible FSM’s; however, this
does not affect the computation and exploitation of input don’t care
seguencesin the K-N procedure. Consequently, we may start with a
network of machines some of which are non-deterministic (e.g., the
environment may be one of the machines).

4.3 Practical Issuesof the K-N Procedure

Unfortunately, the worst case complexity for the transformation from
an NFA to aDFA (i.e., from.A’ to .4) using subset constructionis ex-
ponential in the number of states[22]. Further, evenif .A can bebuilt
in a reasonable time, the resultant product machine M>' may have a
large number of states before state minimization. Therefore, there

Figure6: (8). M = M1 — M>, where [ isinput and O output. (b).
M, where I'isinput, and X, O outputs.

are two purposes for approximations of input don’t care sequences.
(1) Control the possible state explosion in the subset construction.
(2) The resultant modified machine M>' should be small enough for
state minimizers.

Consider the cascademachine M1 — M> inFigure1(a). Notethat
M7 may bethe abstract driving machinefor M>. Let output sequences
produced by M1 be L(MY), aregular languageover alphabet I». For
computing and exploiting only a subset of input don’t care sequences,
any regular language £’ suchthat £(M7) C L' C I* givesrise
to afeasible subset £/ of input don’t care sequences. Approximation
methodsin [23, 30] can be used.

Approximation needsto be performed so that the state minimiza-
tion of M>' can be completed in the K-N procedure. As a conse-
guence, even if input don’t care sequences can be efficiently com-
puted in an FSM network, after approximation it may turn out that
very limited information can be actually exploited. Also, even if we
use the exploitation approach in Section 3, we still have the problem
in the subset construction. In the rest of this section, we propose a
new procedureto circumvent the subset construction; asaresult, both
computation and exploitation can be made efficient and effective.

4.4 Logic Optimization of the Driven Machinein a
Cascade Circuit

Consider a cascade circuit M = My — M as shown in Figure
6(a), where M is the driving machine, and M the driven machine.
M, and M> are logic implementations. Our goal is to optimize M
while the behavior of M is kept unchanged. We can employ logic
optimization techniquesin Section 3.2 to optimize M.

Werequirethat the behavior of M1 bekept unchangedandthat X is
theonly communicating variable between M; and M;. Thatis, weare
only concerned about the logic optimization of M;. Therefore, some
logic optimization technique as described in Section 3.2 may need to
bemodified to optimize M, only. For example, asimple modification
to the redundancy removal method isto set X as observable outputs.
This guaranteesthat the behavior of M is the same as before. That
no internal nodes in M, are alowed to connect to M, guarantees
that X is the only communicating variable. With this setting, we
can perform redundancy removal on M and then disassemble A,
from M afterwards. This results in an optimized circuit of M
using redundancy removal. Thisis illustrated in Figure 6(b). Note
that A1 need not be deterministic. If it is non-deterministic, it can
be input determinized by adding additional inputs controlling the
non-determinism. The resulting network can be fed into SIS where
seguential redundancy removal can be performed.

From the K-N procedure [16], the flexibility of implementing A>
comes from input don’t care sequences. Logic optimization tech-
niques in Section 3.2 exploit input don’t care sequencesin different
ways. In the next subsection, this is discussed in more detail.

45 External Don't Cares and Sequential Redun-
danciesvs. Input Don’t Care Sequences

Let output sequences generated by M; be £(My). Based on the

K-N procedure, the flexibility of A/, when cascaded by A isdueto

output sequences not generated by M3, i.e., L(M7). In the follow-
ing, we investigate the relationship between this flexibility and logic
optimization techniques as describedin Section 3.2.




Figure 7: (). The specified behavior of M with restricted input
sequences £(.A). (b). Construction of a driving machine D to M.
The set of output sequencesof D isequivalentto £(.A).

We consider two exploitation techniques. Node simplification
can exploit external don't cares both effectively and efficiently [25].
Output values not generated by M, are external don’t caresto M.
Therefore, node simplification only exploits partial flexibility; never-
theless, when combined with other optimization techniques, such as
kernel extraction, elimination etc., we can efficiently get agood start-
ing point for sequential ATPG-based techniques. Let the transition
relation of My beTi(z, p1, n1, «), the output values not generated by
M, are EDC(l‘) = Hiyplyanl(i,pl, ni, l‘)

Output sequences not generated by M are input don't care se-
guencesto M». We prove that they are precisely what is exploited by
seguential ATPG-based techniques. Consider the cascade machine
in Figure 6(a). We assumethat M; is deterministic.

Lemma4.1l For astuck-at fault f in Mo, if thereis a test sequence
from I, thenthereis atest sequence S € £L(M7) from X.

Lemma4.2 For astuck-at fault f in Mo, if thereis a test sequence
S € L(MY) from X, then there exists a test sequencefrom 1.

Theorem 4.3 Let A be a finite automaton which accepts £(M7),
i.e, L(A) = L(M?). Astuck-at fault f in M> is redundant with
respect to input sequences £(.A) if and only if it is redundant in
M = M1 — M> asshownin Figure 6(a).

Theorem 4.3 implies that sequential redundanciesin AM; when
cascaded by M; are becausethere is no test sequence S € £(M7)
from X. A stuck-at fault f in M», may have atest sequence S from X,
butif S & L(M?), f becomesuntestable, and thus redundant. That
is, with limited input sequences, it is likely to have more sequential
redundanciesin M. This demonstratesthat sequential ATPG-based
techniques in Section 3.2 can directly exploit the flexibility of M
coming from input don’t care sequences.

Theorem 4.4 Let M1’ and M; both generatethe same set of output
sequences, i.e, L(M:'?) = L(M7), and f be a stuck-at fault in
M>. Then f isredundantin M1 — M, if and only if it is redundant
in Mll — M.

Theorem 4.4 implies that any sequential circuit M with its set of
output sequences equivalent to £( A7), can be used to replace M1
as the driving machineto M. This means that we have freedom to
select such amachine A/, ' that can expedite sequential ATPG-based
algorithms, e.g., construction of BDD's etc.

4.6 LogicOptimization of an FSM with Input Don’t
Care Sequences

Theorems 4.3 and 4.4 lead to a method to optimize a machine M
with input don’t care sequences which, say, are not accepted by .A.
Figure 7(a) shows conceptually the specified behavior of M with
input sequences £(.4). When aninput sequence.S is acceptedby A,
there is a corresponding output sequence. If S is not accepted by A,
there is no output.

In practice, £(.4) must be produced by another FSM (determinis-
tic or non-deterministic) suchthat it can bethe set of input sequences
to M. Therefore, by the K-N procedure, we can assume that the
only non-accepting state of .4 is the dead state d, and any transitions
to d correspond to the unspecified behavior. Therefore, to exploit
this flexibility, we can construct a CSFSM D whose set of output se-
quencesis £(.A) asthedrivingmachine. Thisisshownin Figure7(b).
There are many construction methods from .4 to such adeterministic
FSM D. Automaton .4 can be deterministic or non-deterministic.
We give one simple construction method.

e Casel: A isdeterministic. The constructionisasfollows. In
automaton .4, the dead state d is removed, and any transitions
edges to d are deleted. The remaining states in .A are final
states. For each transition edge out of a state s, the output o
is set equal to input :. For any unspecified input in state s,
we arbitrarily assign it to any one of the specified transitions
from s with the corresponding output. The resultant FSM D
is completely specified and deterministic, and its set of output
sequencesis equivalentto £(.A).

e Case 2. A is non-deterministic. In automaton .4, the dead
state d is removed, and any transitions edgesto d are deleted.
Theremaining statesin .A are final states. Let the maximum

number of transitions from any statein.4 be I, and 2k > L.
We choose k& Boolean variables as new inputs to machine D.
For each transition edge out of a state s, its output value is
set to be its old input value, and then a distinct value from
B* is assigned to be the new input value. Afterwards, for
any unspecified value in B*, we arbitrarily assign it to any
one of the specified transitions from s with the corresponding
output. The resultant FSM D is completely specified and
deterministic, and its set of output sequencesis equivalent to
L(A). Thisis aform of “input determinization”.

Since the above construction needs explicit enumeration which may
not be efficient, in the following, we provide an implicit method for
constructing such a CSFSM D directly from .A. Note that .A hasthe
following properties — every state except the dead state d is a final
state, theinput string in each transition is of length one, and there are
no e-transitions. Thus, we do not need to explicitly expressthe dead
stated inthetransitionrelation, sinceitisimplicit fromall unspecified
transitions. We do not need to specify the set of final states, since
every state is afinal state. As a consequence, we can represent the
transition relations of .4 inthe sameway asFSM'’s. Let thetransition
relation of A be T'4(p, ¢,n). To detectif .4 is deterministic is easy
using BDD’s; wecomputeT4'(p, i,n) = L(a,Ta(p,1,n)), where
« s a reference next state vertex. For each pair (p,:) defined in
Ta(p,i,n), L assignsaunique n. However, if T4’ (p, 1, n) equals
T4(p, 1, n), nothing was changed, implying that 7" already had only
one such candidate. Hence, T'4(p, 1, n) is deterministic; otherwise
nondeterministic.

Theorem 4.5 If A is deterministic, the transition relation of one
possible CSFSM D, T (1, p, i, 0) can be derived as follows:

To,(i,p,n,0) = Ta(p,i,n)- (i =o0). (1)

Tp,(i,p,n,0) = {3nTalp,isn) - 0:,0Ta(p,1,n)} +
Tp,(i,p,n,0). 2

Tp(i,p,n,0) = L(aoTp,(1,p,n,0)) ©)

whereao isamintermin (n, o) space.

Theorem 4.6 If A isnon-deterministic, thetransition relation of one
possible CSFSM D, T (i, p, nn, 0) can be derived as follows:

Tp,(i',p,n,0) = Talp,i,n)-(i=o0)-(n=i1). (4
Tp,(i',p,n,0) = {FnoTp,(i',p,n,0)- T, (i, p,»,0)} +

Tp, (i, p, n,0). (5)
Tp(i',p,n,0) = Lo, Tp,(i',p, n,0)) (6)



Table 1: Experimental results of one-way-communication circuits.

My (M3):  drivingmachine (driven machine).

1,0, X: number of PI's, PO’s, interacting signalsof M1 — M, respectively.
S1(S2): number of states of M (M), respectively.

M, lits: number of literals (in factored form) of the initial M.

lits: number of literals (in factored form) of A, after optimization.

Sy’ number of states of M after exploitinginput don’t care sequences.
SM: result for STAMINA.

enc + opt: encoded by JEDI, then optimized by runningscri pt . r ugged twice.
opt +red: optimized by running (scri pt . rugged +red.r enoval ) twice.
cpu: CPU timein secondson a DEC 3000/500 AXP (160MB memory).
tout: set to 20,000 seconds of CPU time.

sout: Sspaceout

wherei’ = (4,41) and ao isamintermin (n, o) space.

Based on the discussion in Section 4.5, we can assign arbitrary
state encoding to FSM D, and then have a logic implementation of
FSM D. Subsequently, the methodsin Section 3.2 can be employed
to optimize M. Theoretically, the logic implementation of 1 will
not affect the optimality of M. However, efficiency may be affected.
For example, state-of-the-art sequential ATPG algorithms are based
on BDD’s, and state encoding of D will affect the size of BDD’s
for constructing the transition function of D. Currently, we are
investigating this effect.

4.7 Generalized K-N Procedurein Logic Optimiza-
tion of FSM Networks

Based on the discussions in Sections 4.5 and 4.6, we propose an
approach for logic optimization of a component in a general FSM
network using input don’t care sequences. Given alogic implemen-
tation of a component M5 in an FSM network, our procedure works
asfollows.

1. Construct the abstract driving machine M1, samein [30]. It
may be non-deterministic.

2. Construct an NFA A’ to accept the language produced by
machine M3, asin thefirst step of the K-N procedure.

3. Asdescribed in Section 4.6, construct a CSFSM D whose set
of output sequencesis equivalent to £(.4’). Then derive a
logic implementation of CSFSM D.

4. Use the various optimization techniquesin Section 3.2 to op-
timize Mo.

Note that if M, is deterministic, it can be handled by sequential
optimization, hence we may use it directly in step 3. Our approach
can be regarded as a generalization of the K-N procedure, but ho

ckt 1/X/0I51/5; | M> K-N procedure Our procedure ckt M>
lits SM | enc + opt opt +red after K-N procedure after (opt +red)

So” [ cpu | Tits [ cpu Sp” | lits [ cpu opt +red re-encoding + (opt + red)
cel OIIOT7I20/47 | 248 71 02 9% ] 89 12| 37| 204 lits() [ lits() [ cpu [[ Tits()) [ Tits() [ cpu
) 223827 | 348 || 15| 01| 63| 37 || 16| 75| 190 cel %5 74 | 132 37 26 90
ce3 || 1871972547 | 248 8] 03| 39| 24 || 16| 3| 292 ce2 63 63 | 40 75 58 a7
ced || 1871972547 | 248 2 ol 4] 10 5 15 | 173 ce3 39 33| 158 34 33| 175
TS 7727169 | 314 || 18 | 13 | 193 | 532 || 18 | 170 | 403 cet 1 2] 71 15 14 75
ceb 772031927 | 348 || 19 | 01 | 120 | 117 || 20 | 94 | 414 ce5 193 | 152 | 489 || 170 124 209
ce7 1077/2/47/19 | 314 || 15 | 75 | 178 | 415 || 16 | 93 | 1074 ceb 120 | 101 | 349 % 75 | 276
ce8 || 1U9/19/32/20 | 280 8| 838 | 239 | 593 9 | 66 | 5525 ce? 178 | 108 | 625 B 70 | 149
9 7I719/16/48 | 617 sout 24 | 454 | 1696 ces 239 | 113 | 3230 66 56 | 1112
cel0 || 7/1977/48/a7 | 248 tout 35 | 165 | 5347 =K 454 | 396 | 12431
cell || 19/7/19/47/a8 | 617 tout 25 | 441 | 4380 cel0 165 | 186 | 5122
cel2 || 1/9/10/32/30 | 596 tout 27 | 375 | 4056 cell* 441 | 377 | 11549

celo* 375 | 312 | 18263

Table 2: Experimental results for re-encoding and re-synthesis.

Mo: driven machine.

lits(i): initial number of literals (in factored form) of M.

lits(f): number of literals (in factored form) of A, after optimization.

opt +red: optimized by running(scri pt. rugged +red.r enoval ) twice.
re-encoding

+ (opt +red):  encoded using JEDI and then optimized by runningopt + red.

cpu: CPU time in seconds on a DEC 3000/500 AXP (160MB memory).

*full _sinplify inscript.rugged is set to 500 seconds.

subset construction is needed. Thisis because, in a sense, we do not
use an ISFSM M-’ to express the flexibility due to input don’t care
seguences. Exact input don’t care sequences can be approximated.
Many approximation methods for dealing with large FSM networks
have been proposed in [30]. There are many other approximation
methods, e.g., hiding some state variables from .4’, and grouping
states of A’ etc. With our approach and powerful state-of-the-art
seguential optimization techniques, less approximation is required,
i.e.,, more input don't care sequencescan be exploited.

5 Experimental Results

We present preliminary results on small networks. Due to the lack
of FSM network benchmark examples, most of the examples here
are obtained by connecting FSM’s from MCNC benchmarks. These
FSM'’s are completely specified and state-minimal. We have imple-
mented the new procedurefor input don’t care sequencesas described
in Section 4.7.

Table 1 shows experimental results for some cascadecircuits con-
sisting of two FSM’s. The circuit topology of these examples is
shown in Figure 6(a). We employ both the K-N procedure and our
procedure to optimize M and then compare their results. Note that
M, isa CSFSM, so in our approach we don't use the methods in
Section 4.6 to construct a CSFSM D whose set of output sequences
is equivalent to that of A;. The logic optimizer used is SIS [27],
and its standard optimization procedureis calledscri pt . rugged
[26] which includes kernel extraction, re-substitution, elimination
and node simplification. In this experiment, we use unreachable
states as don’t cares which are exploited in node simplification. The
initial circuit of M» isobtained by runningscri pt . r ugged once.
For the K-N procedure, we use the bounded subset construction in
[30]; the bound on the number of statesis set to 64. The state mini-
mizer used hereis STAMINA [12]. Afterwards, the state-minimized
machineis encoded using JEDI [18], and then optimized by running
scri pt.rugged twice.

Our proceduretakesthe given circuit implementation of M» asthe
starting point. External don’t cares, i.e., output values not generated
by M, are extracted and then exploitedinscri pt . r ugged. This
corresponds to the first set of optimization techniques in Section
3.2. We then use the construction in Figure 6(b), and apply the



red_removal commandin SISto remove sequential redundancies.
This corresponds to the second set of optimization techniques in
Section 3.2. The results shown in Table 1 are obtained by running
these two sets of optimization techniquestwice.

Our procedure achieves better results except for examples ce2
and ce4. For the third set of examples (ce9, cel0, cell and
cel2), STAMINA cannot efficiently exploit input don’t care se-
guences computed by the K-N procedure. As shown in Table 1, not
only thefactoredliteral countisreduced, but also the number of states
is reduced. Most of CPU time for our procedure is spent either in
node simplification or in removing sequential redundancies.

We also conducted the following experiments: (1) Apply our pro-
cedure on the results obtained by the K-N procedure. (2) Perform
re-encoding and re-synthesis on the results obtained by our proce-
dure. We compare these resultsin Table 2. For the first experiment,
improved results are obtained, but half are still inferior to the results
obtained by our procedure alone (see Table 1). For the second exper-
iment, re-encoding and re-synthesis produce the best results except
for examplesce4 and cel0.

In our experiments, only redundancy removal is used, and we ex-
pect that better results can be achieved if redundancy addition and
removal in [11] is employed. These preliminary results indicate that
our approach together with the notion of abstract driving machines
[30] is promising for computing and exploiting input don’t care se-
guencesin general FSM networks.

We plan to integrate the algorithm for computing E-machines in
[1] and our approach in Section 3, and then study various trade-offs
about efficiency and effectivenessbetweeninput don’t care sequences
and E-machinesin FSM networks.

6 Conclusion

We presented a novel approach for exploiting exact or approximate
flexibility for a component in an FSM network directly at the net-
list logic level. With our approach, many existing sequential net-list
logic optimization techniques can be applied to exploit the flexibility.
Moreover, we proposed a new procedure to facilitate both computa-
tion and exploitation of input don’t care sequencesin general FSM
networks. Multi-level logic optimization of larger FSM networkscan
then be achieved. Preliminary results look promising but more FSM
networks must be experimented on.
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