
Abstract
This paper presents a method to characterize Nyquist rate
A/D converters based on the use of a first order statistical
behavioral model. The proposed model is derived from a
very basic statistical interpretation of the conversion oper-
ation which contemplates noise and statistical process
variations effects on traditional converter parameters.
Both DC and dynamic converter parameters can be easily
measured. The applicability of the proposed method is
illustrated with two different examples. The first serves to
show the possibility of deriving the statistical behavioral
model from real measured data, and to prove the correct-
ness of the model by comparing results to those obtained
with traditional deterministic models. The second example
illustrates the incorporation of the model in the mixed-sig-
nal simulator ELDO [6]. The obtained results show that
despite the model’s simplicity, it is very efficient for quick
and complete simulation of data converters.

1. Introduction
Reducing the cost per unit in production of precise elec-
tronic circuits inevitably leads to the research of models
and techniques that provide information for designers to
evaluate the chip performance under dispersions that
accompany input signals, components values, internal
noise generated by unavoidable physical processes, or sec-
ond order nonidealities. Objectives such as predicting
nominal measurements and the variability range of system
specifications, or verifying that the proposed design will
continue to function on the variability imposed should be
met at the design stage. Traditionally, this information has
been obtained using Monte Carlo simulations [1], how-
ever, for mixed analog-digital systems these simulations
require great CPU times.

Behavior modelling and simulation appear as a solu-
tion. Outstanding advances in this technique have recently
been made for a wide variety of electronic systems [2-4].
However, if the proposed behavioral models do not
include signals and parameters variability, one must still

resort to the Monte Carlo method, which although applied
now to simpler models, can still remain costly.

Recently, an acute tendency has been noted to produce
test models and methods that enable obtaining character-
ization and verification of Nyquist rate data converters
under noisy operation conditions and process variations
[4, 5]. In [4] it is shown how the estimation of the proba-
bility distribution function of the A/D converter transition
points allows not only to obtain the distribution function
associated to the converter lineality specifications, but also
to make efficient worst case simulations. Moreover, in [5]
an interesting strategy is reported which uses the model in
[4] for testing and yield analysis of data converters.

In this paper, a different approach to the statistical mod-
eling of Nyquist rate converter is proposed which leads to
easy measurement of their static and dynamic perfor-
mance parameters, and that can also be used to the same
purposes described in [5]. Section 2 explains how to
derive a mathematical description for the functional
behavior of ideal converters from a very basic interpreta-
tion of their operation from a statistical point of view. Sec-
tion 3 develops a more realistic behavioral model from the
perturbation of the ideal in Section 2. Section 4 presents
the procedure to characterize the converter static and
dynamic performance including expressions which pro-
vide tolerance or worst case values for converter parame-
ters. Lastly, Section 5 shows how a inverse process can be
followed to elaborate the proposed statistical behavioral
model from real measured data of a specific A/D con-
verter. The correctness of the model and characterization
strategy is proved by comparing results to those obtained
with traditional deterministic models. The incorporation of
the proposed statistical model in deterministic simulators
incurs no major effort and it could be of great assistance
for mixed-signal systems designers. This is illustrated in
Section 5, where we will show an example of application
for the incorporation of the developed model in the mixed-
signal simulator ELDO [6].
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2. Zero order model for A/D converters
In an ideal N bits A/D converter with input
range , code transitions occur for input values
given by

(1)

where q is the quantization step or LSB given as
, VFS>0 is the “full-scale” level and

gnd is the reference level which is 0 or -VFS for unipolar
or bipolar conversion respectively

For a statistical modelling of the converter operation,
the input is considered as a distribution density function
associated to the analog voltage, , and the output is
a discrete distribution which represents the occurrence
probability of each codeC, it is given by the vector

.
The relation between input and output distributions is

deduced from the Total Probability Theorem [7] in its con-
tinuous version

(2)

Assigning a value to the distribution appearing in (2) as
a conditional probability, is immediate for an ideal A/D
converter since the output corresponding to an input
between  and  is always the codek, that is

(3)

where  is the unit step function and we assume
 y . Consequently, (2) becomes

(4)

that defines the zero order statistical behavioral model of
an A/D converter.

3.  First order model for A/D converters
We will consider the following real effects enlarging the
zero order model:

1. The values of the transitions points  in a real
converter vary from their ideal positions, generating off-
set, non-unity gain, nonlinearity, and harmonic distortion.

2. The input value for which a change of a code to its
adjacent code occurs, is no unique. That is, the code limits
in the quantization stair are lost in a transition band. These
areas of uncertainty in converters lead to parameter toler-
ance that characterizes the real converter and limits its res-
olution.

Other effects like non-monotony, loss of codes, or the
appearance ofsparkles can be easily added. They make up
a new generation of second order models, which we are
developing.

We define a first order model of an A/D converter as

(5)
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where  are probability functions that gradually rise
from 0 to 1 in the zero neighborhood. They can be taken as
ramp functions or as the sigmoid of theNormal Accumu-
lated Probability function Q(x), which can be found in
tables or in software libraries. On other hand, the set
represents input values associated with real A/D transi-
tions, and we assume , .

Thus, we have two functions relate to each code,
 representing the disappearance of codek

when the input decreases, and  repre-
senting the slowly disappearance of codek when the input
is increased. This is illustrated in Fig. 1, where each transi-
tion is formed by the overlapping of functions in (5) corre-
sponding to adjacent codes. As overlapping reduces to two
codes, it is evident from the concept of probability that

(6)

If the transition band is considered such that all input val-
ues forming it lead equally to effective transition between
codes, the functions  are ramps and the values
are the central value of the transition band. On the other
hand, if there is some value in the band that is most proba-
bly identified as representative of the real transition, and
this probability decreases asymmetrically as it moves
away, then a good estimate of the functions  are
the Quasi-Gaussian density distribution functions.

When the transition is considered symmetrical we use
the Normal function

(7)

Regardless of the function  used, even if it is
defined in tables, the effective width of each transition is
determined according to the following criteria. First, two
probability levels  and  are taken such that

 and .Then, the following defini-
tion is applied to each input value of the conversion range
(not restricted to only two codes):
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Fig. 1  First order model for an A/D.
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Definition of transition value

The value  results in a transition between codes if:
1. There is no Q code that
2. Exist a codes subgroup  for which
the following is true:
If these points are met, the transition at  is between
the codes .

Fig. 1 shows the application of this definition for a
probability interval of 20-80%. For example, applying (7)
as the model in the figure obtains the parameter  from
the relation  since .

The parameter  in its more general concept will be
taken as the value in the transition band that meets

(8)

4. Converter characterization according to
first-order models

A) Transfer characteristics
To obtain the transfer characteristics of an A/D converter
one must only apply the previously cited transition defini-
tion to all the input values of the conversion range. A
multiple output  is assigned when the
input verifies the definition; while an unique codeQ with
probability larger than  is assigned to the input value
that does not verify the definition.
B) Static errors (Offset, Gain, and Linearity Errors)
Since these parameters are expressed in terms of the set

 [8], their tolerances can be estab-
lished by estimating the lower and upper limits of each
denoted in Fig. 1 as  and , respectively.
We thus obtain the following expressions for tolerances,

(Offset error) (9)

(FS Gain error) (10)

(Integral Nonlinearity error)(11)

(Differential Nonlinearity error) (12)

where  , , and

(13)

It is also possible to define static errors in terms of the
center value of each code , instead
of the transitions values . Tolerances for these center
values are determined in the following by using the first-
order model.

If the model in codek is that shown in Fig. 2, the center
value can be calculated applying theMass Centerconcept
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where the following definition is used

(15)

When we adopt a criteria that is consistent with our defini-
tion of the transfer characteristic given in A),  gives the
significance level of the output code such that for input
values  codek output is ensured, while
defines the significance level such that for input values

 and  codek is impossible. In a true charac-
terization of the converter, the intervals  and

 of unsure occurrence generate an incertitude in
the measurement of the code center position. From (14)
we may assume that the tolerance interval of the code cen-
ter is , where

(16)

and if the following is applied for the most probable center
position

(17)

the asymmetrical segments of the uncertain band are
(18)

or in LSB units
(19)

These last expressions enable writing a set of relations
similar to (9)-(12) where the only change is that lambdas
substitute deltas. An approximate relation betweenλ and
δ for model (7) or the ramp model for  is

(20)
Moreover, a statistical interpretation of the Differential

Nonlinearity (DNL) according to which the DNL repre-
sents the excess relative to the ideal of the occurrence
probability of codek, leads to the alternative definition

(21)

wherepC(k) andpid
C(k) are the values of (2) for first and

zero order models of the A/D, respectively. Adequate rep-
resentative transition values can be obtained from (21) and
(17) by estimating the step width in the quantization stair

(22)

ck

Pk
1( ) ∞ ∞,–( )

Pk
0( ) ∞ ∞,–( )

---------------------------------= ,1 k M<≤

Pk
m( ) a b,[ ] xm pC V k x( ) dx⋅

a
b∫=

Vi

PC|V(k|Vi)

lk

1.0

0.0

pH

Prob.

pL

Lk Hkhk

Fig. 2  Probability function of the code k.
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where  is obtained from (21) assuming an input with
uniform distribution and calculating  in the interval
[Lk,Hk] for .

Expression (21) can be also applied without previous
correction of offset and gain errors if denominator is
replaced by the effective probability of each code esti-
mated as

(23)

C) Total Dynamic Error or Signal-Noise Ratio plus Har-
monic Distortion
The Total Dynamic Error (TDE) is defined as the ratio
between the average square value of the quantized output
signal and the average square error of the total noise in the
converter, obtained by reconstructing the input wave from
the output of an A/D-D/A system. If an A/D device is
tested, then the D/A output must be “ideal”. Sinusoidal
test signals are used and the reconstructed wave is nor-
mally obtained by least-square adjustment (sine fitting
method) [9].

To use the A/D statistical models given in Sec. 3, we
consider  and  as the random output and input vari-
ables, respectively, of an A/D-D/A system, and

. Thus

(24)

where  and  are the variances of  and error signal
ε, respectively. These variances can be expressed as func-
tions of the  given in (15) [11].
The Effective Bit Number (EB) [9] can be deduced by just
applying the formula

(25)

where  is the mean square error due to the quantization
whose approximated value is . This value is
exact when the input is a signal with uniform probability
distribution.

5. Examples of application
5.1 Characterization of a real A/D using the
first-order statistical behavioral model
We consider a real 8-bit A/D converter with a [-1.4V,1.4V]
input range. Its Integral Nonlinearity curve, obtained from
measured data and applying the Taly-Weight method [10]
is the thick line shown in Fig. 3. The minimal tolerance of
this curve was measured in the first transitions, resulting of

. The Total Dynamic Error obtained for
the A/D using both the sine fitting method and the FFT
method are shown in Fig. 4 as a function of the 1kHz input
signal amplitude range.

Values for the typical deviation in (7), were obtained
using (20) and (11). In our case ; and if
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the [10,90%] significance criteria is taken for the transition
width, (7) defines  and it is estimated that

.
We have considered the simplified model in (7) with all

transitions of equal width. Using the procedure in [10] the
Differential Nonlinearity (dnl) and the set  are esti-
mated, which substituted in (22) gives the mathematical
model of the converter.

Figures 3 and 4 show theinl  and TDE curves obtained
with the proposed model. In Fig. 3 the average value of the
inl  of the model is superimposed on that obtained with real
measurements. The upper and lower limits ofinl  for the
proposed probability range are also shown. In Fig.4 the
TDE curve derived by applying our model is drawn
together with those obtained with the widely accepted FFT
and Sine Fitting methods. In order to know the degree of
confidence of our model, a fourth TDE curve has been
included (called Theoretical in Fig. 4) which is nothing
more than the curve that results from applying the TDE
definition (24) considering perfectly known the input sig-
nal. Note that the proposed model fits better the theoretical
curve, enabling determination of TDE in shorter time and
without convergence problems.

5.2 Incorporation of the proposed model in a
mixed-signal simulator
Our goal herein is to show the usefulness of the proposed
A/D converter model in mixed-signal simulations targeted
to the verification of mixed-signal systems. We have used
the deterministic simulator ELDO [6], which provide an
analog hardware description languages (FAS) for model-
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ing, and also allows the users to create their own models in
C language.

An A/D converter is considered operating on an 1kHz
sinusoidal input. The ELDO netlist is shown in Fig. 5. For
each simulation instant, a Normal distribution function is
associated to the sampled input voltage, whose mean value
is the input voltage value and its deviation is the rms value
of a white noise (given as a model parameter) at the con-
verter input. A call to the A/D statistical behavioral model
described in C, provides the discrete probability distribu-
tion for the output code associated to the sampled input.
Then, a random number generator with this distribution
function is activated to allow us to take a deterministic
sample, which is the output code appearing as a set of bits
represented as voltages with low o high (0 or 1, respec-
tively) voltage values. Figure 6 plots a detail of the input
signal (Fig. 6a) and the corresponding output codes (Fig.
6b) obtained with a simulation of 18000 samples. Note the
appearance of some spikes due to the sampling of the
input signal near some code transitions. Simulations were
run in a SPARC System 630 MP with a 64Mbytes RAM,
requiring a total of 5 min of CPU

6. Conclusions
Statistical behavioral models for Nyquist A/D converters
have been developed by statistical interpretation of tradi-
tional converter parameters. The derived first-order model
allows easy measurements of the converter static and
dynamic parameters under noise and process variations.
The correctness of the models has been shown on a real
converter by comparing results to those obtained with tra-
ditional deterministic models. The incorporation of the
proposed behavioral models into deterministic simulators
has been also discussed. Obtained results show that

...........
Vin  in 0 SIN(-5.47mV 1.243V 1004Hz 0.0 0.0) !Input wave
Osh  in:ad  i2:da mod=MYHOLD !Sample and Hold: Ts=500ns
Yadc  ADCpoly pin: i2 b0 b1 b2 b3 b4 b5 b6 b7 !ADC model
+ param: res=8 !Resolution
+ vfs=1.4 gnd=-1.4 !References
+ eoff=3.1m egfs=5.3m !Offset & Gain errors
+ sgin=.5m !Input noise
+ deltainl=.1 !INL variability
+ gradonl=3 ! Order for INL polynomial
+ k0=-0.0124197 k1=0.0125654 k2=-0.00014611
+ k3=3.80506e-7!Coefficients for INL polynomial
Oregister  b0:ad b1:ad b2:ad b3:ad b4:ad b5:ad b6:ad b7:ad
mod=MYLOGIC
............

.model ad       ATOD   vth=0.0

.model da       DTOA   tcom=1n

.tran 1n  1000u

.probe tran

.options eps=1e-6

.end

Fig. 5  ELDO netlist

despite the models’ simplicity, they are very efficient for
quick and complete simulation of data converters. Similar
statistical models have been developed for D/A converter
[11] but are not included in this paper.

7. References
[1] Jain,S., “Monte Carlo Simulations of Disordered Systems”,

World Scientific, 1992.
[2] E.Liu y A.Sangiovanni-Vincentelli, “Behavioral Representa-

tion for VCO and Detectors in Phase-Lock Systems”,Proc.
CICC, pp. 12.3.1-12.3.4, May 1992.

[3] E.Liu y A.Sangiovanni-Vincentelli, “Behavioral Simulation
for Noise in Mixed-Mode Sampled-Data Systems”,Proc.
IEEE ICCAD, pp. 322-326, November 1992.

[4] E.Liu, G.Gielen, H.Chang, A.Sangiovanni-Vincentelli, &
P.Gray, “Behavioral Modeling and Simulation of Data Con-
verters”,Proc. ISCAS, pp. 2144-2147, May 1992.

[5] E.Liu & A.Sangiovanni-Vincentelli, “Nyquist Data Convert-
ers Testing and Yield Analysis using Behavioral Simula-
tion”, Proc. IEEE ICCAD, pp. 341-348, November 1993.

[6] ELDO, Anacad Comp. Systems, 1992
[7] A.Papoulis, “Probability Random Variables and Stochastic

Processes”, McGraw-Hill, 1984.
[8] JEDEC STANDARD No. 99, Add No. 1, July 1989.
[9] M. F. Wagdy and W.M. NG, “Validity of uniform quantiza-

tion error model for sinusoidal signals without and with dith-
er”, IEEE Trans. on Instrum. Meas., vol. 38, pp. 718-722,
June 1989.

[10] S. Max, “Fast Accurate and Complete ADC Testing”,Proc.
ITC, pp. 111-117, August 1989.

[11] E.J.Peralías, “Modelado y Simulación de Comportamiento
Estadístico de Circuitos Mixtos”, Ms.Thesis, Univ. Sevilla,
July 1994 (in spanish).

(a)

(b)

Fig. 6  Simulation results
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