
Cost-Free Scan: A Low-Overhead Scan Path Design Methodology

Chih-chang Lin, Mike Tien-Chien Lee�, Malgorzata Marek-Sadowska, and Kuang-Chien Chen�

Electrical and Computer Engineering Fujitsu Laboratories of America�

Univ. of California 77 Rio Robles
Santa Barbara, CA 93106 San Jose, CA 95134

Abstract

Conventional scan design imposes considerable area and
delay overhead by using larger scan
ip-
ops and addi-
tional scan wires without utilizing the functionality of the
combinational logic. We propose a novel low-overhead
scan design methodology, called cost-free scan, which ex-
ploits the controllability of primary inputs to establish scan
paths through the combinational logic. The methodology
aims at reducing scan overhead by (1) analyzing the circuit
to determine all the cost-free scan
ip-
ops, and (2) se-
lecting the best primary input vector to establish the maxi-
mum number of cost-free scan
ip-
ops on the scan chain.
Signi�cant reduction in the scan overhead is achieved on
ISCAS89 benchmarks, where in full scan environment, as
many as 89% of the total
ip-
ops are found cost-free
scannable, while in partial scan environment, reduction
can be as high as 97% in scan
ip-
ops needed to break
sequential loops.

1 Introduction

Automatic test pattern generation (ATPG) for sequen-
tial circuits is a di�cult problem [1] because of the lack
of direct controllability of the present state lines (PSLs)
and direct observability of the next state lines (NSLs). To
enhance testability, e�ective design-for-test (DFT) tech-
niques aiming at improving controllability and observabil-
ity of the state lines have been proposed, such as full scan
[2] and partial scan [3, 4, 5, 6, 7, 8, 9, 10]. Both scan tech-
niques facilitate testing of a sequential circuit by intercon-
necting the circuit's
ip-
ops into a shift register during
the test mode to directly control and observe the state
lines. However, the area and delay overheads imposed by
conventional scan can be signi�cant, due to the extra scan
multiplexers (MUXs) in the scan
ip-
ops and the extra
routing area for the scan chains. A general structure of
conventional scan design is shown in Figure 1(a) for a
portion of a sequential circuit, where
ip-
op Fj is con-
nected to
ip-
op Fi through the combinational logic f ,
and MUXed scan D
ip-
ops are used for Fi and Fj. The
combinational logic f is designed to perform functional
operation in the normal mode, while extra logic in the
MUXed scan
ip-
ops and the scan wire is used to estab-
lish the scan chain in the test mode, which imposes consid-
erable penalty on circuit area and performance. Further-
more, the direct controllability of circuit primary inputs

not used in
test mode)(

used in test mode to
establish scan path)(

z
j

y
j

Fj

y
jz

j

Fj Fi

z i
yi

Fi

z i yi

clk

PSLs

PIs

clk clk

PSLs

PIs

test_mode

comb. logic

comb. logic

clk

(b)

(a)

f

f

test_mode

test_mode

(cost-free scan flip-flop)

Figure 1: (a) general structure for conventional MUXed
scan; (b) proposed free-scan design that exploits func-
tional logic f and controllability of primary inputs (PIs)
to establish the scan path (in dashed line).

is usually not utilized in the test mode.

This paper proposes a novel low-overhead scan design
methodology which can exploit the controllability of pri-
mary inputs to establish scan paths through the combi-
national logic, even without using any MUXed scan
ip-

ops and the associated interconnect wires. The proposed
method can reduce drastically the DFT overhead as well
as its impact on circuit timing properties.

Our essential idea can be illustrated in 1(b), where a
scan path from Fj to Fi is formed through the combina-
tional logic f , as indicated by the dashed line, by a partic-
ular primary input vector supplied in the test mode. This
primary input vector, called the enabling vector, must
make the next state line zi (the input of Fi) depend exclu-
sively on yj (the output of Fj) during scan, such that the
content of Fj can be shifted into the non-scan
ip-
op Fi
through the scan path in f in one clock cycle. Since the
non-scan
ip-
op Fi costs no scan overhead for the scan
order from Fj to Fi, Fi is called a free-scan
ip-
op.

We aims at reducing scan overhead by (1) perform-

ing e�cient analysis of the entire sequential circuit to
determine all the free-scan
ip-
ops and the associated
enabling vectors, and (2) selecting the best enabling vec-
tor to maximize the number of free-scan
ip-
ops for con-
structing the scan chain. A novel formulations are derived
which allow e�cient computation by using OBDD tech-
niques [11, 12].
The proposed methodology can be incorporated with

conventional full scan and partial scan designs. In a
full scan environment, the remaining
ip-
ops not free-
scannable are converted into MUXed scan
ip-
ops to
complete the scan chain. In the case of partial scan en-
vironment, after the free-scan
ip-
ops are selected, our
current implementation uses conventional loop-breaking
algorithms [5, 6, 7, 8, 9, 10] to determine the MUXed scan

ip-
ops for breaking the remaining sequential loops. In
both cases, scan overhead is reduced signi�cantly. Exper-
imental results on ISCAS89 benchmarks show that the re-
duction by free-scan can be as high as 97% in terms of the
number of MUXed scan
ip-
ops needed by Lee-Reddy's
partial scan algorithm [8].
Previous work in [13, 14, 15, 16] presented heuristics to

reduce scan overhead by attempting to merge scan MUXs
into the combinational logic during logic synthesis. How-
ever, the controllability of primary inputs was not consid-
ered in establishing scan paths through the combinational
logic. Therefore, even in the case of Figure 1(b) where Fi
is free-scannable, a scan MUX and the associated scan
wire were added into the circuit.
Operations and representation of Boolean functions rel-

evant to our discussion are de�ned in this following.

De�nition 1 The consensus of f(x1; � � � ; xn) with re-
spect to xi is Cxi(f) = fxi ^ fxi , where fxi and fxi are
cofactors of f w.r.t. xi and xi, respectively.

Cxi(f) represents the component that is independent of
xi, and can be interpreted as 8xif(x1; � � � ; xn). It repre-
sents all the (x1; � � � ; xi�1; xi+1; � � � ; xn) vectors that make
f true regardless of the value of xi. The consensus opera-
tion can be extended to a set of variables, as an iterative
application of the consensus on each variable in the set.
A Boolean function can be e�ciently represented in a

compact form by using ordered binary decision di-
agram (OBDD) [11], where the same variable ordering
is required when traversing along any OBDD paths. E�-
cient OBDD package for such Boolean function manipula-
tions were developed in [12], and is used in the algorithms
and the experiments presented in this paper.

2 Determining Free-Scan Flip-Flops

Suppose a sequential circuit has n
ip-
ops F1; � � � ; Fn,
where each Fi has input zi as the next state line and out-
put yi as the present state line. To analyze this circuit for
the presence of free-scan
ip-
ops, we �rst build a directed
dependency graph GD, where a vertex vi corresponds
to an Fi in the circuit, and an arc < vj ; vi > corresponds
to topological connection by the combinational logic from
Fj to Fi. Because a scan chain cannot contain loops, an

1
y

1x

2
x

2
y

1
z

2
z

1
z

2
z

0

1

1
y

1x

2
x

2
y

1
F

2
F

1
F

2
F

(a) (b)

Figure 2: (a) example of a sequential circuit; (b) free-scan
path (in dashed line) established from F2 to F1 by (x1x2)
= 01.

arc that creates a self-loop < vj ; vj > is not included in
GD.

2.1 Enabling Vector

For each arc < vj ; vi > in GD, we check if there exists
an enabling vector X at the primary inputs such that zi
(the input of Fi) depends only on yj (the output of Fj),
regardless of the values of other present state lines. The
condition for such an X to exist is stated by the following
theorem:

Theorem 1 For a next state function zi =
f(X; y1; � � � ; yn), where X represents the set of primary
inputs and y1; � � � ; yn are the present state lines, the nec-
essary and su�cient condition for X to make zi depend
only on yj is that X must be in the on-set of the Boolean
function:

Kj;i(X) = Cy1;���;yn(fyj ^ fyj) + Cy1;���;yn(fyj ^ fyj):

Proof. Based on the consensus de�nition, the on-set
of the �rst term of Kj;i(X) consists of all the X's under
which zi = yj , regardless of all the other yk, k 6= j. Simi-
larly, the on-set of the second term consists of all the X's
under which zi = yj . Thus, the union of these two on-sets
makes zi depend only on yj regardless of all the other yk,
k 6= j.

Example 1 Consider the sequential circuit in Fig-
ure 2(a) with two
ip-
ops F1 and F2. The next state
functions are z1 = f1(x1; x2; y1; y2) = x1y1 + x2y2, and
z2 = f2(x1; x2; y1; y2) = x2y2. So the GD consists of
two nodes v1, v2, and an arc < v2; v1 >. To estab-
lish a scan path from F2 to F1 through the combina-
tional logic, we check if there exists any input vector
which can make z1 depend only on y2. Since f1y2 =

x1y1 + x2 and f1y2 = x1y1, we can obtain K2;1(X)

= Cy1(f1y2 ^ f1y2) + Cy1(f1y2 ^ f1y2) = x1x2 by The-

orem 1. So (x1x2) = 01 is the only enabling vector.
This vector can be veri�ed by substituting into f1, i.e.,
z1 = f1(0; 1; y1; y2) = 0y1 + 1y2 = y2. The established
scan path from F2 to F1 is depicted in the dashed line in
Figure 2(b). 2

If Kj;i(X) consists of the whole Boolean space of X,
this means that for any X, zi is equal to yj or yj . In

v
1

v2 v
4

v3

v5

v6

v7

v
8

v9

v
10

Figure 3: Example of GFS and GFS(X), where GFS(X)
is a subgraph of GFS and consists of only the arcs estab-
lished (in darkened line) by the enabling vector X.

this case, Fj and Fi are connected either directly as in
a shift register or through the combinational logic which
is redundant and can be reduced to a wire or just an in-
verter. This type of free-scan
ip-
op Fi is called the shift

ip-
op, and can be identi�ed easily when the OBDD of
Kj;i(X) is equal to 1.

2.2 Free-Scan Graph

After the enabling vectors are computed for each <
vj ; vi > in GD, a subgraph can be built from the depen-
dency graph GD, called the free-scan graph GFS , such
that an arc < vj; vi > is in GFS if and only if < vj; vi >

is in GD and the on-set Kj;i(X) is not empty. An arc
< vj; vi > in GFS is said established by an enabling

vector X as a free-scan path if X 2 Kj;i(X).
Since the �nal scan chain can use only one enabling

vector to complete the connection in the test mode, it
is of interest to know which arcs in GFS are established
by this vector. We de�ne for a particular X, a subgraph
GFS(X) of GFS consisting of the arcs in GFS that are
established by X. An example of GFS(X) is shown in the
darkened lines in Figure 3.
GFS(X) captures the free-scan paths in a circuit for a

given input vector X. It can have cycles. But the scan
chain has to be acyclic. Therefore, in order to break all
the cycles in GFS(X) while maintaining as many free-scan

ip-
ops on the scan chain as possible, a minimum set of
free-scan
ip-
ops needs to be converted into MUXed scan

ip-
ops. For example, v6 in Figure 3 can be selected to
break the cycle. The problem of �nding such a minimum
set is referred as the minimum feedback vertex set (MFVS)
problem, and in general is an NP-hard problem [8]. For-
tunately, GFS(X) has the following special properties by
which a simple linear-time algorithm can be developed to
break all the cycles optimally.

Lemma 1 The in-degree of a node in GFS(X) must be
at most 1.

Proof. Based on Theorem 1, the enabling vector X
must not make the next state line depend on more than
one present state line. So there cannot be more than one
arc incident to a node in GFS (X).

Theorem 2 Any disjoint component of GFS (X) can
have at most 1 cycle.

vi

vj

vi

vj

(b)(a) (c)

Figure 4: Disconnect arcs to eliminate branches and/or
break cycles when constructing the scan chain (the black
nodes correspond to MUXed scan
ip-
ops).

Proof. Suppose there can be two cycles in a disjoint
component of GFS (X). If these two cycles share some
node vi, vi must have in-degree greater than 1. Otherwise,
if they do not share any nodes, there must be a path in
the disjoint component from one cycle incident to another
cycle at some node vi. Then node vi must have in-degree
greater than 1. Both situations contradict Lemma 1. So
any disjoint component can have at most 1 cycle.

Therefore, cycle detection in each disjoint component
of GFS(X) can be done in linear time by traversing along
each arc. If a visited node is visited again during traversal,
a cycle is detected. If there are totally l cycles in GFS (X),
l nodes must be selected to break them, one for each cycle.
The selection of such cycle breaking nodes can also be
done in linear time.
Furthermore, if a node has out-degree m larger than

1, only one outgoing arc can be maintained in the scan
chain while the other m� 1 arcs must be disconnected to
eliminate the branch, as is shown in Figure 4(a). If this
node is also in a cycle, the outgoing arc in the cycle should
be disconnected to break the cycle, because the branch
can be eliminated at the same time. In this case, one
MUXed scan
ip-
op is needed. Otherwise, two MUXed
scan
ip-
ops are needed, one for breaking the cycle, the
other for eliminating the branch. This idea is illustrated
by the following example.

Example 2 Consider the graphs in Figures 4(b) and 4(c)
where node vj has out-degree 2 and is contained in a cy-
cle. So, if < vj ; vi > is disconnected, the cycle is broken
and the branch is eliminated, as shown in Figure 4(b).
Note that in order to disconnect arc < vj; vi >, the
ip-

op corresponding to node vi is converted to a MUXed
scan
ip-
op. Otherwise, disconnecting any other arc in
the cycle will need an additional MUXed scan
ip-
op to
eliminate the branch, as is the case in Figure 4(c). 2

2.3 Constructing Free-Scan Path

Based on the ideas discussed in Section 2.2, a linear-
time algorithm to construct free-scan paths, called
construct free scan path, is developed which can se-
lect the minimum set of nodes in GFS(X) for cycle break-
ing as well as branch elimination. This algorithm is pre-
sented in Figure 5.

construct free scan path(GFS(X))
f

for (each disjoint component dc 2 GFS (X)) f
/* break the cycle in dc */
if ((c = cycle detect(dc)) 6= ;) f
for (each arc < vj ; vi >2 c)
if (out degree(vj) > 1) /* branch detected */
break;

disconnect(< vj; vi >);
g /* dc is acyclic now */
/* eliminate the remaining branches in dc */
for (each node vj 2 dc)
if (out degree(vj) > 1)
disconnect(all except one outgoing arc from vj);

g

return(all free scan paths);
g

Figure 5: Algorithm of constructing free-scan paths
by breaking the cycle and eliminating the branches in
GFS(X).

The algorithm takes as input a graph GFS(X), which
consists of all the arcs established by an enabling vector
X. For each disjoint component dc in GFS(X), if it con-
tains a cycle c, and c has an arc < vj ; vi > with vj 's
out-degree larger than 1, < vj ; vi > is selected to be dis-
connected. Otherwise, an arbitrary arc in c is selected to
be disconnected. So these steps make dc acyclic. Then, for
each node vj in dc, if vj's out-degree is still larger than
1, all except one outgoing arc from vj are disconnected
to eliminate the branches. Finally, all the constructed
free-scan paths are returned. The time complexity of this
algorithm is linear to the number of arcs in GFS(X).

3 Selecting the Best Enabling Vector

In order to minimize the scan overhead, we want to
�nd the best enabling vector X� to maximize the num-
ber of free-scan
ip-
ops. Given an input vector X, all
the Kj;i(X)'s that equal to 1 are determined for the cor-
responding arcs < vj ; vi >'s established in GFS(X). A

variable qj;i is assigned to represent Kj;i(X) for arc con-
nectivity. That is, qj;i = 1 if < vj; vi > is established by
X; otherwise, qj;i = 0. So, the mapping relation from X
to arc connectivity (q1;2; � � � ; qn�1;n) can be determined
by the following characteristic function:

X (X; q1;2; � � � ; qn�1;n) =
Y

<vj;vi> 2 GFS

(qj;i � Kj;i(X)):

This means for each on-set minterm (X; q1;2; � � � ; qn�1;n)
of X , qj;i is 1 if X can establish an arc < vj ; vi >; other-
wise, qj;i is 0. X can be represented e�ciently in OBDD
with variable ordering X followed by qj;i's. The number
of free-scan
ip-
ops for each X can be determined along
the OBDD traversal.
As mentioned previously, due to the variable ordering

in the OBDD of X , the qj;i vertices are visited before

1

qj,i

x1

1

1

1 1

0

0

X

bottom-up
traversal

Figure 6: OBDD of characteristic functionX ; the bottom-
up traversal halts at the shaded vertices to compare the
number of free-scan
ip-
ops.

the xk vertices during the bottom-up depth-�rst traver-
sal. If the traversal halts right before visiting any xk
vertex, the partially traversed OBDD path consists of
only qj;i vertices. Therefore, this partially traversed path
corresponds to a (q1;2; � � � ; qn�1;n) vector, which in turn
corresponds to a GFS(X), although X is not yet de-
termined because the traversal halted. Figure 6 shows
an example of OBDD with two partially traversed paths
ending at the shaded qj;i vertices, where one path corre-
sponds to a GFS(X) with 3 arcs, while the other one,
with 1 arc. The number of free-scan
ip-
ops in a
GFS(X) can be determined at the shaded vertex by in-
voking construct free scan path developed in Section
2.3. So, by comparing the numbers of free-scan
ip-
ops
at the shaded vertices, the GFS(X) with the maximum
number of free-scan
ip-
ops is determined. Then the
bottom-up depth-�rst traversal resumes from the corre-
sponding shaded vertex to �nd an X. Note that there
can be more than one such X, and any of them can
be picked as the best enabling vector X�. The free-
scan
ip-
ops established can be obtained by invoking
construct free scan path(GFS(X

�)).

4 Free-Scan Methodology

4.1 Free-Scan Design

The complete methodology of our proposed free-scan
design is summarized in Figure 7. It can be used with con-
ventional full scan and partial scan test strategies. First,
the free-scan graph GFS is built from the circuit's depen-
dency graph GD based on Theorem 1. The characteristic
function X is then created in OBDD representation for
each arc inGFS . The best enabling vector X

� maximizing
the number of free-scan
ip-
ops is selected by travers-
ing the OBDD of X . Free-scan paths are constructed
next by algorithm construct free scan path presented
in Section 2.3. In case of full scan environment, all of
the remaining
ip-
ops are converted into MUXed scan

ip-
ops. For partial scan test strategy, since the free-
scan
ip-
ops selected may not break all the sequential

free scan(GD)
f

/* 1. build GFS based on Theorem 1 */
GFS = ;;
for (each arc < vj ; vi >2 GD) f
compute OBDD of Kj;i(X);
if (Kj;i(X) 6= ;)
GFS = GFS[< vj ; vi >;

g

/* 2. select the best enabling vector */
OBDDX = OBDD of X ;
X� = the best enabling vector by traversing OBDDX ;
/* 3. construct free-scan paths */
FFFS = construct free scan path(GFS (X

�));
FF = total
ip-
ops from GD;
if (full scan)
for (each
ip-
op ff 2 FF { FFFS)
convert ff into MUXed scan
ip-
op;

else if (partial scan) f
FFPS = sequential loop breaking(FF { FFFS);
for (each
ip-
op ff 2 FFPS)
convert ff into MUXed scan
ip-
op;

g

g

Figure 7: Complete free-scan design methodology.

loops, a conventional sequential-loop-breaking algorithm
[5, 6, 7, 8, 9, 10] can follow to break the remaining loops.

4.2 Test Strategy

To test a circuit with our free-scan design methodology,
test vectors for the entire circuit are generated by ATPG
in the same way as in the conventional full scan or par-
tial scan environment. When test vectors are scanned in
and test responses are scanned out in the test mode, the
best enabling vector X� must be applied at the circuit's
primary inputs to maintain the complete scan chain.
Moreover, since the free-scan path is a part of the com-

binational logic, it is necessary to test the logic on the
free-scan path separately, prior to testing the entire cir-
cuit. This is because, for example, an error caused by a
fault in the free-scan logic could be cancelled when it is
scanned out through the same free-scan logic. This results
in error compensation.
Testing the logic on a free-scan path can be accom-

plished by scanning in a sequence of alternating 0's and
1's and scanning them out while the primary inputs are
�xed to X�. By examining the scanned out result, the
fault in the combinational logic responsible for scanning
in and scanning out can hence be detected.

5 Experimental Results

We tested the proposed free-scan methodology on a
number of ISCAS89 sequential benchmarks, in both full
scan and partial scan environments. Table 1 gives the cir-
cuit statistics on the number of primary inputs (#I), the
number of primary outputs (#O), the number of total
ip-

ops (#total FF), the number of arcs in GD (GD #arc),

Table 1: ISCAS89 benchmark circuits statistics.

#total GD GFS

circuit #I #O FF #arc #arc #shift FF

s641 35 23 19 100 9 0
s1196 14 14 18 20 12 0
s1423 17 5 74 1694 9 0
s5378 35 49 164 1194 53 47
s9234 36 39 211 2546 57 31
s13207 31 121 669 3406 284 156
s13207� 31 121 453 2442 102 94
s15850 14 87 597 14925 179 47
s15850� 14 87 540 14472 159 34
s35932 35 320 1728 4475 1728 0
s35932� 35 320 1728 4219 1728 0
s38584 12 278 1452 16880 1327 164
s38584� 12 278 1294 13507 1173 152

Table 2: Percentage of saving in MUXed scan
ip-
ops
by free-scan (FS) in a full scan environment.

circuit #total FF #FS FF (%saving) CPU time

s641 19 6 (32%) 2.8s
s1196 18 3 (17%) 2.7s
s1423 74 5 (7%) 203.2s
s5378 164 49 (30%) 106.3s
s9234 211 39 (18%) 413.0s
s13207 669 157 (23%) 224.3s
s13207� 453 96 (21%) 220.1s
s15850 597 127 (21%) 5118.0s
s15850� 540 114 (21%) 2681.6s
s35932 1728 1431 (83%) 1544.9s
s35932� 1728 1431 (83%) 902.2s
s38584 1452 1288 (89%) 3588.8s
s38584� 1294 1134 (88%) 3667.6s

the number of arcs in GFS (GFS #arc), and the num-
ber of shift
ip-
ops detected by using Theorem 1, which
are connected in a shift register fashion (#shift FF). The
circuits with names appended with � were optimized by
logic optimizer SIS-1.2 [17] using script.algebraic script.

In full scan environment

Table 2 shows the results on the number of free-scan

ip-
ops found by our construct free scan path al-
gorithm (#FS FF), its percentage of the total
ip-
ops,
which is also the percentage of saving in MUXed scan

ip-
ops compared with full scan ((%saving)), and the
CPU time on SUN SPARC 20 for computing the free-scan

ip-
ops (CPU time). We can see that very high saving
percentage in MUXed scan
ip-
ops (89% for s38584) can
be achieved by the proposed free-scan methodology.

In partial scan environment

Since the free-scan
ip-
ops selected may not break all
the sequential loops for partial scan, we used Lee-Reddy's
algorithm [8], denoted by LR, to select a minimal set in

Table 3: Percentage of saving in MUXed scan
ip-
ops
by free-scan (FS) in a partial scan environment (LR: Lee-
Reddy's loop-breaking algorithm.)

#MUXed scan FF
circuit LR only FS + LR (%saving)

s641 7 3 (57%)
s1196 0 0 n/a
s1423 22 21 (5%)
s5378 30 6 (80%)
s9234 53 43 (19%)
s13207 59 55 (7%)
s13207* 474 331 (30%)
s15850 90 82 (9%)
s15850* 90 82 (9%)
s35932 306 9 (97%)
s35932* 306 9 (97%)
s38584 294 29 (90%)
s38584* 177 11 (94%)

the remaining
ip-
ops for MUXed scan to break all the
loops. Table 3 shows the results on the number of MUXed
scan
ip-
ops selected by LR without free-scan (LR only)
or with free-scan (FS + LR). The reduction percentage by
FS + LR over LR only is shown as well ((%saving)). We
can see that very high reduction percentage in MUXed
scan
ip-
ops (97% for s35932) can be achieved by free-
scan. Note that the GD of s1196 is acyclic already, so no
loop needs to break.

6 Conclusions

This paper proposed a novel low-overhead scan path de-
sign methodology, called free-scan, which allows to reuse
the combinational logic for scan by exploiting the control-
lability of primary inputs. It can be incorporated with
conventional full scan and partial scan designs to reduce
the DFT overhead drastically. Formulations were pre-
sented to optimally compute the free-scan
ip-
ops and
the best enabling vector, using OBDD techniques. Signif-
icant results on ISCAS89 benchmarks showed that (1) in
full scan environment, as many as 89% of the total
ip-

ops are found free-scannable without using MUXed scan,
and (2) in partial scan environment, reduction can be as
high as 97% in MUXed scan
ip-
ops needed to break
sequential loops.

Acknowledgements

This work was supported in part by the National Sci-
ence Foundation grants MIP9117328 and MIP9419119,
and by California MICRO program. The second author
would like to thank Mr. Takashi Aikyo of Fujitsu Ltd. for
interesting discussion.

References

[1] F. C. Hennie, \Fault detecting experiments for se-
quential circuits," Proc. 5th Ann. Symp. Switching
Circuit Theory & Logic Design, pp. 95{110, 1964.

[2] M. J. Y. Williams and J. B. Angell, \Enhancing
testability of large scale integrated circuits via test
points and additional logic," IEEE Trans. on Com-
puters, vol. C-22, pp. 46{60, Jan. 1973.

[3] E. Trischler, \Incomplete scan path with an auto-
matic test generation approach," Int. Test Conf.,
pp. 153{162, 1980.

[4] M. Abramovici, J. J. Kulikowski, and R. K. Roy,
\The best
ip-
ops to scan," Int. Test Conf.,
pp. 166{173, 1991.

[5] V. Chickermane and J. H. Patel, \An optimization
based approach to the partial scan design problem,"
Int. Test Conf., pp. 377{386, 1991.

[6] V. Chickermane and J. H. Patel, \A fault oriented
partial scan design approach," ICCAD, pp. 400{403,
1991.

[7] K. Cheng and V. D. Agrawal, \A partial scan method
for sequential circuits with feedback," IEEE Trans.
on Computers, vol. 39, pp. 544{548, Apr. 1990.

[8] D. H. Lee and S. M. Reddy, \On determining scan

ip-
ops in partial-scan designs," ICCAD, pp. 322{
325, 1990.

[9] P. Ashar and S. Malik, \Implicit computation of
minimum-cost feedback-vertex sets for partial scan
and other applications," ACM/IEEE Design Au-
tomation Conf., pp. 77{80, 1994.

[10] S. T. Chakradhar, A. Balakrishnan, and V. D.
Agrawal, \An exact algorithm for selecting par-
tial scan
ip-
ops," ACM/IEEE Design Automation
Conf., pp. 81{86, 1994.

[11] R. E. Bryant, \Graph-based algorithms for Boolean
function manipulation," IEEE Trans. on Computers,
vol. C-35, pp. 667{691, 1986.

[12] K.S. Brace, R.L. Rudell and R.E. Bryant, \E�ciency
implementation of a BDD package," ACM/IEEE De-
sign Automation Conf., pp. 40{45, 1989.

[13] S. M. Reddy and R. Dandapani, \Scan design using
standard
ip-
ops," IEEE Design and Test of Com-
puters, pp. 52{54, 1987.

[14] B. Vinnakota and N. K. Jha, \Synthesis of sequen-
tial circuits for parallel scan," Int. European Conf.
Design Automation, pp. 289{293, 1992.

[15] S. Bhatia and N. K. Jha, \Synthesis of sequential
circuits for easy testability through performance-
oriented parallel partial scan," ICCD, pp. 151{154,
1993.

[16] H. Cox, \On synthesizing circuits with implicit testa-
bility constraints," Int. Test Conf., pp. 989{998,
1994.

[17] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj,
R. K. Brayton, and A. Sangiovanni-Vincentelli, \Se-
quential circuit design using synthesis and optimiza-
tion," ICCD, pp. 328{333, 1992.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

