

Address Generation for Memories Containing Multiple Arrays

Herman Schmit and Donald E. Thomas
Department of ECE

Carnegie Mellon University, Pittsburgh, PA

Abstract

This paper presents techniques for generating
addresses for memories containing multiple arrays.
Because these techniques rely on the inversion or rear-
rangement of address bits, they are faster and require less
hardware to compute than offset addition. Use of these
techniques can decrease effective access time to arrays
and reduce address generation hardware. The primary
drawback is that extra memory space is occasionally
required by these techniques, but this extra memory space
is on average only 4% and no worse than 25.2% of the uti-
lized memory space. This amount of wasted address space
is less than the amount required by similar techniques [1].

1.0 Introduction

Many behavioral synthesis systems allow specifications
that include arrays. One task of the synthesis system
should be to intelligently map the arrays in the behavior to
physical memories in the implementation of that behavior.
Recent research [1][2] has explored the concept of “clus-
tering” arrays into physical memories in the implementa-
tion. The clustering of arrays requires that each element of
each array has a unique address in the memory. Therefore,
each array must be assigned to an address space in the
memory that does not intersect with the address space of
any other array in the memory. Traditionally, disjoint
address spaces have been created by adding offsets to the
indices of the arrays. An addition operation may require
the allocation of more hardware and may slow the effec-
tive access time. This paper presents three alternative
address generation techniques generate disjoint address
spaces using only the inversion or rearrangement of
address bits, which are fast and inexpensive operations.
The effectiveness of these techniques is demonstrated for
groups of two or more arrays.

The performance gained by these techniques depends
on the time required by an addition operation as compared
to the time required to perform a memory access. This
ratio varies greatly according to the technologies used for

This research was supported by the Semiconductor Research Corpora-
tion, under contract DC-95-068, and the National Science Foundation,
under contract MIP-9408457.

memory and data path. In this paper, it will be assumed
that the addition of an offset before a memory access
would degrade performance to unacceptable levels.

The concept of clustering different arrays into memo-
ries was introduced by Ramachandran [2], who adopted
offset addition for synthesis. To reduce the time required
to perform an addition, Karchmer [1] rounded array sizes
up to the nearest power of two, which usually wastes
address space. Our techniques also reduce the time and
hardware required to compute the address, but our tech-
niques waste less address space.

The input to the problem addressed in this paper is a set
of single-dimensional, zero-offset arrays (arrays with the
first element at index zero) with defined dimensions. The
elements of each of these input arrays must be mapped to
addresses in a single memory so that no two different array
elements are mapped to the same memory address. A good
mapping minimizes the time required to perform the
address generation functions and also minimizes the size
of the memory.

2.0 Address generation for two arrays

Let

a

 and

b

 be zero-offset arrays with

n

 and

m

 ele-
ments, respectively, numbered , and

. The

two-array address generation
problem

 is to determine two one-to-one functions,

α

and

β

, such that for any

i

and

 j

with 0

≤

i

<

n

 and 0

≤

j

<

m

:

 and for some

p

, and (1)

. (2)
Given these two functions, arrays

a

 and

b

 can be
mapped onto a new array

c

 with

p

 elements, numbered
, by locating

a

[

i

] in

c

[

α

(

i

)] and
locating

b

[

j

] in

c

[

β

(

j

)]. The two conditions, (1) and (2),
assure that the address spaces created by

α

 and

β

 are
within the limits of array

c

 and do not intersect. Because
the new array

c

 is also zero-offset, it can be further com-
bined with other arrays allowing us to use our address gen-
eration techniques for groups of three or more arrays.

Address generation for both arrays can be implemented
with hardware like that in Figure 1. This figure assumes
there is only one address port on the memory and therefore

a 0[] a 1[] … a n 1–[], , ,
b 0[] b 1[] … b m 1–[], , ,

0 α i()≤ p< 0 β j()≤ p<

α i() β j()≠

c 0[] c 1[] … c p 1–[], , ,

the results of the

α

and

β

 functions have to be multiplexed
onto a single address bus.

One solution to the two-array address generation prob-
lem uses addition to offset the address spaces:

 or (3)

. (4)
This solution always minimizes

p

, because it equals

n+m

. The following three techniques also minimize

p

(

p=n+m

) for pairs of arrays with certain size relationships
and can be computed much faster and cheaper than addi-
tion.

2.1 Technique 1: Banking

When banking is used to map the address of two arrays,
one array is assigned to the odd elements of memory
address space, and the other is assigned to the even ele-
ments. If either

n = m

,

n = m -

1

,

 or

m = n -

1, then

p = n + m.

The functions

α

and

β

 for banking are:

, if

n = m

 or

n = m -

1

,

(5)

,

if

 n = m

 or

m = n -

1. (6)
These functions can be performed with no actual logic,

but with rearrangement of address wires and the propaga-
tion of constants.

2.2 Technique 2: Address bit inversion

The technique of address bit inversion is based on the
following observation: If the bit-wise OR of

n

 and

m,

(

n

|

m

)

,

equals the sum of

n

 and

m

, then two disjoint
address spaces can be created by performing a bit-wise
XOR (

⊕

) on the index of one array and the limit of the
other array. Specifically the functions

α

and

β

 are:

, if

n

 |

m

 =

n + m.

(7)
Two other variations of this technique also apply under

slightly different conditions:

, if (

n-

1)

|

 m

=

 n + m -

1, (8)

, if

n

| (

m-

1)

 = n + m -

1

.

(9)
A proof that these are solutions to the two-array address

generation problem is available in [3]. It is worth noting
that when array sizes are both powers of two, or both sum
up to a power of two, they always meet one of the condi-
tions required for this technique. This technique is a gener-

Figure 1. Address generation: two arrays

α

β

Index to a

Index to b
Memory Address

α i() i m+= β j(), j=

α i() i= β j(), j n+=

α i() 2i= β j(), 2 j 1+=

α i() 2i 1+= β j(), 2 j=

α i() i m⊕= β j(), j n⊕=

α i() i m⊕= β j(), j n 1–()⊕=

α i() i m 1–()⊕= β j(), j n⊕=

alization of Karchmer’s technique of rounding arrays up to
the nearest power of two.

2.3 Technique 3: Rotation and inversion

To perform a right rotation, the bits of the index are
shifted right one bit and the LSB, which would be shifted
off, is placed in the 2x position, for some x such that 2x is
greater than the maximum index of the array. This opera-
tion is illustrated in Figure 2.

This operation bisects the address space of an array,
with the even elements being mapped in contiguous space
starting at zero, and the odd elements starting at 2x. If
another array has elements, it can be mapped into
the space between the upper and lower sectors of the
bisected address space of the first array by inverting x of
its address bits. Therefore if or , for
some x, array a and b can be mapped into p=m+n address
spaces. The functions α and β are:

, if , (10)

, if . (11)

2.4 Using the techniques

Suppose that for a pair of arrays with sizes n and m, the
conditions for one of the techniques are met. The same
technique can then be used to generate addresses for
arrays of size n2x and m2x, where x > 0, by letting the x
least significant index bits be unchanged by the address
generation functions. Therefore, any common power of
two should be divided out of n and m prior to determining
whether any address generation conditions is met. For
example, the banking condition is not met for n = 10, and
m = 8, but if each is divided by 2, then the banking condi-
tion is met because 8/2 = 10/2 - 1. In this example, the
banking is performed on all but the least significant bit of
the index.

The function for determining whether n and m meet one
of the above condition for mapping into n+m address loca-
tions without using offset addition is named Conditions-
Met and shown in Figure 3. This procedure first divides
out any common power of two, and then checks whether
the conditions for any of the three techniques are met.

Figure 2. RightRotation

x 5 4 3 2 1 0Bit Position:
Index i:

RotateRightx(i):
x 5 4 3 2 1 0

2
x n

2
---–

n
2
--- m+ 2

x
= m

2
---- n+ 2

x
=

α i() RotateRightx i()= β j(), j 2
x

1– 
 

⊕= n
2
--- m+ 2

x
=

α i() i 2
x

1– 
 

⊕= β j(), RotateRightx i()= m
2
---- n+ 2

x
=

The ConditionsMet function returns TRUE for all n
and m when n+m ≤ 16. Unfortunately, as n and m grow the
probability that ConditionsMet returns TRUE decreases.
If it returns FALSE, the arrays can be enlarged by append-
ing extra addresses so that ConditionsMet returns TRUE.
The appended addresses are wasted, but this waste can be
minimized. Figure 3, summarizes the algorithm, called
MinimalGrow, which returns the minimal size required to
map the arrays using non-additive techniques.

A series of experiments have been conducted to mea-
sure the size returned by MinimalGrow for pairs of arrays
with random sizes uniformly distributed in the range
[1...2z]. Fourteen of these experiments were conducted
with parameter z ranging from 2 to 15. In these experi-
ments p is determined by calling MinimalGrow, and the
fraction of wasted address space is computed with the
equation . The average fractional waste is graphed
versus the maximum array size, 2z, in Figure 5. The sam-
ple size in these experiments was determined by the num-
ber of samples required to make the standard error fall
below 10-4. At z = 15, 92,000 pairs of arrays were evalu-
ated.

The average wasted address space is zero for array
sizes less than eight, and for larger arrays, the waste levels
off at about 3.1% of the total. When it levels off, the stan-
dard deviation of these samples is 3.0%, which is almost

Figure 3. ConditionsMet Function

function ConditionsMet(n,m)
while (LSB(n) = 0 and LSB(m) = 0)

Shift n and m right one bit;
if ((n = m) OR (n - 1 = m) OR (n = m- 1)) then

return TRUE;
if ((n | m = n + m) OR
 (n - 1 | m = n + m - 1) OR
 (n | m - 1 = n + m - 1)) then

return TRUE;
x := Most significant bit position of (n + m);
if ((n / 2 + m = x) OR (n + m / 2 = x)) then

return TRUE;
return FALSE;

Figure 4. MinimalGrow Function

function MinimalGrow(n,m)
if (ConditionsMet(n,m)) then

return n+m
i1 := 1
while (TRUE)

for i2 = 0 to i1
if (ConditionsMet(n+i1-i2,m+i2)) then

return n+m+i1
i1 := i1 + 1

p
n m+
------------- 1–

as large as the average, indicating that in most of the cases
the waste is between zero and 6%. The worst case waste
for all array sizes tested was 18.6%. For comparison, the
address space wasted by Karchmer’s technique[1] on aver-
age is 37% for z = 15, and in the worst case is 99%.

In our experience, it is usually easier to generate
addresses for arrays from real behaviors than for randomly
generated arrays. Real sets of arrays frequently contain
pairs of arrays with equivalent sizes, which enables the use
of banking. Furthermore, real arrays frequently have sizes
equal to powers of two, which enables the use of address
bit inversion.

3.0 Address generation for three or more
arrays

To apply these address generation techniques to groups
of more than two arrays, a binary tree is constructed with
the arrays as leaf nodes of the tree. The MinimalGrow
function is used to determine the size of non-leaf nodes
using the size of the children of the nodes as arguments to
the function. The size of the root node of the tree deter-
mines the size of the whole group of arrays.

The problem with this approach is that the structure of
the binary tree determines the resulting size of the root
node. The number of possible binary trees with x leaf
nodes grows exponentially with x, which makes finding
the best structure very expensive for large x.

As the total number of arrays in the group increases, the
optimal address space waste actually decreases, as can be
seen in Figure 6. To generate this graph a set of n arrays
with random sizes in the range between 1 and 2z were gen-
erated. Every tree possible with these arrays as leaf nodes
was evaluated to find the optimal root node size. For com-
parison, Figure 7 shows the waste of randomly generated
binary trees.

As the number of arrays increases, finding the optimal
tree is increasingly impractical, yet it is not acceptable to
allow the address space waste to grow as in Figure 7. The

Figure 5. MinimalGrow Performance
Array Size Maximum

A
dd

re
ss

 S
pa

ce
 W

as
te

0

0.01

0.02

0.03

4

1
6

6
4

2
5

6

1
K

4
K

16
 K

following two heuristics create and improve a tree struc-
ture so that the size of the root node is minimized.

3.1 Greedy pairing

The greedy pairing heuristic takes as input a list of
arrays that need to be packed into one memory address
space. In each step of the heuristic, a cost function is eval-
uated for every pair of arrays in the behavior. The pair
with the minimal cost are paired together, and are replaced
in the list of arrays by a new array, whose size is deter-
mined by the MinimalGrow function. This procedure is
repeated until there is only one array in the set.

A simple and fairly effective cost function for this heu-
ristic is to determine the size of the array resulting from
the pairing, using MinimalGrow, and subtract the sum of
the array sizes. This cost function equals the amount of
address space waste caused by this pairing.

A more effective cost function extends this idea by
looking ahead to how each pair of array can be paired with
remaining arrays. To do this, the heuristic finds for every
pair of arrays, a and b, the minimum address space wasted
by combining the pair (a, b) with every other remaining
array. This minimum waste is added to the previous cost
function. If there are only three arrays, this cost function
equals the address space wasted for the whole tree if the

Figure 6. Optimal array grouping: Average case

Array Size Limit

A
dd

re
ss

 S
pa

ce
 W

as
te

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

4

1
6

6
4

2
5

6

1
K

4
K

16
 K

2

3

4

5

Array Group Size

Figure 7. Random Array Grouping: Average case

Array Size Limit

A
dd

re
ss

 S
pa

ce
 W

as
te

0

0.02

0.04

0.06

0.08

4

1
6

6
4

2
5

6

1
K

4
K

16
 K

2

3

4

5

Array Group Size

given pairing is made, and is therefore optimal for three
arrays.

The performance of the greedy pairing heuristic using
the look-ahead cost function has been quantified with an
experiment similar to the experiments performed for the
two array case. The set of points labelled “Pairing” in
Figure 8, shows the average fraction of address space
wasted versus the number of arrays in the group using the
pairing heuristic. In this figure the maximum array size is
fixed at 32K (z = 15). For comparison, Figure 8 also shows
the average fraction of address space wasted for groups
constructed through random pairing of arrays. The sample
size for each point in this graph is at least 7800 and up to
202,000. For all points, the standard error is below 5x10-4.
The standard deviation for each of these trials was approx-
imately half of the average, indicating that most cases give
results near the average.

3.2 Tree rotation

Figure 9 illustrates a subtree in a binary tree, and two
possible rotations of that tree on either side. The root
nodes in this figure may be the root node of the whole tree
or the child of some other node, and the leaf nodes in this
figure may be arrays, or may be trees themselves. The fig-
ure only shows the rotations possible if the right child of
the root node has children. If the left child has children,
two more mirror image rotations are also possible.

Our second heuristic works by performing these rota-
tions on the binary tree and evaluating the impact of those
rotations on the size of the root node of the subtree. This
improvement on subtrees is recursively applied to the
whole tree as shown in Figure 10. The GreedyRotate pro-
cedure is called with the root node of the tree as an argu-
ment, and all the subtrees are first improved, followed by
the best rotation of the top level of the tree. A local mini-
mum is reached by repeatedly running this procedure on
the root node of the tree until its size does not improve.

Figure 8. Address space waste

Number of Arrays

A
dd

re
ss

 S
pa

ce
 W

as
te

0

0.02

0.04

0.06

0.08

0.1

0.12

2 4 6 8 10 12

Random

Pairing

Rotate

Pairing-
Rotate

Two or three applications of this procedure are typically
necessary to reach the local minimum. Since the number
of nodes in a binary tree is a linear function of the number
of leaf nodes in that tree, the run time for this procedure
increases linearly as the number of arrays increases.

In Figure 8, the set of points labelled “Rotate” show the
results of applying GreedyRotate repeatedly to randomly
generated binary trees, and the set of points labelled “Pair-
ing-Rotate” show of applying GreedyRotate to the trees
generated by the greedy pairing heuristic. The combina-
tion of heuristic approaches is most effective at minimiz-
ing address space waste. With a group of twelve arrays,
the address space waste using the combination of heuris-
tics averages less than four percent of the total address
space. The sample size for these trials were the same size
for four sets of data in Figure 8, and the standard deviation
for each trial was approximately half of the average. Using
the combination of the greedy pairing and GreedyRotate
heuristics, the worst case address space waste for over one
million cases tested was 25.2%.

The GreedyRotate procedure essentially evaluates
every 3-node subtree in the graph and improves it. For that
reason it is similar to the greedy pairing construction tech-
nique. GreedyRotate could be improved by evaluating all
4-node or 5-node subtrees, but as the size of the evaluated
subtree increases, the run time will increase exponentially.
This extension is probably not worth the computational
cost.

3.3 Address generation hardware

A simple hardware implementation of address genera-
tion hardware can be based on the structure of the binary
tree of arrays, as shown in Figure 11. This implementation
is constructed by placing a multiplexor and the appropriate
α and β functions at each non-leaf node of the tree. The α
and β functions can be moved past the multiplexors and
combined into a single function for each array in the
group, as shown on the right in Figure 11. This approach
allows the multiplexor structure to be rearranged to allow

Figure 9. Tree Rotations

a b

cb

a c

a

b c

Figure 10. GreedyRotate procedure

GreedyRotate(treenode)
GreedyRotate(treenode.left)
GreedyRotate(treenode.right)
Choose the rotation which minimizes treenode

the fastest address path for the most time-critical array
accesses. Because all α and β functions only require the
inversion or rearrangement of address bits, any composi-
tion of α and β functions also only requires bit inversions
and rearrangements. Therefore the computation time for a
composed address generation function does not grow as
the depth of the binary tree representation grows (although
the time required to multiplex the addresses may grow).
Composing the α and β functions will likely improve the
performance of the address generation hardware by elimi-
nating the multiple bit inversions that may occur on the
path of a single address bit.

4.0 Conclusions

This paper described three techniques that can be used
to map arrays to disjoint address spaces. When compared
with the use of addition for address space mapping, these
techniques require much less hardware and can be com-
puted in as little as a single gate delay. The average
amount of extra address space required by these tech-
niques is less than 4%, and the worst case measured was
25.2%, which is superior to the only known published
technique [1]. These techniques increase the address gen-
eration alternatives available for the design of application
specific memory sub-systems, and are useful for both
human designers and synthesis tools.

5.0 References
[1] D. Karchmer, and J. Rose, “Definition and Solution of the

Memory Packing Problem,” Proc. of ICCAD, pp.53-58,
San Jose, CA, Nov. 1994.

[2] L. Ramachandran, D. D. Gajski, and V. Chaiyakul, “An
Algorithm for Array Variable Clustering,” Proc. of Euro-
pean Design and Test Conference (EDAC), 1994.

[3] H. Schmit and D. Thomas, Array Mapping for Behavioral
Synthesis, Technical Report, CMU-CAD 94-46. Carnegie
Mellon University, Pittsburgh, PA, 1994.

Figure 11. Address generation hardware

a
b c

α1() β1()

α2() β2()

α1() β1(α2()) β1(β2())

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

