Re-engineering of Timing Constrained Placements for Regular
Architectures *

Anmol Mathur

Dept. of Computer Science
U. of Illinois, Urbana-Champaign
Urbana, IL 61801

Abstract

In a typical design flow, the design may be altered slightly
several temes after the initial design cycle according to mi-
nor changes in the design specification either as a result
of design debugging or as a result of changes in engineer-
ing requirements. These modifications are usually local
and are referred to as engineering changes. [In this pa-
per we study the problem of timing driven placement re-
engineering : the problem of altering the placement of a
circuit to tncorporate engineering changes without degrad-
ing the timing performance of the circuit. We focus on
the re-engineering problem for regular architectures such as
FPGAs and gate arrays. Our algorithms exploit the local-
ity of the re-engineering design changes and use the cur-
rent placement to generate the new placement for the al-
tered circuit. Our experiments on the Xilinz 3000 FPGA
architecture demonstrate the effectiveness of our algorithm
in handling engineering changes efficiently.

1 Introduction

Minor changes in the design specification after the ini-
tial design flow are referred to as engineering changes. The
process of generating a new design that incorporates the
modifications to the circuit is referred to as design re-
engineering. Specifically, we are interested in re-engineering
a placement under timing constraints : a problem we call
timing driven placement re-engineering. After the initial
design cycle, a completely placed and routed design that
satisfies all the timing constraints is available. The input to
the problem of timing driven placement re-engineering is a
placed and routed design and the engineering changes made
to the circuit. The output is a new layout that incorporates
the design changes and satisfies all the (possibly new) tim-
ing constraints. Since the engineering changes are typically
local and relatively minor, it would be wasteful to re-do the
entire layout of the modified circuit from scratch. Further,
the localized nature of engineering changes means that the
layout of the original circuit is a good starting point for
finding a delay feasible layout of the modified circuit. An

*Work partially supported by NSF under grant MIP 92-22408
and by Fujitsu Laboratories of America, Inc.

K. C. Chen

Fujitsu Labs of America
77 Rio Robles
San Jose, CA 95134

C. L. Liu

Dept. of Computer Science
U. of Illinois, Urbana-Champaign
Urbana, IL 61801

algorithm for minimizing the perturbation in the placement
while handling engineering changes was presented in [2].
Techniques have also been proposed for exploiting the lo-
cality of engineering changes in circuit simulation [4]. More
recently there has been an effort to integrate logic synthe-
sis and layout through the use of local logic restructuring
driven by routability considerations [1]. Such a technique
for integration of logic synthesis and layout would bene-
fit greatly from the use of an efficient algorithm for timing
driven placement re-engineering.

In this paper, we study the problem of timing driven
placement re-engineering for regular architectures. The two
architectures of interest are Field Programmable Gate Ar-
rays (FPGAs) and gate arrays. The concept of a slack
neighborhood graph is used to design efficient an efficient al-
gorithm for reconfiguring a physically infeasible placement
(with some slots occupied by two modules) to a feasible
one with provably low timing degradation. This serves as
a crucial part of our algorithm for the timing driven place-
ment re-engineering problem. Our algorithm exploits the
regularity of the underlying architecture to ensure that the
execution time is significantly less than that for re-doing the
placement from scratch for the modified circuit. The regu-
larity of these architectures allows us to use powerful graph
theoretic techniques that would not be possible otherwise.

The organization of the remainder of the paper is as fol-
lows: Section 2 is devoted to a more precise formulation of
the placement re-engineering problem; Section 3 describes
our algorithm for placement re-engineering; and Section 4
presents the results of our experiments with the Xilinx 3000
series FPGA architecture.

2 Placement Re-engineering

After an iteration of the design flow, we have a placed
and routed design [that will be referred to as the current
implementation. The current circuit specification is P =
(C,T), where C represents the current circuit topology and
T is the set of teming constraints that must be satisfied by
a delay feasible implementation.

o C is represented by a directed graph Ge¢(Ve, Ec¢)
where each module of the circuit is represented by
a vertex in Vo and an interconnection between two
modules is represented by an edge in Fc between the
corresponding vertices.

e The timing constraints consist of arrival times A(xl)
at each primary input of the circuit, the module delay,
d(M;), for each circuit module and the required time,
R(fi), by which the signal should arrive at primary
output f;.

The circuits considered in this paper could be either
combinational or sequential, however for the purpose of tim-
ing calculations we assume that the circuit has been cut
at all the latches (thus creating pseudo-primary inputs and
outputs). We assume that T contains information about the
arrival times and required times at these pseudo primary in-
puts and outputs. Thus, the timing calculation algorithms
will assume that the underlying graph is a directed acyclic
graph.

In placement re-engineering we are given the current cir-
cuit specification, P, the current implementation, I, and
some engineering changes. The output of a placement re-
engineering algorithm is a delay feasible placement for the
new specification, P’. Further, it is desirable that the run-
ning time of the algorithm be proportional to the number
of engineering changes.This makes it necessary to make use
of I in generating the new delay feasible placement for P’.

2.1 Engineering Changes

Typically, engineering changes have the following char-
acteristics:

1. Locality: Engineering changes result from local re-
structuring of the circuit. So, they do not com-
pletely change the structure or function of the circuit.
Changes that have global effect on the timing behavior
or functionality of the circuit will not be classified as
engineering changes.

2. Small size: The zone of influence of a change can be
defined as the portions of the circuit that are affected
by the change. Re-engineering changes should have a
zone of influence that is a small fraction of the entire
circuit. Since it is hard to estimate the zone of influ-
ence of a change, we will assume that the number of
gates and nets that get changed by a set of engineering
changes is a small fraction of the size of the circuit.

MODULE INSERTION

i
A(h=21

R(f) =20

A(f) =19
R(H) =20

Fig. 1: Structural changes can result in violation of timing
constraints. Addition of the shaded module results in a new
critical path (dark path) that increases the arrival time at
the output from 19 to 21 causing violation of the required
time constraint.

Engineering changes can be classified into two broad cat-
egories depending on which component of the specification

tuple P(C,T) is changed.

e Structural changes: These changes alter the struc-
ture of the circuit and result in changes to the circuit
topology. The structural changes that we consider are:

1. Module Addition: Addition of new circuit mod-
ules along with the associated interconnections.

2. Module Deletion: Deletion of some of the existing
modules and their connections to other modules.

3. Interconnect Addition: Addition of new intercon-
nections among existing modules.

4. Interconnect Deletion: Deletion of interconnec-
tions between circuit modules.

e Timing changes: These changes alter the timing
constraints imposed on any delay feasible implemen-
tation of the circuit. We consider the following two
kinds of timing changes:

1. Change tn arrival time at a primary input or re-
quired time at a primary output.

2. Change in delay of a circuit module.

Notice that the addition of new modules and intercon-
nections can cause violation of timing constraints, even if
there is no change in the timing constraints, due to the
creation of new paths in the circuit (see Fig. 1). When
a module or interconnection is deleted from the circuit,
the implementation of the circuit can be easily updated
to reflect the change by simply removing some geometries
from the layout. Since this will not increase the arrival
time of any signal, the resulting layout is delay feasible.
So, from the point of view of timing driven placement re-
engineering, deletions are trivial to handle. In this paper,
we will henceforth focus only on structural changes involv-
ing the addition of modules and/or interconnections and

timing changes.

STRUCTURAL CHANGES TIMING CHANGES

Delete modules and
interconnections
Place new modules using
maximum affinity matching
Timing Driven Relocation
Timing Analysis

Is placement
delay feasible?
NO
Timing Driven Relocation

Fig. 2: An overview of our approach to timing driven place-

ment re-engineering.

3 Our Algorithm

Figure 2 gives an overview of our approach to timing
driven placement re-engineering. For structural changes,
first we remove the modules and interconnections to be
deleted from the placement. For the new modules being
added to the circuit, we have an initial placement phase
followed by an iterative compression-relaxation phase if the
initial placement is not delay feasible. For timing changes,
we perform timing analysis with the modified constraints
and if the current placement is not delay feasible the itera-
tive compression-relaxation scheme is used.

Our algorithm for generating the initial placement for
new modules added as part of structural changes to the
circuit is characterized by the use of a physically infeasi-
ble intermediate placement in the process of generating a
new placement. We make use of an efficient algorithm for
timing driven relocation in transforming a physically infea-
sible placement that has some slots occupied by two cir-
cuit modules to a physically feasible one with low timing
degradation. The concept of a slack neighborhood graph is
introduced and demonstrated to be useful in guaranteeing
low timing degradation during the movement of modules in
timing driven relocation. Timing driven relocation is also
used in the relaxation phase of the compression-relaxation
iterations.

Our initial placement algorithm

Fig. 3: Comparison of our initial placement algorithm with
a naive one that places the new module in an empty slot
close to the neighbors of the new module. (a) A placed and
routed design to which a new module, nl, is being added.
(b) A placement is determined for the new module using
maximum affinity matching creating an overlap (shown as
the dark slot). (c) New placement after timing driven re-
location to remove the overlap. (d) The new placement
generated by an algorithm that tries to find an empty slot
near the modules to which the new module has high con-
nectivity.

In order to clarify the problem of timing driven place-
ment re-engineering and motivate our approach, let us con-
sider an example of an engineering change where a new
module is being added to a circuit that has already been
placed. Figure 3 shows an example of a new module be-
ing added to a circuit that is already placed and routed.
Figures 3 (a) — (c) show the steps involved in our algo-

rithm for handling module insertion. Figure 3(d) shows the
new placement produced by a naive algorithm that simply
searches for a vacant slot in the vicinity of the slots to which
the new module has high connectivity. Notice that if a naive
algorithm is used for the placement of the new module, the
new module i1s placed in a slot that is quite far from the
modules to which it has high connectivity. This is because
the slots in the vicinity of the new module’s neighbors are
occupied. On the other hand, our algorithm allows the new
module to be placed on an occupied slot in the initial place-
ment phase and then performs a timing driven relocation
of the modules to remove overlaps.

Our algorithm for the initial placement of new modules
involves an affinity based initial placement of the new
modules. Affinity based placement attempts to minimize
the timing degradation during the placement of the new
modules, but it may place the new modules in slots that
are already occupied. Consequently, the placement may be
physically infeasible after affinity based placement. Tim-
ing driven relocation is used to reconfigure such a phys-
ically infeasible intermediate placement to a physically fea-
sible one, without significant timing degradation.

The above approach tries to minimize the timing degra-
dation in the process of addition of new modules, but does
not guarantee that the new placement will meet all the tim-
ing constraints. If the designer is willing to tolerate some
timing degradation in the process of re-engineering then
this approach is fine. However, if the new placement must
be delay feasible then we need to use the compression-
relaxation approach [5].

3.1 Affinity Based Placement

The first phase of our algorithm for handling the addition
of new modules along with their interconnections involves
selecting a good initial placement for the new modules. At
this stage we allow the new modules to be placed in slots
that are already occupied, thus resulting in a physically
infeasible placement. Allowing a physically infeasible inter-
mediate placement results in a significant increase in the
quality of the final placement (see Fig. 3).

We denote the affinity of a module M; to slot S; by
A(M;, S;). Intuitively, the affinity of a new module to a
slot 1s a measure of the quality of the new placement that
results when the module is placed in that slot. Both the
increase in the total wire length and the total increase in
the arrival times of signals at the primary outputs are taken
into consideration in the computation of the affinities. If
there is a large increase in the total wire length or the total
of the arrival times of the signals at the primary outputs
by placing the new module M; at slot S;, then A(M;, S;)
is low. If a new module is placed in a slot that is not
occupied, then it will not force any relocation of modules
in the second phase of our algorithm. The affinity function
takes this into consideration by having a term that depends
on the status (vacant or occupied) of the slot. Thus, the
affinity is defined by the following weighted sum

A(M;, S5) = a-(AL(M;, $;)) ™ +8-(AT(Mi, S;)) ™ +v-1(5)),
where

AL(M;,S;) = total increase in the lengths of all the nets

when module M; is placed on slot Sj,

AT(M;,S;) = total increase in the arrival times of signals

at all the primary outputs of the circuit

when module M; is placed on slot Sj,

ws) = {3 wohman,
i pie

Notice that the definitions of AL(M;, S;) and AT(M;, S;)
assume that M; is the only new module being added to
the circuit and compute the effect of placing it on slot 5;
on the total wire length and total arrival time respectively.
The effect of the other new modules being added to the
circuit are ignored in the calculation of A(Mj;,S;). Any
attempt to simultaneously capture the effect of adding sev-
eral modules to the circuit results in a drastic increase in
the time required for computing the affinities. The compu-
tation of AL takes time proportional to the number of nets
incident to the module for while the affinity is being com-
puted. The computation of AT requires time proportional
to the size of the fanout cone of the new module. Thus, the
total time consumed in the computation of the affinities is
O(k-(|Ec|+ |Ve]) - n) where n is the number of slots in the
architecture and |F¢|+ |Vc| is the size of the circuit graph.

We use the affinities computed above to place the new
modules in slots in the underlying architecture. This is done
by finding a maximum matching in a weighted bipartite
graph, G(Va; U Vs, E) where Vi is the set of vertices cor-
responding to the new modules being added to the circuit,
Vs is the set of vertices corresponding to the slots in the
architecture. The edges in E are of the form (u,v), u € Vi,
v € Vs. Further, each edge (u,v) € F has a weight equal to
the affinity of the module represented by vertex u to the slot
represented by vertex v. Since we allow for the possibility
of a module being placed in any of the slots, the graph G
is a complete bipartite graph. So a maximum matching of
size |Vis| always exists (assuming |Vas| < |Vs|). Our algo-
rithm for generating the initial placement of the new mod-
ules finds a maximum weight matching in G using mincost
flow in a modified graph having unit node capacities. Such
a matching yields a placement of the new modules, with
the module corresponding to vertex v € Vi being placed
on the slot corresponding to vertex v € Vs if edge (u,v) is
in the maximum weight matching. Since we have computed
a maximum weight matching the resulting initial placement
maximizes the sum of the affinities of the new modules to
the slots on which they get placed. At the same time, no
two new modules are placed on the same slot. This ensures
that in the placement that results, a slot is occupied by at
most two modules.

Thus, after initial placement of the new modules, we end
up with a placement that may be physically infeasible. If
the placement is physically infeasible we need to relocate
the old modules occupying the “overcrowded” slots to va-
cant slots. Further, in the process of relocation it is essen-
tial to ensure that timing degradation is minimized. This
is accomplished by using timing driven relocation.

3.2 Timing Driven Relocation

The input to the timing driven relocation problem is the
modified circuit specification, along with a physically in-
feasible placement generated by the initial placement step.
The set of slots occupied by two modules constitutes the
set of infeasible slots. Timing driven relocation moves the

circuit modules occupying infeasible slots to feasible slots
through series of moves ending at vacant slots. Further, the
relocation is done such that the critical path delay of the
circuit does not increase significantly. An obvious necessary
condition for relocation to be possible is that there should
be at least as many vacant slots as there are infeasible ones.

Infeasible Placement

Compute and distribute
edge slacks

Compute
slack neighborhood graph

Use mincost flow to find
relocation paths

Feasible Placement

Fig. 4: The main steps in our algorithm for timing driven
relocation.

Figure 4 shows the main steps in our algorithm for tim-
ing driven relocation using the concept of a slack neigh-
borhood graph. Using the placed and routed design, we
compute the slack of each edge in the circuit graph which
is a measure of the amount by which the delay on the edge
can be increased without violating any of the timing con-
straints. Since a delay increase can be translated into an
increase in the length of the interconnection corresponding
to the edge, the slack can be interpreted as an upper bound
on the amount by which the length of the interconnection
can be increased, without violating the timing constraints.

Informally, the set of neighboring slots to which a mod-
ule can be moved without violating any timing constraints
is said to be its slack neighborhood. The graph in which
the adjacency relation reflects these slack neighborhoods is
referred to as the slack neighborhood graph. Details regard-
ing the construction of the slack neighborhood graph and
its use in developing a provably good algorithm for timing
driven relocation (refer to [5]) are omitted due to lack of
space.

3.3 Handling Timing Violations

Once we have a physically feasible placement for the
modified circuit we perform timing analysis using the new
timing specification. If the current placement violates some
timing constraints, we use an iterative algorithm based
on the compression-relaxation approach of [5] to produce
a delay feasible placement. This section provides a brief
overview of the compression-relaxation approach. Details
can be found in [5].

The compression phase attempts to make the place-
ment delay feasible by compressing the long paths that
cause some of the primary output signals to arrive too late.
However, the compression phase may produce an infeasi-
ble placement with some of the slots occupied by two (but
no more than two) modules. This allows the compression

phase more flexibility and often allows it to achieve the re-
quired decrease in delay. If an infeasible placement is pro-
duced in the compression phase, the relaxation phase, which
carries out a timing driven relocation to produce a phys-
ically feasible placement. The slack neighborhood graph
based algorithm for timing driven relocation described in
Section 5 is used in the relaxation phase.

A delay analysis is carried out on the current placement
to compute the actual arrival times of the signals at the
various outputs and the outputs where the timing require-
ment is violated are identified. Associated with each such
output is a set of long paths ending at the output, that are
responsible for the violation of the timing requirement. We
define the longest path tree (LPT) of a primary output, f;,
to be the subgraph of the cone of f; consisting of the edges
in the longest path from each vertex in the cone of f; to
the primary output f;. The LPT captures several longest
paths in the cone of f; simultaneously. The compression al-
gorithm attempts to satisfy the timing requirement at f; by
moving modules in the cone to new slots so as to decrease
edge delays, a process referred to as compressing the cone
at f;. It should be noted that in the process of compress-
ing cone(f;), up to two modules can be placed in the same
slot. This ensures that compressing of the cone has enough
flexibility to guarantee a substantial decrease in the critical
path delay of the cone. If there are several outputs at which
the arrival time exceeds the required time, the cone of the
output with the maximum violation of the required time is
chosen for compression. Details of the construction of the
LPT and the compression algorithm can be found in [5].

The compression algorithm attempts to make the task of
the relaxation phase easier by relocating modules to empty
slots, if they are available at the right distance to achieve
the required compression. Further, an attempt is made to
spread out the infeasible slots to make the relocation in the
relaxation phase easier.

4 Experimental Results

We have implemented our algorithms as a package called
reeng. For our experiments we used the Xilinx 3000 series
FPGA architecture as the underlying architecture on which
circuits are placed. Experiments were conducted using tech-
nology mapped MCNC combinational benchmark circuits.

The initial delay feasible placement for the circuits was
generated using the sysdias package [5]. Structural and
timing changes were generated randomly. Both the num-
ber of structural and timing changes and the circuit mod-
ules affected by the changes were controlled probabilisti-
cally. Roughly speaking, the expected number of engineer-
ing changes of a particular type introduced by our algorithm
for generating random engineering changes is equal to the
product of the probability of that change and the number
of nodes in the circuit. We studied the behavior of our al-
gorithm with the number of changes made to the circuit
specification.

One of the crucial requirements for any placement re-
engineering algorithm is that it should be significantly faster
than re-doing the placement for the modified circuit from
scratch. In order to study this aspect of our algorithm, we
compare the number of compression-relaxation iterations
required to generate a delay feasible placement and the
run time for reeng with those required by sysdias for plac-

ing the modified circuit from scratch. Since sysdias starts
from a randomly generated initial placement and then per-
forms compression-relaxation iterations until a delay fea-
sible placement is obtained, the number of compression-
relaxation iterations used by reeng and sysdias is a good
measure of the complexity of placement re-engineering us-
ing these two methods. These results are shown in Ta-
ble 1. The probabilities for structural changes and timing
changes were both set to 0.1 for the generation of engi-
neering changes. Thus, roughly 10% of the nodes and in-
terconnections were affected by the structural changes and
around 10% of the timing constraints were altered. The
amount by which a timing constraint was tightened (that
is the reduction in required time, R(z)) in a timing change
was a uniformly distributed random variable in the range
[0,0.1R(z)]. The columns SC and TC refer to the number
of structural and timing changes respectively. In SC only
module additions/deletions are counted. Table 1 shows that
the run time for reengis an order of magnitude smaller than
the run time for sysdias and the number of compression-
relaxation iterations is also proportionally smaller. This
confirms our hypothesis that the delay feasible placement
for the modified circuit is “close” (in the configuration space
of all placements) to the delay feasible placement for the
original circuit and hence can be found more efficiently by
using the delay feasible placement for the original circuit
as a starting point. Table 1 also shows the actual delay in
the critical path for the placed circuits after routing using
the Xilinx apr tool. The critical path delays using reeng
and using sysdias are approximately the same. This is to
be expected since both the packages terminate once all the
timing constraints are satisfied.

We also studied the variation in run time of reeng with
respect to the probability of structural and timing changes.
The graph in Figure 5 shows the variation in the run time
for reeng on circuit alu2. It is interesting to observe that
the increase in running time with probability of structural
change is almost monotonic. The non-monotonic sections
of the graph may be due to the fact that it is possible that
a smaller number of changes may sometimes have a larger
affect on the critical paths in the circuit. Also a higher
probability of change does not necessarily imply that the
actual number of changes introduced by our algorithm for
generating random engineering changes is larger. The in-
crease in run rime is slightly faster when the probability of
timing change is increased. This could be due to the fact
that timing changes tend to have a more global effect on the
placement since they might force the relocation of several
modules. Structural changes on the other hand are more
local, and only if there is a violation of some timing con-
straint due to a structural change are its effects propagated
to other parts of the circuit.

Another parameter of interest in evaluating a placement
re-engineering algorithm is the difference between the initial
placement and the new placement generated after place-
ment re-engineering. We measured the variation in the
number of module movements during re-engineering with
the probability of change. We observed that there is a
strong correlation between the running time of reeng and
the number of module movements. Figure 6 shows the
variation in number of module movements with structural
change probability for alu2.

EC sysdias reeng
Circuit | # mod || SC | TC || # iter | Time | Delay | #iter | Time | Delay
cordic 48 6 4 25 48 50.5 4 3 51.0
count 85 7 10 32 85 60.0 3 3 58.5
bw 61 9 5 20 80 32.0 4 4 30.0
f51m 58 7 5 21 93 83.4 3 3 85.0
frgl 91 12 8 32 150 75.5 5 6 75.0
comp 103 10 12 40 260 80.4 4 4 82.0
term1 161 18 16 45 303 70.6 5 6 75.0
C499 144 12 10 33 260 73.0 4 4 72.6
880 210 18 22 42 335 120.5 5 6 125.0
alu2 232 21 22 48 410 183.5 7 7 185.4

Table 1: Comparison of running time (in seconds), delay (after routing) of the critical path (in nanoseconds) and number of
compression-relaxation iterations for reeng and sysdias. In sysdias the entire placement is re-done from scratch.

Run time (sec)
e
T
.

2 au2 -— q

0
0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110
Probability of structural change

Fig. 5: Variation in run time of reeng with increase in

structural changes.

16

14 -

12

10 |

number of module movements
o]
T

0
0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110
Probability of structural change

Fig. 6: Variation in the number of module movements with
structural change probability.

5 Conclusions

We have presented a new approach to the timing driven
placement re-engineering problem for regular architectures.
Our algorithm handles both structural changes in the cir-
cuit topology as well as changes in the timing constraints
imposed on the placement. A novel algorithm for generat-
ing the initial placement for new modules using maximum
affinity matching is proposed. Timing driven relocation us-
ing the concept of a slack neighborhood graph is used in
transforming physically infeasible intermediate placements
to physically feasible ones with low timing degradation.
Our experimental results on the Xilinx 3000 series FPGA
architecture demonstrate the viability of our approach.

References

[1] S. C. CHaNG, K. T. CHENG, N. S. Woo, M. MAREK-
SADOWSKA, Layout Driven Logic Synthesis, Proc.
DAC, 1994, pp. 308-313.

[2] C. CHOY, T. CHEUNG, An Algorithm to Deal with In-
cremental Layout Alteration, Proc. 34th Midwest Sym-
posium on Circuits and Systems, Vol. 2, 1991, pp. 850—
853.

[3] B. CopeENoTTI, R. Tamassia, A Network Flow Ap-
proach to the Reconfiguration of VLSI Arrays, IEEFE
Transactions on Computers, 40 (1991), pp. 118-121.

[4] Y. JuU, Incremental Circuit Simulation and Timing
Analysis Techniques, PhD. Thesis, Univ. of lllinois at
Urbana- Champaign, 1993.

[5] A. MATHUR, C. L. Liu, Compression-Relaxation: A
New Approach to Performance Driven Placement for
Regular Architectures, Proc. ICCAD, 1994, pp. 130-
136.

[6] A. MaTHUR, K. C. CHEN, C. L. Liu, Applications of
Slack Neighborhood Graphs to Timing Driven Opti-
mization Problems in FPGAs, Proc. 3rd ACM/SIGDA
Symposium on FPGAs, 1995, pp. 118-124.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

