
Boolean Techniques for Low Power Driven Re-Synthesis �

R. Iris Bahar Fabio Somenzi

Dept. of Electrical and Computer Engineering
University of Colorado, Boulder

Abstract

We present a boolean technique to reduce power consumption of
combinational circuits that have already been optimized for area
and delay and then mapped onto a library of gates. In order to
achieve a better optimization, we cluster gates by collapsing two
or more levels of gates into a single node. When optimizing each
cluster, our method extends the algorithms used in espresso, by
adding heuristics that bias the minimization toward lowering the
power dissipation in the circuit. The results of our method, on a
number of benchmark circuits, show an average of 16% improve-
ment in power savings compared to existing boolean techniques.

1 Introduction
Designing electronic devices with lower power dissipation is
increasingly critical in today's market. As the density, size,
and complexity of VLSI chips continue to increase, provid-
ing adequate cooling, long running batteries for portable
devices, and inexpensive packaging may no longer be pos-
sible. Techniques for IC design should address the design
problem as a three-dimensional one, optimizing for area,
performance, and power simultaneously.
Under a simpli�ed model of the energy dissipated by

CMOS devices, the power consumption of a CMOS gate
is directly related to its switching activity factor [1]. We as-
sume that the energy dissipated by a CMOS gate each time
its output switches equals the change in the energy stored
in the capacitor associated with the output of the gate. The
average power, Pavg, dissipated by the gate is given by:

Pavg =
1

2
� Cload �

V 2

dd

TC
�E(transitions); (1)

where Cload is the capacitance of the output load, Vdd
is the supply voltage, TC is the global clock period, and
E(transitions) is the expected number of gate output tran-
sitions per clock cycle. E(transitions) represents the switch-
ing activity of the output of the gate.
During the high-level design stage, power dissipation

in ICs can be reduced by means of precise architectural
choices [2]. At the logic level, it is the switching activity
of the logic, weighted by the capacitive loading, that is the
prime focus of the optimization. Several methods have been
proposed to reduce power dissipation for combinational cir-
cuits at the logic level. Some techniques are applied at the
technology independent stage of logic synthesis; they try
to reduce the switching activity of the logic functions us-
ing an approach similar to that of [3]. Both [4] and [5]
use the don't care set to minimize a linear combination of
the number of product terms and switching activity of a
function. Another method applied at the technology inde-
pendent stage uses a kernel extraction procedure to generate
multi-level circuits with lower power consumption [6]. In [7],
technology decomposition and mapping methods are intro-
duced that try to minimize the total switching activity using
a procedure similar to Hu�man's algorithm and dynamic

�This work is supported in part by NSF/DARPA grant MIP-

9115432 and SRC contract 94-DJ-560.

programming. Technology mapping using an area-delay-
power tradeo� curve has been used in methods described
in [8] and [9]. In addition to technology independent and
technology mapping techniques, at the gate re-sizing stage,
symbolic methods used in [10] may be applied to more ac-
curately measure gate slack and size gates down to save
power.
The main problem with applying low power optimization

to technology independent circuits is that power dissipation
is di�cult to measure with a dependable level of accuracy so
that the results may not be very predictable. We propose
a method that can be applied to technology mapped cir-
cuits, but uses technology independent boolean techniques
for optimizing the circuit. If we start with a circuit that
is already implemented in gates from a technology library,
we can extract from it more accurate information on the
switching activity of the gates, and thereby more e�ectively
apply low power driven boolean optimization techniques to
re-synthesize the circuit.
As an example of the optimization problem we are ad-

dressing, consider the function shown in Figure 1, where we
have two possible implementations shown in the Karnaugh
maps of Figures 1(a) and 1(b). Both implementations are
optimal in terms of number of product terms and number
of literals, however, given non-uniform switching activity at
the primary inputs to the circuit, selection of the cover in
1(b) reduces power dissipation in the circuit.

y
2

y
1

y
0

11

111

111

111

1

y
0 y

1

y
2

y
0

y
1

y
2

f

y
0y
1

y
2

f

f = y2y0
0 + y2

0y1
0 + y1y0 f = y2

0y0 + y2y1 + y1
0y0

0

Pave = 25:6�W Pave = 24:6�W

(a) (b)

Figure 1: Di�erent Cube Coverings for Node f .

Given a technology mapped circuit (i.e., a netlist of gates)
our approach to re-synthesis is based on extracting clusters
of gates; deriving a two-level cover for each cluster; op-
timizing the cover with low power as the objective using
both observability and satis�ability don't cares; and �nally
remapping the cluster onto the given library. While dealing
with one cluster at the time, we can rely on the rest of the
circuit to produce meaningful statistical information on the
switching activity, because the information is obtained from
a technology mapped circuit.
Our approach to solving the minimization problem is an

extension of the espresso algorithm [11, 12]. We have

developed our procedures within the sis [13] environment
and compare our results to existing minimization proce-
dures, oriented toward area minimization. We show that
our method reduces power, often at no cost in terms of in-
creased area or delay.

To re-synthesize our circuit for lower power we need an
accurate measure of switching activity (including glitching)
of the output of each gate in the circuit. To do this we use
existing tools that measure average power; speci�cally, we
use the tool described in [14], which assumes the transition
probabilities of the primary inputs to be given, and calcu-
lates the switching activity factor of each gate output using
symbolic simulation.

2 Preliminaries
It is customary to classify logic optimization techniques into
technology-independent methods (e.g.,extraction of com-
mon subexpressions) and technology dependent methods
(e.g. bu�er sizing), according to whether they manipulate
logic formulae without reference to a speci�c technology
or library, or they consider those technology-related fac-
tors. E�ective optimization strategies combine technology-
independent techniques with technology-dependent ones.
The boundaries between these categories are not sharply
de�ned, and that techniques that straddle those boundaries
often produce very good results.

A boolean optimization technique for multi-level circuits
that is of particular interest to us consists of applying two-
level minimization to the nodes of the multi-level circuit.
Following the nomenclature of sis [13], we shall call this
technique simplify. For simplify to be e�ective, the func-
tions of the nodes subjected to minimization (in terms of
their local inputs) should not be too small. It is therefore
customary to precede its application by a partial collapsing
of the circuit, which produces a circuit with fewer, more
complex, nodes.

A global optimization procedures uses information about
its global behavior during the optimization process. Sim-

plify can be a global optimization procedure, depending on
whether don't cares are used in solving the two-level mini-
mization problems. The don't cares express conditions that
may not occur at the inputs of the node being simpli�ed
(satis�ability don't cares,) or conditions under which the
primary outputs of the circuit are not sensitized to the value
of the node being simpli�ed (observability don't cares.)

The extraction of don't cares from a multi-level network
can be done by �rst computing compatible subsets of ob-
servability don't cares in terms of the primary inputs; by
then adding the external don't cares; and by �nally com-
puting the image of the don't care conditions at the local
inputs of the node being simpli�ed. To avoid wasteful re-
computation when observability don't cares are used, it is
convenient to apply simplify to the nodes in topological or-
der from the primary outputs to the primary inputs [3].

A cover for a function F is a set of cubes or implicants,
such that the disjunction of the cubes is a sum of product
representation of the cover. An incompletely speci�ed func-
tion is represented to the two-level logic minimizer as a pair
of covers, (F;D). F is a cover of the ON-set of the function,
and D is a cover of the don't care set. The OFF-set R can

be obtained as the complement of F [D.
The two-level minimization problem that is obtained by

appending the don't care conditions to the function of a
node is typically solved by a heuristic algorithm similar to
espresso. The basic loop of espresso consists of three
steps: In the �rst, the cubes of the function being mini-
mized are reduced as much as possible; in the second step
they are expanded so that as many cubes as possible are cov-
ered by other cubes and can therefore be dropped. In the
third and �nal step, an irredundant set of cubes that cover
the function is extracted from the set of those that have
survived the expansion phase. If close-to-optimum results
are desired, the basic loop is repeated until no improvement
is achieved. In simplify the basic loop is repeated only once
for the sake of speed.

3 Clustering
As pointed out in Section 2, simplify yields better results if
the functions of the nodes are not too small. Indeed, if the
node being simpli�ed corresponds to a simple gate, and no
don't cares are used, no simpli�cation can be achieved. If
don't cares are used, a simple gate can be simpli�ed only
if some of its connections are redundant. When applied to
a complex function, on the other hand, simplify can escape
a local minimum and produce a better cover, even when
starting from an irredundant circuit.
In a technology-mapped circuit, nodes tend to be simple.

Therefore, the application of techniques similar to simplify

to circuits that are already expressed in terms of library
gates requires that nodes be not considered in isolation,
but in clusters. We call clustering the process of forming
groups of nodes to be subjected to two-level minimization.
Although similar to the partial collapsing described in Sec-
tion 2, clustering di�ers from it because it does not per-
manently change the structure of the entire network (un-
desirable for a technology-mapped circuit); rather, it �nds
groups of nodes from a sub-network forming fanout-free sub-
circuits that can be extracted, simpli�ed, and remapped
onto the gate library, while leaving the rest of the circuit
unchanged.
Clustering collapses gates from two or more levels of logic

into a single node. The goal is to then �nd a locally optimal
cover for each cluster. By working with more than one level
of logic we have more exibility in choosing a cover that is
good in terms of both area and power. On the other hand,
we do not want to collapse gates from too many levels of
logic into a single node since we may be too removed from a
mapped representation of the circuit. The clustering starts
at the primary outputs and proceeds to the primary inputs.
To keep the algorithm simple, we only collapse the fanin
of a node if this fanin does not fanout to multiple sources.
The output node of a cluster may have multiple fanouts.

4 Two-Level Optimization
We solve the low power optimization problem by solving a
series of two-level minimization problems. For each problem
we are given a cluster for a node f described as a two-
level cover in terms of the local inputs to the cluster. After
optimization we obtain a new cover for the function f , which
should produce less switching activity once the function is

mapped onto gates from the library. We accept the new
cover of f if the number of literals (or alternatively, number
of cubes) has not increased from the original cover. After
all clusters have been optimized we remap the entire circuit.

4.1 Cube Probabilities

In order to bias logic minimization toward lowering power
dissipation, we need the switching activity, or transition

density, of each cube in the cover of f . Before clustering
our circuit, we have computed the transition densities for all
signals in the circuit using an accurate delay model (i.e., we
compute transitions due to functional output switching as
well as glitches). Therefore, we have available the transition
densities for all input signals to each cluster of the circuit.
The problem now becomes how to compute the transition
densities of each cube c in the cover of function f given the
transition densities and signal probabilities for all inputs to
the cluster. The signal probability is de�ned as the proba-
bility of a signal being at value 1. The signal probabilities
are found by building the functional BDDs for each xi with
respect to the primary inputs of the circuit.
We approximate the cube transition densities by assum-

ing that transitions on di�erent inputs are not simultaneous
and that the inputs to the cluster are independent. Un-
der these assumptions, given a cluster with n inputs xi,
1 � i � n and transition densities D(xi), we compute the
transition densities of all m cubes cj , 1 � j � m, in the
cover of f using the following formula due to [1]:

D(cj) =

nX
i=1

P

�
@cj

@xi

�
�D(xi); (2)

where P
�
@cj
@xi

�
is the signal probability of the Boolean dif-

ference of cj with respect to input xi.
Consider the cover shown if Figure 2(a). Suppose the

signal probabilities of the inputs, P (yi), are P (y0) =
0:9; P (y1) = 0:3; P (y2) = 0:5, and P (y3) = 0:8, and as-
sume, for the sake of simplicity, that the transition densi-
ties of the inputs are the same as their signal probabilities
in this example. To compute the transition density of cube
cj = y3

0y2y1
0, we use Equation 2:

D(cj) = P (y3
0)P (y2) �D(y1) + P (y3

0)P (y1
0) �D(y2) +

P (y2)P (y1
0) �D(y3)

= 0:2 � 0:5 � 0:3 + 0:2 � 0:7 � 0:5 + 0:5 � 0:7 � 0:8 = 0:38

Transition densities for the other cubes may be computed in
a similar fashion producing the values D(y3y1y0) = 0:648,
D(y3

0y1
0y0

0) = 0:242, D(y3y2
0y0) = 1:08, D(y3

0y2y0) =
0:54, and D(y2y1y0) = 0:405. Notice that due to the non-
uniformity of the input transition densities, the transition
densities of the cubes in the cover may vary widely.
When processing a cluster, a large amount of simpli�ca-

tion is possible if the don't cares are used properly. In order
to accurately build the don't care set for a given node in
the circuit, we must assume that the nodes in its transitive
fanout are not going to be altered. Given this assumption,
once a node has been simpli�ed, we can only simplify those
gates in its transitive fanin, unless we want to re-evaluate
the entire circuit again. For e�ciency reasons, we want a
simpli�cation process that can be carried out in one pass

over the circuit. This implies processing the nodes from
primary outputs to primary inputs. The drawback of this
approach is that we are making assumptions on the values
of the switching activity at the local inputs of the cluster in
order to do the simpli�cation. If we change the functional
implementation of any transitive fanin to this cluster, we
may be changing these switching activity values and the as-
sumptions we made while simplifying this cluster may no
longer hold. However, the input switching activity is used
mainly as a guide to optimizing the cover, so small changes
in switching activity do not usually change the overall qual-
ity of the new optimized cluster.

4.2 Reduction

Given a cover pair (F;D) and a cube c 2 F , reduction
is the process of replacing c in F by the smallest r � c

such that ((F � fcg) [frg; D). Reduction of a cube is
possible when it overlaps other cubes in the two covers. For
a �xed pair (F;D) the maximal reduction of each cube is
unique: If the cube is reduced by adding a set of literals to
it, the order in which the literals are added is immaterial.
On the other hand, the order in which the cubes of F are
considered for reduction does matter. Typically, the cubes
that are considered �rst can be reduced more, because, as
the process advances, the overlaps of the cubes decrease.

The purpose of reducing all cubes during minimization is
to make it possible to subsequently expand some of them
in di�erent directions, so that some other cubes will be en-
tirely covered, and therefore dropped. Since decreasing the
number of cubes is advantageous for area, and most of the
time also for power, cubes are maximally reduced, regard-
less of the temporary negative e�ects this may have on the
transition probabilities. To steer the subsequent expansion
in the direction of decreasing power consumption, the cubes
are processed in order of decreasing switching probability.
Hence, the cubes that cause the most activity are given a
higher chance of dropping out of the cover.

y
0 y

1

y
2 11

1

1

1

1

1y
3

y
0 y

1

y
2 11

X

X

X

1

Xy
3

y
0 y

1

y
2 11

X

X

X

1

Xy
3

NON ESSENTIAL
REDUCE

(a) (b) (c)

Figure 2: Reduction Process for Node f .

Returning to our example in Figure 2, starting with the
initial cover shown in Figure 2(a), we want to maximally
reduce the cubes in the cover. To avoid needless work, we
remove from our cover any cubes we know are essential.
These essential cubes must be included in any prime cover
of the function; hence there is no point trying to reduce
and later expand these cubes. In Figure 2(b) the essential
cubes y3

0y1
0y0

0 and y3y2
0y0 are temporarily removed from

the cover and replaced with don't care values. We now
compute the switching probability of the remaining cubes
(as shown in Section 4.1) and obtain the order for cube

reduction as (y3y1y0; y3
0y2y0; y2y1y0; y3

0y2y1
0) according

to decreasing values of switching probabilities. The cubes
are maximally reduced in this order to obtain the cover
shown in Figure 2(c). Notice that the two cubes with the
highest transition densities (y3y1y0 and y3

0y2y0) have been
completely eliminated from the cover.

4.3 Expansion

After reduction, the cubes of F are not, in general, primes.
The purpose of expansion is to turn a cube c 2 F into one
of the primes of F [D that contain c. The non-uniqueness
of the maximal expansion of a cube makes this phase of the
minimization algorithm more interesting, and more com-
plex. In expanding a cube, two objectives must be taken
into account: One is the quality of the cube taken in isola-
tion. For area, this means that the expansions that lead to
the largest cubes are preferable. For power, the switching
statistics of the inputs must be taken into account as well.
The second objective of expansion is to cover as many other
cubes as possible, either totally, or partially. In the case of
power minimization, the value of an expansion depends not
only on the number of cubes that are covered, but also on
the activity of the cubes that are eliminated because they
are covered.
The maximal expansions of a single cube do not depend

on the order in which the cubes of F are processed. How-
ever, the order in which the cubes are processed for ex-
pansion is important because of the e�ect it has on which
cubes are covered and hence dropped: Expanding a cube
too early may prevent another cube from covering it. In
order to minimize power consumption, the switching activ-
ity of each reduced cube is computed and we process them
according to increasing switching activity. Thus, the cubes
with high switching activity are kept last, in the hope that
some other cubes will expand to cover them.
In the case when an expanded cube may subsume more

than one other cube, we expand the cube in the direction
that makes it cover the cubes with higher switching activity.
If no other cubes can be entirely covered, espresso tries to
maximize the overlap of the expanded cube and the remain-
ing cubes, so that the number of cubes in the cover may be
minimized. While minimizing the number of cubes in the
cover of the cluster is still important, in order to bias our
cover toward low power, we assign a weight to each variable
according to its switching probability and solve the prob-
lem as a minimal weighted cover. We give lower weight, i.e.,
higher advantage, to not expanding the cube in the direc-
tion of a variable with lower transition density. Given input
variable xi to the cluster, we assign the weights using the
following equation:

weight (xi) = � � TransitionDensity (xi) + (1� �); (3)

where � is a parameter used to properly weigh the vari-
ables so that both transition density and the number of
cubes needed to cover the function can have the appropri-
ate importance.
To illustrate the expansion process, we start with a max-

imally reduced cover as shown in Figure 3(c). We �rst com-
pute the transition densities of the cubes to obtain the ex-
pansion order (y3

0y2y1y0; y3
0y2y1

0y0; y3y2y1y0) according

y
0 y

1

y
2 11

X

X

XXy
3

y
0 y

1

y
2 11

1

1

1

1

1y
3

y
0 y

1

y
2 11

X

X

X

1

Xy
3

1

EXPAND
EXPAND

(a) (b) (c)

Figure 3: Expansion Process for Node f .

to increasing values of transition densities (D(y3
0y2y1y0) =

0:189, D(y3
0y2y1

0y0) = 0:405, and D(y3y2y1y0) = 0:432.)
We then consider the expansion of cube y3

0y2y1y0. We can
expand this cube in either the direction y1 or y3 as shown by
the two arrows in Figure 3(a). In either direction we would
subsume one cube; however, we conclude that expanding
in the direction of y3 is better since we will remove a cube
with a higher transition density from the cover. After ex-
pansion of cube y3

0y2y1y0 we obtain the cover as shown
in Figure 3(b). We now consider the expansion of cube
y3

0y2y1
0y0. Expansion in either direction y0 or y1 will not

subsume any other cubes; however, if we expand in direc-
tion y0 we remove from the cube a variable with higher
transition density. The �nal cover after expansion is shown
in Figure 3(c).

4.4 Irredundant Covers

Expansion produces a cover of prime implicants. None of
them is entirely contained in another cube of the cover.
However, some cubes may be covered by the union of other
cubes. The purpose of the irredundant step is to extract a
subset of the prime cover, that is still a cover. A covering
problem is solved, in which the cubes in the current cover
are selected so as to cover all the minterms of the function.
The solution to the covering problem is found by a branch-
and-bound algorithm. This reects the non-uniqueness of
the irredundant covers for a given initial cover. When
minimizing for low power, the objective of irredundant is
twofold: To reduce the number of cubes, and to reduce their
switching activity. These two objectives can be combined
by making the cost of each cube|as seen by the cover-
ing problem solver|a convex combination of the area and
power dissipation of the cube. (See Equation 3.)

5 Experimental Results
The algorithms and heuristics described in this paper

have been implemented and integrated within the sis logic
synthesis package. We conducted experiments on a subset
of circuits from the mcnc benchmark set. Power estimation
(and switching activity) was computed using the symbolic
simulation method of [14]. All experiments were run on a
DEC-station 5000/200 with 88MB of memory.
In Table 1 we report the results of our method when used

to optimize circuits mapped for area and speed. Randomly
generated non-uniform transition densities for the primary
inputs are used for all experiments. We start with an initial
circuit which has been �rst optimized using the sis script
script.rugged. After this initial optimization the circuit is
mapped for speed onto a gate library consisting of NANDs,
NORs, and inverters|each type having �ve di�erent size

Circuit Init.Mapping Full Simplify Simplify for LP Savings
Area Power

Area Delay Power Area Delay Power Area Delay Power Depth FS / LP FS / LP

5xp1 256244 15.88 1201 224576 15.65 902 224576 15.65 902 1 12% / 12% 25% / 25%

9sym 474904 10.94 2359 438944 11.19 2298 438944 11.19 2298 1 8% / 8% 3% / 3%

Z5xp1 216688 20.93 2177 240004 22.08 2594 216572 20.70 2001 3 -11% / 0% -19% / 8%

b12 164952 8.12 538 141984 7.89 466 133980 8.17 405 3 14% / 19% 13% / 25%

bw 348696 17.58 1512 337444 18.09 1695 316796 17.57 1410 3 3% / 9% -12% / 7%

clip 279676 12.29 1495 271904 12.74 1438 249632 12.24 1338 4 3% / 11% 4% / 11%

misex1 119828 9.92 772 111476 9.89 704 111476 9.89 704 1 7% / 7% 9% / 9%

rd53 68904 8.52 350 65888 8.25 320 65888 8.25 320 1 4% / 4% 9% / 9%

rd73 131892 15.10 780 112056 15.10 803 103356 14.55 559 4 15% / 22% -3% / 28%

rd84 301368 13.10 1782 290812 13.38 1881 253924 13.10 1582 2 4% / 16% -6% / 11%

sao2 312156 15.46 1284 282460 15.78 1223 248936 15.32 894 3 10% / 20% 5% / 30%

squar5 139896 13.75 716 122264 13.75 672 100920 13.05 497 3 13% / 28% 6% / 31%

Average 7% / 13% 3% / 16%

Table 1: Experimental Results on Sample Circuits.

options. We show the e�ectiveness of our results my com-
paring the area and power savings we obtain using our new
procedure simplify for lp with the procedure full simplify

from the sis package. Columns 2{10 report the area, delay,
and power after mapping, for the initial circuit, after op-
timization using full simplify, and after optimization using
simplify for lp, respectively. The optimization procedures
attempt to keep the delay of the circuits very close to the
delay of the original mapping. We have experimented with
di�erent depths of clustering ranging from 1 to 4. In Col-
umn Depth we report the number of levels of clustering that
leads to the best reduction in power. The results we report
for our method reect this best level of clustering. Columns
12 and 13 report the area and power savings compared with
the initial circuit after optimization using full simplify (FS)
and simplify for lp (LP). As seen from our results, our
simpli�cation procedure often obtains a circuit with better
power and area reduction compared to full simplify, and in
some cases the di�erence is quite signi�cant. There is no
speci�c level of clustering that leads to the best optimiza-
tion; however, our procedure tends to favor less clustering
rather than more, suggesting that clustering too many lev-
els moves us too far away from a mapped representation of
the circuit. Once the simpli�cation is complete, additional
power savings may be obtained by resizing the gates using
the method described in [10].

6 Conclusions
We have presented a boolean technique to reduce power
consumption of combinational circuits that have already
been mapped. Starting from a mapped circuit allows us
to obtain more accurate information about the power dissi-
pation of the circuit and then use this information to more
e�ectively re-synthesize the circuit to lower its power dis-
sipation. Comparing our results to those of sis has shown
that our method produces circuits with lower power dissi-
pation in most cases. Clustering alone can be a very ef-
fective tool; running full simplify after clustering the cir-
cuit can produce results almost as good as those shown in
Table 1 for simplify for lp. In order for the two-level opti-
mization step to more e�ectively contribute to power sav-
ings this step needs to be tightly coupled with technology
mapping|mapping should not be done as a post-processing
step. Therefore, our future plans include extending our
techniques to insure that optimizations made at the tech-
nology independent stage are not lost during technology
mapping.

References
[1] F. N. Najm, \Transition density, a stochastic measure of activity

in digital circuits," in Proceedings of the Design Automation
Conference, (San Francisco, CA), pp. 644{649, June 1991.

[2] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. W. Brodersen, \Optimizing power using transformations,"

IEEE Transactions on CAD, vol. 14, pp. 12{31, Jan. 1995.

[3] H. Savoj, R. K. Brayton, and H. J. Touati, \Extracting local

don't cares for network optimization," in Proceedings of the
International Conference on CAD, (Santa Clara, CA), pp. 514{

517, Nov. 1991.

[4] A. Shen, S. Devadas, and A. Ghosh, \Probabilistic construc-
tion and manipulation of free boolean diagrams," in Proceed-

ings of the International Conference on CAD, (Santa Clara,
CA), pp. 544{549, Nov. 1993.

[5] S. Iman and M. Pedram, \Multi-level network optimization for
low power," in Proceedings of the International Conference on

CAD, (San Jose, CA), pp. 372{377, Nov. 1994.

[6] S. C. Prasad and K. Roy, \Circuit activity driven multilevel

logic optimization for low power reliable operation," in Pro-
ceedings of the European Conference on Design Automation,

(Paris, France), pp. 368{372, Feb. 1993.

[7] C.-Y. Tsui, M. Pedram, and A. Despain, \Technology decom-
position and mapping targeting low power dissipation," in Pro-

ceedings of the Design Automation Conference, (Dallas, TX),
pp. 68{73, June 1993.

[8] V. Tiwari, P. Ashar, and S. Malik, \Technology mapping for low
power," in Proceedings of the Design Automation Conference,

(Dallas, TX), pp. 74{79, June 1993.

[9] B. Lin and H. deMan, \Low-power driven technology mapping

under timing constraints," in International Workshop on Logic
Synthesis, (Lake Tahoe, CA), May 1993.

[10] R. I. Bahar, G. D. Hachtel, E. Macii, and F. Somenzi, \A sym-

bolic method to reduce power consumption of circuits containing
false paths," in Proceedings of the International Conference on

CAD, (San Jose, CA), pp. 368{371, Nov. 1994.

[11] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and

A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for
VLSI Synthesis. Boston, Massachusetts: Kluwer Academic

Publishers, 1984.

[12] R. Rudell and A. Sangiovanni-Vincentelli, \Multiple-valued

minimization for PLA optimization," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,

vol. CAD-6, pp. 727{750, Sept. 1987.

[13] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli, \Sequential circuit design

using synthesis and optimization," in Proceedings of the Inter-
national Conference on Computer Design, (Cambridge, MA),

pp. 328{333, Oct. 1992.

[14] A. Ghosh, S. Devadas, K. Keutzer, and J. White, \Estimation of

average switching activity in combinational and sequential cir-
cuits," in Proceedings of the Design Automation Conference,

(Anaheim, CA), pp. 253{259, June 1992.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

